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Abstract. In this paper we define certain types of projections of planar sets and study
some properties of such projections.
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Introduction

In 1920, Steinhaus [10] proved that if A and B are two linear sets of positive
Lebesgue measure, then their difference set A−B = {a− b : a ∈ A, b ∈ B} contains
an interval. The category analogue of this result holds when the sets have the
property of Baire. Ceder and Ganguly [3] strengthened the above results applying

various kinds of projections of planar sets. Later some papers ([1], [6]) were devoted
to study properties of various projections of planar sets. In 1962, Bose Majumder [2]

proved that if A and B are two linear sets (with non-zero abscissae) having positive
Lebesgue measure, then the ratio set R(A, B) = {a

b or
b
a : a ∈ A, b ∈ B} of A and

B contains at least one whole interval. In the present paper we introduce some new
types of projections of big planar sets (in the sense of measure and category) and

strengthen the above result of Bose Majumder. Some descriptive properties of such
projections of planar sets are also obtained.

Terminology

Let (a, b) ∈ �
2 and E ⊂ �

2 . By the (a, b)-projection of E we mean the set

P (a, b, E) = {c ∈ � : gr.{y − b = c(x − a)} ∩ E �= ∅}, i.e. the set of all real numbers
c for which y− b = c(x− a) holds for some (x, y) ∈ E. The (a, b)-measure projection
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of E is the setM(a, b, E) = {c ∈ � : µ(dom.([gr.{y− b = c(x−a)}]∩E)) > 0} where
µ denotes the Lebesgue measure. The (a, b)-category projection of E is meant to be
the set

C(a, b, E) = {c ∈ � : dom.(gr.{y − b = c(x − a)} ∩ E) is of the second category}.

A set S is said to have the property of Baire if S = G∆F where G is an open set,
F is a set of the first category while ∆ stands for the symmetric difference. If t ∈ �
and B ⊂ � we define the set tB = {tb : b ∈ B}.

Note. In what follows, we assume that a /∈ A.

We first prove some descriptive properties of P (a, b, A×B).

Theorem 1. If A, B are compact subsets of � and (a, b) ∈ �
2 with a /∈ A, then

P (a, b, A×B) is compact.

�����. Since A and B are compact sets, it follows in the same way as in paper

[9] that P (a, b, A × B) is bounded. Let c be a limit point of P (a, b, A × B). Then
there exists a sequence {cn}∞n=1 of elements of P (a, b, A × B) such that cn → c as

n → ∞. Now for each cn ∈ P (a, b, A × B) there exist xn ∈ A, yn ∈ B such that,
yn − b = cn(xn − a). Since A, B are compact, we get subsequences {xnk

}∞k=1 of
{xn}∞n=1 and {ynk

}∞k=1 of {yn}∞n=1 such that xnk
→ p ∈ A and ynk

→ q ∈ B as
k →∞.
Also ynk

− b = cnk
(xnk

− a). Taking limit as k → ∞ we have q − b = c(p − a).

Thus c ∈ P (a, b, A×B). Hence the result is proved. �

Remark. If A, B are closed sets, then P (a, b, A × B) need not be closed. This
fact follows from the following example. Let A = {3n : n ∈ �}, B = {1} (� is the set
of natural numbers). Then A, B are closed sets, but P (0, 0, A× B) = { 13n : n ∈ �}
is not a closed set.

Theorem 2. If A and B are measurable subsets of � such that µ(A) > 0 and B

is of full measure, then P (a, b, A×B) = � \ {0} for any (a, b) ∈ �2 where a /∈ A and

b /∈ B.

�����. For any c �= 0, the set b+ c(A− a) is of positive measure. Since B is of
full measure, we have µ(B′) = 0, where ‘′’ denotes the complement with respect to �.

It follows directly from definition that P (a, b, A×B)′ = {c : b+c(A−a) ⊆ B′} = {0}.
Therefore P (a, b, A×B) = � \ {0}. �

816



The category analogue of the above theorem is also true.

Theorem 3. If (a, b) ∈ �
2 with a /∈ A, b /∈ B, A is a set of the second category

and B is residual in � then P (a, b, A×B) = � \ {0}.

�����. As A is of the second category, so is b + c(A − a) for any real number
c �= 0. Since B is residual in �, its complement B′ is of the first category. Hence,

P (a, b, A×B)′ = {c : b+ c(A− a) ⊆ B′} = {0}. Therefore, P (a, b, A×B) = � \ {0}.
�

Note. The conclusion of Theorem 3 is not valid if A and B are sets of just the

second category. This is evident from the following example.

Example. Let {Gα : α < ωc} be a well ordering of all residual Gδ subsets of �, ωc

being the first uncountable ordinal. Let us choose for all β < α, two subsets Aβ and
Bβ of Gβ such that no three points of Aβ × Bβ are collinear. Since the set of all

lines joining pairs of points of Aβ ×Bβ with β < α has power less than c (the power
of the continuum) we can find a direction not parallel to any of these lines. Hence

by [8] some line in this direction meets Gα ×Gα in a set of the second category and
therefore in a set of power c (see [8]). We can choose therefore two subsets Aα and

Bα of Gα such that no point of Aα×Bα is collinear with any two points of Aβ ×Bβ

with β < α. The sets Aα and Bα are of the second category since their complements

contain no residual Gδ subset of �. Thus we get two linear sets Aα, Bα of the second
category such that no three points of Aα × Bα are collinear and hence the sets Aα,

Bα serve our purpose.

Theorem 4. If A, B are non-empty open subsets of �, then P (a, b, A × B) is a

non-empty open set for any (a, b) ∈ �2 with a /∈ A.

�����. Let d ∈ P (a, b, A×B). Then ∃(x, y) ∈ A×B such that y−b = d(x−a).

Since A and B are open sets we can find open intervals Ix and Iy of length 2ε with
centres at x and y respectively such that Ix ⊆ A and Iy ⊆ B.

Let I = (d− ε
|x−a| , d+

ε
|x−a|). By routine calculation we see that b + c(x − a) ∈

Iy ⊆ B for all c ∈ I. This implies that I ⊆ P (a, b, A×B). Hence the result. �

Theorem 5. If A, B are compact subsets of � and (a, b) ∈ �
2 then the (a, b)-

measure projection of A×B is a Borel set of additive class one, provided a /∈ A.

�����. P (a, b, A × B) is compact by Theorem 1. Let γ and δ be the g.l.b.
and l.u.b. of P (a, b, A× B), respectively. Let us define a function f : [γ, δ] → � by

f(c) = µ({x ∈ A : ∃y ∈ B with y − b = c(x − a)}). Then M(a, b, A × B) = {c ∈
[γ, δ] : f(c) > 0}. Let {ck}∞k=1 be a sequence in [γ, δ] such that ck → c ∈ [γ, δ] as
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k →∞. Let us choose sets Zk = {x ∈ A : ∃y ∈ B with y − b = ck(x − a)} for every
k = 1, 2, . . .. We first show that

(1) LsZk ⊂ {x ∈ A : ∃y ∈ B with y − b = c(x− a)}

where LsZk is the Upper Limit of the sequence {Zk}∞k=1 of sets as defined in [7].
Also, LsZk ⊃ limZk [see 7, p. 337].
Let p ∈ LsZk. Then there is a subsequence {cki}∞i=1 of {ck}∞k=1 such that xi ∈ Zki

for each i and xi → p as i →∞.
Now xi ∈ Zki implies that there exists yi ∈ B such that yi − b = cki(xi − a) for

each i. Since B is compact, {yi}∞i=1 converges to b+ c(p− a) = q (say) ∈ B. Hence,
p ∈ {x ∈ A : ∃ y ∈ B with y − b = c(x− a)}.
Also,

f(c) = µ({x ∈ A : ∃y ∈ B with y − b = c(x − a)})
� µ(LsZk) by (1)

� µ(limZk)

� limµ(Zk) (By Fatou’s lemma)

= limf(ck).

Thus f is an upper semicontinuous function. Hence, there is a decreasing sequence
{fn}∞n=1 of continuous functions defined over [γ, δ] such that f(x) = lim fn(x), ∀x ∈
[γ, δ]. Then, M(a, b, A × B) = {c ∈ [γ, δ] : f(c) > 0} =

∞⋃
m=1

∞⋃
r=1

∞⋂
n=r

{c ∈ [γ, δ] :

fn(c) � 1
m} [5].

Since each fn is continuous, the set {c ∈ [γ, δ] : fn(c) � 1
m} is a closed set. It

follows that M(a, b, A×B) is a Borel set of additive class one [7]. �

Note. If A, B are compact subsets of � and (a, b) ∈ �2 ,M(a, b, A×B) need not be

compact. For example if we consider A = B = [0, 1], then M(2, 0, A×B) = (−1, 0],
which is not compact.

Theorem 6. If A, B are measurable subsets of � with finite positive Lebesgue

measure and (a, b) ∈ �2 such that a /∈ A and b /∈ B, then M(a, b, A×B) is an open
subset of P (a, b, A×B).

�����. Since b /∈ B, we have 0 /∈ P (a, b, A × B). Let us define a function
ϕ : � \ {0} → � by ϕ(c) = µ(A ∩ [a+ c−1(B − b)]). Then ϕ is a continuous function

(See [4]).
Now M(a, b, A × B) = {c : ϕ(c) > 0}. Also c ∈ M(a, b, A × B) implies that

ϕ(c) > 0. Since ϕ is continuous, there is a neighbourhood Ic of ‘c’ such that ϕ(x) > 0
for all x ∈ Ic. Then Ic ⊆ M(a, b, A×B). Hence the result. �
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The result of Bose Majumder [2] mentioned earlier follows from the following

corollary.

Corollary. If A, B are linear sets (of points with non-zero abscissae) having

positive Lebesgue measure, then R(A, B) contains a non-empty open set.

�����. The proof follows from the above theorem and the fact that

R(A, B) = P (0, 0, A×B) ∪ P (0, 0, B ×A) ⊇ M(0, 0, A×B) ∪M(0, 0, B ×A).

�

Theorem 7. Let A and B be two linear sets of the second category such that

each of A and B has the property of Baire. Then for any (a, b) ∈ �2 with a /∈ A, the

(a, b)-category projection of A×B is a non-empty open set.

�����. Without any loss of generality, let us assume that A has the Baire

property. Then A = G∆F , where G is a non-empty open set and F is a set of the
first category. Then

(1) C(a, b, A×B) = C(a, b, G×B).

Let Q = {x ∈ � : B is of the first category at x} and J = Int(� \Q). Then B is

of the second category at each point of the open set J . Let B1 = B ∩ J . Then B1
is of the second category at each point of J and B \B1 is a set of the first category.

Hence,

(2) C(a, b, G×B) = C(a, b, G×B1).

In view of (1), (2) and Theorem 4, it is sufficient to prove that C(a, b, G×B1) =

P (a, b, G×J). Indeed, since B1 ⊂ J , it is evident that C(a, b, G×B1) ⊆ P (a, b, G×
B1) ⊆ P (a, b, G×J). Also, c ∈ P (a, b, G×J)⇒ (c(G− a) + b)∩J �= ∅ ⇒ (c(G−a)+

b) ∩B1 is a set of the second category because B1 is of the second category at each
point of J . Therefore, c ∈ C(a, b, G×B1). Thus P (a, b, G× J) ⊆ C(a, b, G×B1).

Hence the theorem is proved. �

Remark. The conclusion of the above theorem becomes false if we delete the
property of Baire. This fact is evident from the example after Theorem 3.
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