Czechoslovak Mathematical Journal

Inheung Chon

On an extension of Fekete's lemma

Czechoslovak Mathematical Journal, Vol. 49 (1999), No. 1, 63-66
Persistent URL: http://dml.cz/dmlcz/127467

Terms of use:

© Institute of Mathematics AS CR, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON AN EXTENSION OF FEKETE'S LEMMA

Inheung Chon, Seoul

(Received February 19, 1996)

Abstract. We show that if a real $n \times n$ non-singular matrix $(n \geqslant m)$ has all its minors of order $m-1$ non-negative and has all its minors of order m which come from consecutive rows non-negative, then all m th order minors are non-negative, which may be considered an extension of Fekete's lemma.

MSC 2000: 15A15

Fekete's lemma (see [2] or [4, p. 59]) states that if an $n \times m$ matrix ($n \geqslant m$) has all its minors of order $m-1$ which come from the last $m-1$ columns and all m th order minors which come from consecutive rows positive, then all m th order minors are positive. In this note we find sufficient conditions for all m th order minors of an $n \times n$ non-singular square matrix $(n \geqslant m)$ to be non-negative, which may be considered an extension of Fekete's lemma.

Definition. A rectangular matrix $A=\left\|a_{i k}\right\|(i=1,2, \ldots, m ; k=1,2, \ldots, n)$ over \mathbb{R} is called totally positive (or strictly totally positive) - hereafter denoted by TP (or STP) -if all its minors of any order are non-negative (or positive). An $n \times n$ matrix over \mathbb{R} is called totally positive of order m (or strictly totally positive of order m) and is denoted by $T P_{m}$ (or $S T P_{m}$) if all its minors of order $j \leqslant m$ are nonnegative (or positive). Here \mathbb{R} denotes the set of all real numbers and hereafter we shall use this notation.

This paper was supported in part by the research fund of the Natural Science Institute of Seoul Women's University, 1994.

We will denote the determinant formed from elements of the given matrix $A=$ $\left\|a_{i k}\right\|(i=1,2, \ldots, m ; k=1,2, \ldots, n)$ as follows:

$$
A\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{p} \\
k_{1} & k_{2} & \ldots & k_{p}
\end{array}\right)=\left|\begin{array}{cccc}
a_{i_{1} k_{1}} & a_{i_{1} k_{2}} & \ldots & a_{i_{1} k_{p}} \\
a_{i_{2} k_{1}} & a_{i_{2} k_{2}} & \ldots & a_{i_{2} k_{p}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i_{p} k_{1}} & a_{i_{p} k_{2}} & \ldots & a_{i_{p} k_{p}}
\end{array}\right| .
$$

We need the following well known Cauchy-Binet formula (see [3, p. 9]) for the proof of our main Theorem 2.

Cauchy-Binet formula. Let A, B and C denote matrices of real numbers of orders $n \times m, n \times k$ and $k \times m$, respectively. If $A=B C$, then

$$
A\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{p} \\
j_{1} & j_{2} & \ldots & j_{p}
\end{array}\right)=\sum_{1 \leqslant k_{1}<\ldots<k_{p} \leqslant n} B\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{p} \\
k_{1} & k_{2} & \ldots & k_{p}
\end{array}\right) C\left(\begin{array}{cccc}
k_{1} & k_{2} & \ldots & k_{p} \\
j_{1} & j_{2} & \ldots & j_{p}
\end{array}\right) .
$$

Lemma 1. Suppose $n \geqslant m$. If a real $n \times n$ matrix $A=\left\|a_{i j}\right\|$ has all its minors of order $m-1$ positive and all its minors of order m which come from consecutive rows positive, then all m th order minors are positive.

Proof. Follows immediately from Fekete's lemma.

Theorem 2. Suppose $n \geqslant m$. If a real $n \times n$ non-singular matrix $A=\left\|a_{i j}\right\|$ has all its minors of order $m-1$ non-negative and all its minors of order m which come from consecutive rows non-negative, then all m th order minors are non-negative.

Proof. Let H be an auxiliary $n \times n$ matrix such that

$$
H=H(q)=\left\|q^{(i-j)^{2}}\right\| \quad(i, j=1,2, \ldots, n) \text { for } 0<q<1
$$

$H \in S T P$ follows from a theorem of Pólya (see [6, p. 49]). Let $U=A H$. Then

$$
U\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{p} \tag{1}\\
j_{1} & j_{2} & \ldots & j_{p}
\end{array}\right)=\sum_{1 \leqslant r_{1}<\ldots<r_{p} \leqslant n} A\left(\begin{array}{ccc}
i_{1} & \ldots & i_{p} \\
r_{1} & \ldots & r_{p}
\end{array}\right) H\left(\begin{array}{ccc}
r_{1} & \ldots & r_{p} \\
j_{1} & \ldots & j_{p}
\end{array}\right)
$$

for $p=1,2, \ldots, n$ by the Cauchy-Binet formula. Since $A \in T P_{m-1}$ and $H \in S T P$, $U \in T P_{m-1}$.

From the hypothesis,

$$
A\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{m-1} \\
r_{1} & r_{2} & \ldots & r_{m-1}
\end{array}\right) \geqslant 0
$$

Suppose that

$$
A\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{m-1} \\
r_{1} & r_{2} & \ldots & r_{m-1}
\end{array}\right)=0
$$

for every $r_{1}, r_{2}, \ldots, r_{m-1}$ such that $1 \leqslant r_{1}<r_{2}<\ldots<r_{m-1} \leqslant n$.
Let

$$
A_{1}=\left(\begin{array}{cccc}
a_{i_{1} 1} & a_{i_{1} 2} & \ldots & a_{i_{1} n} \\
a_{i_{2} 1} & a_{i_{2} 2} & \ldots & a_{i_{2} n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i_{m-1} 1} & a_{i_{m-1} 2} & \ldots & a_{i_{m-1} n}
\end{array}\right)
$$

If the row rank of A_{1} is $m-1$, there are $m-1$ linearly independent columns in A_{1}. By contradiction, the row rank of A_{1} is strictly less than $m-1$, and consequently the row rank of A is strictly less than n. This contradicts our hypothesis. Thus

$$
A\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{m-1} \\
r_{1} & r_{2} & \ldots & r_{m-1}
\end{array}\right)>0
$$

for some r_{1}, \ldots, r_{m-1} such that $1 \leqslant r_{1}<\ldots<r_{m-1} \leqslant n$. Hence $U \in S T P_{m-1}$.
Similarly we may show that

$$
A\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{m} \\
r_{1} & r_{2} & \ldots & r_{m}
\end{array}\right)>0
$$

for some r_{1}, \ldots, r_{m} such that $1 \leqslant r_{1}<\ldots<r_{m} \leqslant n$.
Since the order of the rows of U is the same as that of the rows of A in the equation (1), $U \in S T P_{m}$ based on consecutive rows follows from the assumption that $A \in T P_{m}$ based on consecutive rows. Since $U \in S T P_{m-1}$ and $U \in S T P_{m}$ based on consecutive rows, $U \in S T P_{m}$ by Lemma 1 .

From the Cauchy-Binet formula,

$$
\begin{aligned}
u_{i j} & =U\binom{i}{j}=\sum_{1 \leqslant r \leqslant n} A\binom{i}{r} H\binom{r}{j}=a_{i 1} q^{(j-1)^{2}}+\ldots+a_{i j} 1+\ldots+a_{i n} q^{(n-j)^{2}} \\
& =a_{i j}+q \cdot(\text { a sum of nonnegative terms }) .
\end{aligned}
$$

As $q \rightarrow 0, u_{i j} \rightarrow a_{i j}$. That is, $U \rightarrow A$ as $q \rightarrow 0$. Since the set of all strictly totally positive matrices is dense in the set of all totally positive matrices (see [7, p. 88]), $A \in T P_{m}$.

References

[1] I. Chon: Lie group and control theory. Ph.D. Thesis, Louisiana State University, 1988.
[2] M. Fekete: Ueber ein Problem von Laguerre. Rendiconti del Circolo Matematico di Palermo 34 (1912), 92-93.
[3] F. R. Gantmacher: The Theory of Matrices vol. 1 and vol. 2. Chelsea Publ. Comp., New York, 1960.
[4] S. Karlin: Total Positivity vol. 1. Stanford University Press, 1968.
[5] C. Loewner: On totally positive matrices. Math. Zeitschr. 63 (1955), 338-340.
[6] G. Pólya and G. Szegö: Aufgaben and Lehrsätze aus der Analysis vol. 2. Springer-Velag, 1964.
[7] A. M. Whitney: A reduction theorem for totally positive matrices. J. d'Analyse Math. Jerusalem 2 (1952), 88-92.

Author's address: Department of Mathematics, Seoul Women's University, Kongnung 2-Dong, Nowon-Ku, Seoul, 139-774, Korea.

