Czechoslovak Mathematical Journal

C. Jayaram; E. W. Johnson
σ-elements in multiplicative lattices

Czechoslovak Mathematical Journal, Vol. 48 (1998), No. 4, 641-651
Persistent URL: http://dml.cz/dmlcz/127443

Terms of use:

© Institute of Mathematics AS CR, 1998

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

σ-ELEMENTS IN MULTIPLICATIVE LATTICES
 C. Jayaram, Kwaluseni, and E. W. Johnson, Iowa City

(Received July 10, 1995)

All rings are assumed commutative with identity. By a multiplicative lattice, we mean a complete lattice L, with least element 0 and compact greatest element 1 , on which there is defined a commutative, associative, completely join distributive product for which 1 is a multiplicative identity. By a C-lattice, we mean a multiplicative lattice which is generated under joins by a multiplicatively closed subset of compact elements. It is easy to see that in a C-lattice L, the set L_{*} of compact elements is multiplicatively closed. Throughout we assume that L is a C-lattice

An element $p<1$ in L is said to be prime if $a b \leqslant p$ implies $a \leqslant p$ or $b \leqslant p$. If 0 is prime, L is said to be a domain. By a filter on L_{*} we mean a multiplicatively closed subset $F \subseteq L_{*}$ such that $a \in F, b \in L$ and $a \leqslant b$ imply $b \in F$. We use $\mathfrak{F}\left(L_{*}\right)$ to denote the set of all filters of L_{*}. For any $a \in L_{*}$, the smallest filter containing a is denoted by $[a)$, so $[a)=\left\{x \in L_{*} \mid x \geqslant a^{n}\right.$ for some nonnegative integer $\left.n\right\}$. For any $a \in L$ and any $F \in \mathfrak{F}\left(L_{*}\right)$, we define $a_{F}=\bigvee\left\{x \in L_{*} \mid x y \leqslant a\right.$ for some $\left.y \in F\right\}$, and $L_{F}=\left\{a_{F} \mid a \in L\right\}$. For any prime element p of L, we define $F_{p}=\left\{x \in L_{*} \mid x \not \leq p\right\}$, so $F_{p} \in \mathfrak{F}\left(L_{*}\right)$. In this case we denote $L_{\left(F_{p}\right)}$ by L_{p} and for $a \in L, a_{p}=a_{\left(F_{p}\right)}$. An element $m<1$ in L is said to be maximal if $m<x \leqslant 1$ implies $x=1$.It is easily seen that maximal elements are prime. For any filter F on L_{*}, L_{F} is again a multiplicative lattice under the same order as L with multiplication defined by $a b=(a b)_{F}$, where the right side is computed in L.

An element $a \in L$ is nilpotent if $a^{n}=0$ for some positive integer n. The lattice L is said to be reduced if 0 is the only nilpotent element of L. We say that an element a has a property locally if a_{m} has the property in L_{m} for every maximal element m. For example, we say that an element $a \in L$ is locally nilpotent if a_{m} is nilpotent in L_{m} for every maximal element m.

We denote the residual of a by b by $a: b$. In a C-lattice, we have $a: b=\bigvee\{x \in$ $\left.L_{*} \mid x b \leqslant a\right\}$. The lattice L is said to be quasiregular if for any $x \in L_{*}$, there exists $y \in L_{*}$ such that $(0:(0: x))=(0: y)$. An element $a \in L$ is said to be complemented
if it satisfies $a b=0$ and $a \vee b=1$, for some b. The lattice L is said to be a regular lattice if every compact element $a \in L$ is complemented. L is a Baer lattice if, for all $x \in L_{*},(0:(0: x)) \vee(0: x)=1$. L is said to be M-normal if every prime element contains a unique minimal prime element. For various characterizations of quasiregular lattices, regular lattices, Baer lattices and M-normal lattices, the reader is referred to [5] and [6].

An element a of L is a $*$-element if $a=0_{F}$ for some $F \in \mathfrak{F}\left(L_{*}\right)$. The element a is said to be a Baer element if for any $x \in L_{*}, x \leqslant a$ implies $(0:(0: x)) \leqslant a$. Baer elements and $*$-elements have been used to characterize quasiregular lattices, M-normal lattices and Baer lattices (see [6]).

The reader is referred to [4], for general background and terminology.
We begin with the following definitions.
Definition 1. An element $a \in L$ is a σ-element if, for every compact element $x \leqslant a, a \vee(0: x)=1$.

Definition 2. $\sigma(L)=\{a \in L \mid a$ is a σ-element $\}$.
It can be easily verified that $\sigma(L)$ is closed under finite meets, finite products and arbitrary joins. Also $0,1 \in \sigma(L)$. Hence $\sigma(L)$ is a multiplicative lattice under the same order as L. A σ-element $a \in L$ is said to be a prime σ-element if a is prime in $\sigma(L)$. An σ-element $a \in L$ is said to be a maximal σ-element if a is maximal in $\sigma(L)$. Every maximal σ-element is a prime σ-element, and every σ-element is contained in a maximal σ-element.

Note that a compact element is a σ-element if and only if it is a complemented element. The following gives additional characterizations of σ-elements.

Proposition 1. The following statements are equivalent for an element $a \in L$:
(i) a is locally complemented.
(ii) a is a σ-element.
(iii) $a=\bigwedge\left\{0_{m} \mid m\right.$ is a maximal element containing $\left.a\right\}$.

Proof. (i) \Rightarrow (ii). Suppose (i) holds. Assume $x \in L_{*}$ and $x \leqslant a$. Suppose $a \vee(0: x) \neq 1$. Then $a \vee(0: x) \leqslant m$ for some maximal element m of L. Note that the only complemented elements of L_{m} are 0_{m} and 1 . Then $a_{m} \leqslant m_{m}$, and so by (1), $a_{m}=0_{m}$. It follows that $(0: x)_{m}=\left(0_{m}: x_{m}\right)=1 \not \leq m_{m}=m$, which contradicts the choice of m. Therefore a is a σ-element.
(ii) \Rightarrow (iii). Suppose (ii) holds. Let m be a maximal element such that $a \leqslant m$. Then, for any compact element $x \leqslant a,(0: x) \not \leq m$ and $x(0: x)=0$. As L is a C-lattice, it follows that $x \leqslant 0_{m}$, and hence that $a \leqslant 0_{m}$. Therefore $a \leqslant \bigwedge\left\{0_{m} \mid m\right.$ is a maximal element containing $a\}$. If y is compact and $y \leqslant \bigwedge\left\{0_{m} \mid m\right.$ is a maximal
element containing $a\}$, and if p is any maximal element, then $0_{p}: y_{p}=1_{p}$ if $a \leqslant p$, and $a_{p}=1_{p}$ if $a \not \leq p$. Hence, $(a \vee(0: y))_{p}=1_{p}$ for every maximal element p, so $a \vee(0: y)=1$. Then $y=a y \leqslant a$, so (iii) holds. The implication (iii) \Rightarrow (i) is obvious.

Remark 1. By Proposition 1, every σ-element is the meet of $*$-elements.
It is convenient to record the following for later reference.
Proposition 2. The following are equivalent for a prime element $p \in L$.
(i) p is a minimal prime over $a \in L$.
(ii) For any $x \in L_{*}, x \leqslant p$ implies there exists $y \not \leq p$ such that $x^{n} y \leqslant a$ for some positive integer n.

Proof. This is given by Lemma 3.5 of [3].
We now characterize M-normal lattices in terms of σ-elements.

Theorem 1. Let L be reduced. Then the following statements are equivalent:
(i) Each maximal element contains a unique minimal prime element.
(ii) For every maximal element m of L, L_{m} is a domain.
(iii) L is M-normal.
(iv) Every *-element is a σ-element.
(v) Every minimal prime element is a σ-element.
(vi) Every minimal prime element is a maximal σ-element.

Proof. (i) \Rightarrow (ii). Suppose (i) holds. Let m be a maximal element of L. Then $0_{m}=0_{F_{m}}$ is a $*$-element, so by Lemma 6 of [6], 0_{m} is the meet of all minimal prime elements containing it. By (i) 0_{m} is a prime element and so (ii) holds.
(ii) \Rightarrow (iii). Suppose (ii) holds. Let p be a prime element. Then $p \leqslant m$ for some maximal element m of L. Then $0_{m} \leqslant p$ and 0_{m} is the only minimal prime element contained in p. Therefore L is M-normal.
(iii) \Rightarrow (iv). Suppose (iii) holds. Let a be a $*$-element. Then $a=0_{F}$ for some $F \in \mathfrak{F}\left(L_{*}\right)$. Let $x \leqslant a$ be any compact element. Then $x y=0$ for some $y \in F$. By (iii) and by Theorem 7 of $[6],(0: x) \vee(0: y)=1$. Since $y \in F,(0: y) \leqslant 0_{F}=a$, so $a \vee(0: x)=1$ and hence a is a σ-element.
(iv) \Rightarrow (i). Suppose p_{1} and p_{2} are two distinct minimal prime elements. Choose any compact element $x \leqslant p_{1}$ such that $x \not \leq p_{2}$. It follows from Proposition 2 that $x y=0$ for some compact element $y \not \leq p_{1}$. As $(0: x)=0_{[x)},(0: x)$ is a $*$-element, so by (iv), $(0: x)$ is a σ-element and hence $(0: x) \vee(0: y)=1$. Since $(0: x) \leqslant p_{2}$ and $(0: y) \leqslant p_{1}$, it follows that $p_{1} \vee p_{2}=1$ and hence every maximal element contains a unique minimal prime element.
(iv) \Rightarrow (v). Assume (iv). Let p be a minimal prime of L. It follows from Proposition 2 that $p=0_{p}$. Hence, p is a σ-element by (iv).
(v) \Rightarrow (vi). Assume (v) holds. Let p be a minimal prime element and assume $p \leqslant a \leqslant m$ for some σ-element a and some maximal element m of L. By Proposition $1, a$ is locally complemented, so $p=p_{m}=a_{m}=0_{m}$ and therefore $a \leqslant a_{m} \leqslant p_{m}=p$. Hence (vi) holds.
$(\mathrm{vi}) \Rightarrow(\mathrm{i})$. Assume (vi). Let m be a maximal element and let $p \leqslant m$ be a minimal prime element. By Proposition 1, p is locally complemented, so $p=0_{m}$, and hence p is the only minimal prime $\leqslant m$.

It can be easily shown that an ideal I of a ring R is a pure ideal ($x \in I$ implies $x y=x$ for some $y \in I$) if and only if I is a σ-ideal (see [2] and [7]). Pure ideals have been studied extensively in [1], [2] and [7] and σ-ideals have been studied by Cornish [9] in the case of distributive lattices. The following characterizes reduced Baer lattices in terms of σ-elements.

Theorem 2. Suppose L is reduced. Then L is a Baer lattice if and only if every Baer element is a σ-element.

Proof. Suppose L is a Baer lattice. Then by Theorem 10 of [6], L is M-normal and quasiregular. As L is quasiregular, by Theorem 2 of [6], every Baer element is a *-element. It follows from Theorem 1 that every Baer element is a σ-element.

Conversely, assume every Baer element is a σ-element and $x \in L_{*}$. It is observed in [3](page 63) that $(0:(0: x))$ is a Baer element. As $x \leqslant(0:(0: x))$, by hypothesis $(0:(0: x)) \vee(0: x)=1$ and hence L is a Baer lattice.

Regular lattices can also be characterized in terms of σ-elements.

Theorem 3. L is regular if and only if every element is a σ-element.
Proof. If every element is a σ-element, then $x \vee(0: x)=1$ for every $x \in L_{*}$, and so L is regular.

Conversely, assume that L is regular. Then every compact element is complemented. Note that every complemented element is a σ-element. So every compact element is a σ-element. As L is compactly generated and the arbitrary join of σ elements is a σ-element, it follows that every element is a σ-element.

For any $a \in L$, let $a^{\Delta}=\bigwedge\left\{0_{m} \mid m\right.$ is a maximal element containing $\left.a\right\}$.

Lemma 1. Let L be a reduced M-normal lattice. Then for any $a \in L, a^{\Delta}$ is a σ-element.

Proof. Assume $x \in L_{*}$ and $x \leqslant a^{\Delta}$. Then $m \vee(0: x)=1$ for all maximal elements m containing a, so $(0: x) \vee a=1$. Therefore $y \vee a=1$ for some compact element $y \leqslant(0: x)$. Since $x y=0$ and L is M-normal, by theorem 7 of [6] we have $(0: x) \vee(0: y)=1$. Then $x_{1} \vee y_{1}=1$ for some compact elements $x_{1} \leqslant(0: x)$ and $y_{1} \leqslant(0: y)$. Note that if m is a maximal element containing a, then $y \not \leq m$ and so $y_{1} \leqslant 0_{m}$. Therefore $y_{1} \leqslant a^{\Delta}$ and obviously $a^{\Delta} \vee(0: x)=1$. This shows that a^{Δ} is a σ-element.

Lemma 2. Let L be a reduced M-normal lattice. Suppose a is a σ-element and let m be a maximal element containing a. If " $x \leqslant 0_{m}$ implies $x^{\Delta} \leqslant a$ ", then $a=0_{m}$.

Proof. Since $a \leqslant m$ and a is a σ-element, it follows that $a_{m}=0_{m}$ and so $a \leqslant 0_{m}$. Assume $x \in L_{*}$ and $x \leqslant 0_{m}$. As 0_{m} is a $*$-element and therefore a σ-element, we have $0_{m} \vee(0: x)=1$, so $0_{m} \vee y=1$ for some $y \in L_{*}$ with $x y=0$. As L is M normal, as in the proof of Lemma 1, we have $(0: x) \vee(0: y)=1$, so $1=x_{1} \vee y_{1}$, where $x x_{1}=y y_{1}=0$ for some $x_{1}, y_{1} \in L_{*}$. Since $y y_{1}=0$ it follows that $y_{1} \leqslant 0_{m}$. Therefore, by hypothesis $y_{1}^{\Delta} \leqslant a$. Again since $x \leqslant y_{1}^{\Delta}$, it follows that $x \leqslant a$ and hence $a=0_{m}$.

Theorem 4. Let L be a reduced M-normal lattice.
(i) An element p is a minimal prime if and only if p is a maximal σ-element.
(ii) Every prime σ-element is a maximal σ-element.

Proof. (i) Assume that p is a maximal σ-element. Suppose $p \leqslant m$ for some maximal element m of L. By Proposition $1, p_{m}=0_{m}$. As L is M-normal, 0_{m} is a minimal prime element and therefore (Theorem 1) a maximal σ-element. As $p \leqslant p_{m}$, it follows from the hypothesis on p that $p=p_{m}$, and hence that p is a minimal prime. The converse is given by Theorem 1.
(ii) Suppose a is a prime σ-element that is not a maximal σ-element. Then there is a maximal element m such that $a \leqslant m$ and $a \neq 0_{m}$. As a is a σ-element, $a \leqslant 0_{m}$. By Lemma 2, there exists $x \in L_{*}$ such that $x \leqslant 0_{m}$ and $x^{\Delta} \not \leq a$. Note that $x^{\Delta} \wedge(0: x)^{\Delta}=0$. As a is a prime σ-element, it follows by Lemma 1 that $(0: x)^{\Delta} \leqslant a$. Again since $x \leqslant 0_{m}$ and 0_{m} is a $*$-element and therefore a σ-element, we have $0_{m} \vee(0: x)=1$. So there exists $y \in L_{*}$ such that $y \leqslant 0_{m}$ and $y \not \leq p$ for all maximal elements $p \geqslant(0: x)$. As $y \leqslant 0_{m}$ and 0_{m} is a σ-element, it follows that $0_{m} \vee(0: y)=1$. So $z \vee y_{1}=1$ for some compact elements $z, y_{1} \in L$ such that $z \leqslant 0_{m}$ and $y y_{1}=0$. Note that $y_{1} \leqslant(0: x)^{\Delta}$, so $m \vee(0: x)^{\Delta}=1$. But $(0: x)^{\Delta} \leqslant a \leqslant m$, so $m=1$, a contradiction. Thus a is a maximal σ-element.

Corollary 1. L is regular if and only if L is reduced and every prime element is a prime σ-element.

Proof. If L is regular, then by Theorem 3, every prime element is a prime σ element. Assume $x \in L_{*}$ and x is nilpotent. Then for every prime $p, x \leqslant p$ and $p \vee(0: x)=1$. It follows that $x=0$, so L is reduced.

Conversely, if L is reduced and every prime is a σ-element, then by Theorem 1 , every prime is a maximal σ-element, and so by Theorem 4, every prime element is a maximal element. If $x \in L_{*}$, then by Proposition $2, x \vee(0: x)=1$, so L is a regular lattice.

Theorem 5. Let L be reduced. Then L is a Baer lattice if and only if every prime Baer element is a prime σ-element.

Proof. If L is a Baer lattice, then by Theorem 2, every prime Baer element is a prime σ-element. Conversely, assume that every prime Baer element is a prime σ-element. Observe that a prime element which is a σ-element is a minimal prime element and therefore, by hypothesis, every prime Baer element is a minimal prime element and every minimal prime element is σ-element. Consequently by Theorem 3 of [6], L is quasiregular. It is observed in [6](p. 63) that every minimal prime is a Baer element, so by Theorem $1, L$ is M-normal as well as quasiregular. Fix $x \in L_{*}$. Choose an element $y \in L_{*}$ satisfying $(0:(0: x))=(0: y)$. Then $x y=0$. It follows by Theorem 7 of $[6]$ that $(0: x) \vee(0: y)=0$. Hence $(0: x) \vee(0:(0: x))=1$. Therefore L is a Baer lattice.

Definition 3. L is said to be an almost Baer lattice if, for each $x \in L_{*},(0: x)$ is the join of complemented elements of L.

If R is an almost PP-ring (for each $a \in R, a R$ is a projective R module), then the lattice $L(R)$ of all ideals of R is an almost Baer lattice (see [2]). If L_{0} is a complementedly normal lattice, then the lattice $I\left(L_{0}\right)$ of all ideals of L_{0}, is an almost Baer lattice (see [8]). Every Baer lattice is an almost Baer lattice and an almost Baer lattice is a Baer lattice if and only if for each $x \in L_{*}$, there is a smallest complemented element y such that $x=x y$.

We record the following without proof.

Lemma 3. L is an almost Baer lattice if and only if for each $x \in L_{*}$ and for any $y \in L_{*}, x \leqslant(0: y)$ implies $x g=x$ for some complemented element $g \leqslant(0: y)$.

Definition 4. An element $a \in L$ is said to be a strong σ-element if for each $x \in L_{*}, x \leqslant a$ implies $e \vee(0: x)=1$ for some complemented element $e \leqslant a$.

Note that every strong σ-element is a σ-element.

Theorem 6. Let L be reduced. Then the following statements are equivalent:
(i) L is an almost Baer lattice.
(ii) Every *-element is a strong σ-element.
(iii) Every minimal prime element is a strong σ-element.

Proof. (i) \Rightarrow (ii). Suppose (i) holds. Let $a=0_{F}$ for some $F \in \mathfrak{F}\left(L_{*}\right)$. Let $x \leqslant a$ be any compact element. Then $x \leqslant(0: y)$ for some $y \in F$. By (i) and Lemma $3, x e=x$ for some complemented element $e \leqslant(0: y)$. Note that $e \leqslant a$ and $e \vee(0: x)=1$ and therefore (ii) holds.
(ii) \Rightarrow (iii) is obvious.
(iii) \Rightarrow (i). Assume that each minimal prime element is a strong σ-element. Observe that by Theorem $1, L$ is M-normal, so for every maximal element $m, 0_{m}$ is a minimal prime element. Assume $x, y \in L_{*}$ and $x \leqslant(0: y)$. We show that, for any maximal element m of L, there exists a complemented element $e^{\prime} \not \leq m$ such that either $e^{\prime} \leqslant(0: x)$ or $e^{\prime} \leqslant(0: y)$. Let m be a maximal element. Since 0_{m} is a minimal prime element we have either $x \leqslant 0_{m}$ or $y \leqslant 0_{m}$. As 0_{m} is a strong σ-element, there exists a complemented element $e \leqslant 0_{m}$ such that $x e=x$ or $y e=y$. Note that $(0: e)=e^{\prime} \not \leq m$ and either $e^{\prime} \leqslant(0: x)$ or $e^{\prime} \leqslant(0: y)$. It follows that $1=\bigvee\left\{f_{\alpha} \mid f_{\alpha}\right.$ is a complemented element such that $f_{\alpha} \leqslant(0: x)$ or $\left.f_{\alpha} \leqslant(0: y)\right\}$. As 1 is compact, $1=\bigvee_{i=1}^{n} f_{\alpha_{i}}$. Let $f_{\alpha_{1}}, f_{\alpha_{2}}, \ldots, f_{\alpha_{k}} \leqslant(0: x)$ and $f_{\alpha_{k+1}}, f_{\alpha_{k+2}}, \ldots$, $f_{n} \leqslant(0: y)$. Put $g=\bigvee_{i=k+1}^{n} f_{\alpha_{i}}$. Then $x g=x$ and $g \leqslant(0: y)$. This shows that L is an almost Baer lattice and the proof is complete.

Let $c(L)=\{x \in L \mid x$ is a complemented element $\}$ and let $R(L)=\{a \in L \mid a$ is the join of complemented elements of $L\}$. Then $R(L)=\left(R(L), \bigwedge_{R}, \bigvee, 0,1\right)$ is a regular lattice, where for any collection $\left\{a_{\alpha}\right\} \subseteq R(L), \bigwedge_{R} a_{\alpha}=\bigvee\left\{x \in c(L) \mid x \leqslant a_{\alpha}\right.$ for all $\alpha\}$. Note that for $a_{1}, a_{2}, \ldots, a_{n} \in R(L), \bigwedge_{i=1}^{n} a_{i}=\bigwedge_{i=1}^{n} a_{i}=a_{1} a_{2} \ldots a_{n}$.

For any prime p of L we define $p_{R}=\bigvee\{a \in R(L) \mid a \leqslant p\}$. For any prime q of $R(L)$ we define $q^{*}=\bigvee\left\{x \in L_{*} \mid x e=0\right.$ for some complemented element $\left.e \not \leq q\right\}$. Note that $p_{R} \leqslant p$ and $q \leqslant q^{*}$.

Lemma 4. Let p be a prime element of L. Then p_{R} is a prime element of $R(L)$. Proof. Obvious.

Henceforth, we denote the complement of an element $x \in c(L)$ by x^{\prime}.

Lemma 5. Let L be a reduced almost Baer lattice and let q be a prime element of $R(L)$. Then q^{*} is minimal prime of L and a prime σ-element.

Proof. Suppose $x, y \in L_{*}$ and let $x y \leqslant q^{*}$. Then $x y e=0$ for some complemented element $e \not \leq q$. Assume that $y \not \leq q^{*}$. As L is an almost Baer lattice, we have $x f=x$ and $f \leqslant(0: y e)$ for some $f \in C(L)$. Since $y f e=0, y \not \leq q^{*}$, it follows that $f \leqslant q$, so $f^{\prime} \not \leq q$ and also $x f^{\prime}=0$. Therefore $x \leqslant q^{*}$. This shows that q^{*} is a prime element and since $q^{*}=0_{q^{*}}$, it follows that q^{*} is a minimal prime element. As L is M-normal, by Theorem $1, q^{*}$ is a minimal prime in L and a prime σ-element.

Let $\pi(R(L))$ be the set of prime elements of $R(L)$ and $\pi(\sigma(L))$ be the set of prime σ-elements of L.

Theorem 7. Let L be a reduced almost Baer lattice. Then the map $q \longrightarrow q^{*}$ from $\pi(R(L))$ into $\pi(\sigma(L))$ is a bijection map.

Proof. Suppose $q^{*}=p^{*}$ for some $p, q \in \pi(R(L))$. We show that $q \leqslant p$. Assume $x \in L_{*} \cap c(L)$ and $x \leqslant q$. Then there exists a complemented element e with $x \leqslant e \leqslant q$. Necessarily $e^{\prime} \not \leq q$, so $e \leqslant q^{*}=p^{*}$. Hence also $e^{\prime} \not \leq p^{*}$. As $e \not \leq p$ implies $e^{\prime} \leqslant p^{*}$ it follows that $e \leqslant p$. Hence $x \leqslant e \leqslant p$. Hence $q \leqslant p$. Similarly $p \leqslant q$ and hence $p=q$. Therefore the map is one-one. If $p \in \pi(\sigma(L))$, then by Lemma $5, p$ is a minimal prime element, so by Lemma $4, p_{R} \in \pi(R(L))$. Again by Lemma $5, p_{R}^{*} \in \pi(\sigma(L))$ and $p_{R}^{*} \leqslant p$ and hence $p_{R}^{*}=p$. Thus the map is a bijection.

Definition 5. L is said to be relatively M-normal if any two noncomparable prime elements are comaximal. ($a, b \in L$ are said to be comaximal if $a \vee b=1$).

Note that regular lattices, zero dimensional lattices are examples of relatively M normal lattices. If R is a Prüfer domain, then the lattice $L(R)$ of all ideals of R is a relatively M-normal lattice (see [10]). If L_{0} is a relatively normal lattice (see [8]), then $I\left(L_{0}\right)$ is a relatively M-normal lattice. If L is an r-lattice domain satisfying any one of the conditions of Theorem 3.4 of [4], then L is a relatively M-normal lattice.

We record the following four lemmas for future reference.
Lemma 6. The following statements are equivalent for an element $a \in L$.
(i) $(a: x)=\left(a: x^{n}\right)$ for all $x \in L_{*}$ and for all $n \in \mathbb{Z}^{+}$.
(ii) $a=\sqrt{a}$.
(iii) $(a: x y)=(a: x \wedge y)$ for all $x, y \in L_{*}$.

Proof. The implications $(i) \Rightarrow(2) \Rightarrow(3) \Rightarrow(1)$ are easily established.
Lemma 7. Let $a \in L$. If $a=\sqrt{a}$, then for any $x \in L_{*},(a: x)=a_{[x)}$.
Proof. Clearly $x \in[x)$, so $(a: x) \leqslant a_{[x)}$. If $t \leqslant a_{[x)}$, then $t y \leqslant a$ for some $y \geqslant$ some power of x. It follows that $t^{n} x^{n} \leqslant t x^{n} \leqslant a$ for some n, and hence that $t \leqslant(a: x)$.

Lemma 8. Let p be a minimal prime over a. Then, for any $x \in L_{*}, p$ contains precisely one of $x,(\sqrt{a}: x)$.

Proof. Suppose $x \in L_{*}$. As $(\sqrt{a}: x) x \leqslant \sqrt{a} \leqslant p$, it follows that either $x \leqslant p$ or $(\sqrt{a}: x) \leqslant p$. If $x \leqslant p$, then by Proposition 2 there exists a compact element $y \not \leq p$ such that $x^{n} y \leqslant a$ for some $n \in \mathbb{Z}^{+}$. As $(x y)^{n} \leqslant a$, we have $y \leqslant(\sqrt{a}: x)$ and therefore $(\sqrt{a}: x) \not \leq p$. This shows that p contains precisely one of $x,(\sqrt{a}: x)$.

Lemma 9. Assume $a \in L, F \in \mathfrak{F}\left(L_{*}\right)$ and $a_{f} \neq 1$. If p is a minimal prime over a_{F} then p is a minimal prime over a.

Proof. Suppose p is a minimal prime over a_{F}. Obviously $a \leqslant p$. Let x be any compact element such that $x \leqslant p$. By Proposition 2, we get the following: As p is a minimal prime over a_{F}, there exists a compact $y \not \leq p$, such that $x^{n} y \leqslant a_{F}$ for some $n \in \mathbb{Z}^{+}$. Then $x^{n} y s \leqslant a$ for some $s \in F$. Note that $[0, b] \cap F=[0, p] \cap F=\emptyset$, so $s \not \leq p$. Thus $y s \not \leq p$ and $x^{n} y s \leqslant a$, and hence p is a minimal prime over a.

Theorem 8. Let a be a proper element of L. Then the following statements are equivalent:
(i) For any $x, y \in L_{*}, x y \leqslant a$ implies $(a: x) \vee(a: y)=1$.
(ii) For every $x, y \in L_{*},(a: x y)=(a: x) \vee(a: y)$.
(iii) $a=\sqrt{a}$ and for every prime element p containing a, a_{p} is a prime element.
(iv) $a=\sqrt{a}$ and every prime element containing a, contains a unique minimal prime over a.
(v) $a=\sqrt{a}$ and any two distinct minimal primes over a are comaximal.

Proof. (i) \Rightarrow (ii). Suppose (i) holds. Let $x, y \in L_{*}$. Clearly $(a: x) \vee(a$: $y) \leqslant(a: x y)$. Choose any compact element $r \in L_{*}$ such that $r \leqslant(a: x y)$. Then $x y r \leqslant a$, so by (i), $(a: x) \vee(a: y r)=1$. Again $r=1 r=((a: x) \vee(a: y r)) r=(a:$ $x) r \vee(a: y r) r=(a: x) r \vee(((a: y): r)) r \leqslant(a: x) \vee(a: y)$ as $(a: x) r \leqslant(a: x)$ and $((a: y): r) r \leqslant(a: y)$. Thus $(a: x) \vee(a: y)=(a: x y)$.
(ii) \Rightarrow (iii). Suppose (ii) holds. By (ii), $\left(a: x^{n}\right)=(a: x)$ for every $x \in L_{*}$ and for every positive integer n and so by Lemma $6, a=\sqrt{a}$. Let p be a prime element containing a. Suppose $x y \leqslant a_{p}$ for some $x, y \in L_{*}$. Then $x y s \leqslant a$ for some $s \not \leq p$. Suppose $x \not \leq a_{p}$. Then $x z \not \leq a$ for all $z \in F_{p}$, so $(a: x s) \leqslant p$. By (ii), $1=(a: y) \vee(a: x s)$ and hence $(a: y) \not \leq p$. Therefore there exists $r \in L_{*}$ such that $y r \leqslant a$ and $r \not \leq p$. As $r \not \leq p$, necessarily $y \leqslant a_{p}$. This shows that a_{p} is a prime element.
(iii) \Rightarrow (iv). Suppose (iii) holds. Note that $a \leqslant a_{p}$ for every prime element p of L. Again if p, q are prime elements such that $a \leqslant q \leqslant p$, then $a_{p} \leqslant a_{q} \leqslant q$. Therefore if
p is a prime element containing a, then by (iii), a_{p} is the only minimal prime over a that is contained in p. Thus (iv) holds.
(iv) \Leftrightarrow (v) is obvious.
(iv) \Rightarrow (i). Suppose (iv) holds. Assume $x, y \in L_{*}$ and $x y \leqslant a$. If a is a radical element, by Lemma $7,(a: x)=a_{[x)}$ and $(a: y)=a_{[y)}$. Suppose $(a: x) \vee(a: y)<1$. Then $(a: x) \vee(a: y) \leqslant p$ for some prime element p of L. Again there exist prime elements $p_{1}, p_{2} \in L$ such that $(a: x) \leqslant p_{1} \leqslant p,(a: y) \leqslant p_{2} \leqslant p, p_{1}$ is a minimal prime over $(a: x)$ and p_{2} is a minimal prime over $(a: y)$. By Lemma $9, p_{1}$ and p_{2} are minimal primes over a and so by (iv), $p_{1}=p_{2}$. By Lemma $8, x \not \leq p_{1}$ and $y \not \leq p_{1}$ and hence $x y \not \subset p_{1}$, which contradicts the fact the $x y \leqslant a \leqslant p_{1}$. Therefore $(a: x) \vee(a: y)=1$ and hence (i) holds. This completes the proof of the theorem.

We now characterize relatively M-normal lattices.

Theorem 9. The following statements on L are equivalent:
(i) For every $x, y, a \in L_{*}, x y \leqslant \sqrt{a}$ implies $(\sqrt{a}: x) \vee(\sqrt{a}: y)=1$.
(ii) For every $x, y, a \in L_{*},(\sqrt{a}: x y)=(\sqrt{a}: x) \vee(\sqrt{a}: y)$.
(iii) For every prime element p and $a \leqslant p,(\sqrt{a})_{p}$ is a prime element.
(iv) Every prime element containing an element $a \in L$ contains a unique minimal prime over a.
(v) Any two distinct minimal primes over an element $a \in L$ are comaximal.
(vi) For every $x, y \in L_{*},(\sqrt{x}: y) \vee(\sqrt{y}: x)=1$.
(vii) L is a relatively M-normal lattice.

Proof. By Theorem 8, (i) through (v) are equivalent. We show that (i), (vi) and (vii) are equivalent.
(i) \Rightarrow (vi). Suppose (i) holds. Let $x, y \in L_{*}$. Then $1=(\sqrt{x} \wedge \sqrt{y}: x \wedge y)=(\sqrt{x y}$: $x \wedge y)=($ Lemma6 $)(\sqrt{x y}: x y)=(\sqrt{x y}: x) \vee(\sqrt{x y}: y)$. But $(\sqrt{x y}: x)=(\sqrt{y}: x)$ and $(\sqrt{x y}: y)=(\sqrt{x}: y)$ and therefore $1=(\sqrt{x}: y) \vee(\sqrt{y}: x)$. Thus (vi) holds.
(vi) \Rightarrow (vii). Suppose (vi) holds. Let p_{1}, p_{2} by any two incomparable prime elements. Choose $x, y \in L_{*}$ such that $x \leqslant p_{1}, x \not \leq p_{2}, y \leqslant p_{2}$ and $y \not \leq p_{1}$. Then $(\sqrt{x}: y) \leqslant p_{1}$ and $(\sqrt{y}: x) \leqslant p_{2}$. Therefore by (vi), p_{1} and p_{2} are comaximal. Hence (vii) holds.

The proof of (vii) \Rightarrow (i) is similar to the proof of Theorem 8 ((iv) \Rightarrow (i)).
Thus (i), (vi) and (vii) are equivalent.
Remark 2. By definition, every relatively M-normal lattice is an M-normal lattice. By Theorem $9(\mathrm{vi}), L$ is a relatively M-normal lattice if and only if any two radical elements are locally comparable. This shows that if every compact element is principal, then L is a relatively M-normal lattice and L_{m} is totally ordered for every
maximal element m of L (see Theorem 4 and Theorem 6 of [11]). We are unable to prove the converse. It would be interesting to find some conditions for a relatively M-normal lattice to be a lattice in which every compact element is principal.

References

[1] H. Al-Ezeh: The pure spectrum of a PF-ring, Commen. Math. Univer. Sancti Pauli.
[2] H. Al-Ezeh: Further results on reticulated rings. Act. Math. Hung. 60 (1992), 1-6.
[3] F. Alarcon, D.D. Anderson and C. Jayaram: Some results on commutative ideal theory. Period. Math. Hung. 30 (1995), 1-26.
[4] D.D. Anderson: Abstract commutative ideal theory without chain condition. Algebra Universalis 6 (1976), 131-145.
[5] D.D. Anderson and C. Jayaram: Regular lattices. Studia Sci. Math. Hung. 30 (1995), 379-388.
[6] D.D. Anderson, C. Jayaram and P.A. Phiri: Baer lattices. Act. Sci. Math. (Szeged) 59 (1994), 61-74.
[7] F. Borceux and G. Van de Bossche: Algebra in a localic topos with applications to ring theory. Lecture Notes in Mathematics No. 1038, Spring Verlag, Berlin-Heidelberg, 1983.
[8] W.H. Cornish: Normal lattices. J. Aust. Math. Soc. 14 (1972), 200-215.
[9] W.H. Cornish: 0-ideals, congruences and sheaf representations of distributive lattices. Rev. Roumaine. Math. Pure Appl. 22 (1977), 1059-1067.
[10] C.U. Jensen: On characterizations of Prüfer rings. Math. Scand. 13 (1963), 90-98.
[11] P.J. McCarthy: Arithmetical rings and multiplicative lattices. Ann. Mat. Pura. Appl. 82 (1969), 267-276 MR 40 \# 1378.

Authors' addresses: C. J ay ar a m, Department of Mathematics, University of Swaziland, Kwaluseni Campus, Swaziland; E. W. Johns on, Department of Mathematics, University of Iowa, Iowa City, IA 52240, USA.

