Czechoslovak Mathematical Journal

Karol Nemoga; Štefan Schwarz

An explicit description of the set of all normal bases generators of a finite field

Czechoslovak Mathematical Journal, Vol. 49 (1999), No. 1, 81-96

Persistent URL: http://dml.cz/dmlcz/127469

Terms of use:

© Institute of Mathematics AS CR, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

AN EXPLICIT DESCRIPTION OF THE SET OF ALL NORMAL BASES GENERATORS OF A FINITE FIELD

Karol Nemoga and ŠTEfan Schwarz, Bratislava

(Received March 27, 1996)

1. Preliminaries

Let $F_{q}=G F(q)$ be a finite field with $\operatorname{char}\left(F_{q}\right)=p, p$ a prime, and $F_{q^{n}}=G F\left(q^{n}\right)$ the n-dimensional extension of F_{q}.

By a basis of $F_{q^{n}}$ with respect to F_{q} (shortly a basis of $F_{q^{n}} \mid F_{q}$) we mean a set of elements $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}, \alpha_{i} \in F_{q^{n}}$, such that any element $\gamma \in F_{q_{n}}$ can be written uniquely in the form $\gamma=\sum_{i=1}^{n} c_{i} \alpha_{i}$, with $\alpha_{i} \in F_{q}$. Viewing $F_{q^{n}}$ as a vector space of dimension n over F_{q} the set $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a set of n linearly independent vectors (of length n) over F_{q}.

A basis is called a normal basis of $F_{q^{n}} \mid F_{q}$ if it is of the form $A=\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$, where $\alpha \in F_{q^{n}}$. The element α is called a generator of the basis A. It is known that a normal basis always exists. The element α is then a root of an irreducible polynomial of degree n over F_{q}, often called a normal polynomial (or an N-polynomial).

Let $A=\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ and $B=\left\{\beta, \beta^{q}, \ldots, \beta^{q^{n-1}}\right\}$ be two normal bases of $F_{q^{n}} \mid F_{q}$. Since $\beta \in F_{q^{n}}$ there exist n elements c_{1}, \ldots, c_{n} (all belonging to F_{q}) such that $\beta=c_{1} \alpha+c_{2} \alpha^{q}+\ldots+c_{n} \alpha^{q^{n-1}}$. This implies

$$
\begin{aligned}
\beta^{q} & =c_{n} \alpha+c_{1} \alpha^{q}+\ldots+c_{n-1} \alpha^{q^{n-1}} \\
\vdots & \\
\beta^{q^{n-1}} & =c_{2} \alpha+c_{3} \alpha^{q}+\ldots+c_{1} \alpha^{q^{n-1}}
\end{aligned}
$$

Denote by C the circulant matrix

$$
\left(\begin{array}{cccc}
c_{1}, & c_{2}, & \ldots, & c_{n} \\
c_{n}, & c_{1}, & \ldots, & c_{n-1} \\
\vdots & & & \\
c_{2}, & c_{3}, & \ldots, & c_{1}
\end{array}\right)
$$

and $A^{T}=\left(\begin{array}{c}\alpha \\ \alpha^{q} \\ \vdots \\ \alpha^{q^{n-1}}\end{array}\right), B^{T}=\left(\begin{array}{c}\beta \\ \beta^{q} \\ \vdots \\ \beta^{q^{n-1}}\end{array}\right)$. We then have $B^{T}=C \cdot A^{T}$.
Analogously, there exists a circulant matrix D such that $A^{T}=D B^{T}$. From these relations we obtain by a simple reasoning the following well known proposition:

Proposition 1.1. If $A=\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ is a normal basis of $F_{q^{n}} \mid F_{q}$, then any other normal basis of $F_{q^{n}} \mid F_{q}$ is of the form $C A^{T}$, where C is an invertible circulant matrix (with elements of F_{q}). Conversely, if C is any invertible $n \times n$ circulant matrix with elements in F_{q}, then $C A^{T}$ is a normal basis of $F_{q^{n}} \mid F_{q}$.

Recall that the set of all $n \times n$ circulant matrices with elements in F_{q} forms (with respect to multiplication) a commutative semigroup, while the invertible ones form a commutative group (contained in this semigroup).

Denote by P the matrix

$$
P=\left(\begin{array}{ccccc}
0, & 1, & 0, & \ldots & 0 \\
0, & 0, & 1, & \ldots & 0 \\
\vdots & & & & \\
0, & 0, & 0, & \ldots & 1 \\
1, & 0, & 0, & \ldots & 0
\end{array}\right)
$$

We then have

$$
C=c_{1} E+c_{2} P+\ldots+c_{n} P^{n-1}, \quad \text { and } \quad P^{n}=E
$$

where E is the unit matrix. In the correspondence $\omega: x^{\ell} \longleftrightarrow P^{\ell}(\ell=0,1, \ldots, n-1)$ the set of all circulant $n \times n$ matrices is isomorphic to the $\operatorname{ring} R=R(n, q)=$ $F_{q}[x] /\left(x^{n}-1\right)$. In this way we assign to the circulant matrix C the polynomial $c(x)=c_{1}+c_{2} x+\ldots+c_{n} x^{n-1}$ and the arithmetical operations with C are reduced to the calculations with polynomials over F_{q} modulo ($x^{n}-1$). In particular, the invertible circulant matrices correspond to the polynomials of degree at most $(n-1)$, which are relatively prime to $x^{n}-1$.

Notation. In the following we shall write "NB-generator" instead of "normal basis generator". The set of all NB-generators of $F_{q^{n}} \mid F_{q}$ will be denoted by $\Gamma=$ $\Gamma(n, q) \subset F_{q^{n}}$. The multiplicative semigroup of the ring $R=F_{q}(x) /\left(x^{n}-1\right)$ will be denoted by \bar{R}. The group of all elements of \bar{R} relatively prime to $x^{n}-1$ will be denoted by $G(1)$.

The necessity to consider \bar{R} is due to the fact that in what follows we shall deal with subsets of \bar{R} which are multiplicatively closed, but not closed under addition.

The preceding arguments imply (the again well known)
Proposition 1.2. If $c(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}$ is a polynomial relatively prime to $x^{n}-1$ [i.e. $\left.c(x) \in G(1)\right]$ and α is an NB-generator of $F_{q^{n}} \mid F_{q}$, then $g=$ $c_{0} \alpha+c_{1} \alpha^{q}+\ldots+c_{n-1} \alpha^{q^{n-1}}$ is an NB-generator. Moreover, if α is a fixed chosen NB-generator, then all NB-generators of $F_{q^{n}} \mid F_{q}$ are obtained in this manner by choosing suitably $c(x)$.

In what follows we denote by Ω the mapping $\Omega: x^{\ell} \rightarrow \alpha^{q^{\ell}}$ and we shall write $\Omega x^{\ell}=\alpha^{q^{\ell}}$. This mapping is "additive" in the sense that $\Omega\left(a x^{u}+b x^{v}\right)=a \alpha^{q^{u}}+b \alpha^{q^{v}}$ for $a, b \in F_{q}$.

The goal of this paper is the following. Suppose that we know one NB-generator of $F_{q^{n}} \mid F_{q}$, say $\alpha \in F_{q^{n}}$. We shall give an explicit description of all NB-generators of $F_{q^{n}} \mid F_{q}$.

To understand well we first give an example. Let α be an NB-generator of $F_{5^{3}} \mid F_{5}$. It will be shown (Example 3.3) that all polynomials coprime to $x^{3}-1$ are of the form

$$
r_{0}\left(1+x+x^{2}\right)+r_{1}(4+x)+r_{2}\left(4+x^{2}\right),
$$

where $r_{0} \neq 0$ and $\left(r_{1}, r_{2}\right) \neq(0,0),\left\{r_{0}, r_{1}, r_{2}\right\} \in F_{5}$. Hence the set $\Gamma(3,5)=\left\{r_{0}(\alpha+\right.$ $\left.\left.\alpha^{5}+\alpha^{25}\right)+r_{1}\left(4 \alpha+\alpha^{5}\right)+r_{2}\left(4 \alpha+\alpha^{25}\right)\right\}$ is the set of all NB-generators of $F_{125} \mid F_{5}$. Clearly the cardinality $|\Gamma|=96$. (The element α itself is obtained for $r_{0}=2$, $r_{1}=r_{2}=3$.)

Remark. If $g \in \Gamma$, then $a g \in \Gamma$ for any $a \in F_{q}$. Also $g^{q}, g^{q^{2}}, \ldots, g^{q^{n-1}} \in \Gamma$. If $g^{\prime} \in \Gamma, g^{\prime \prime} \in \Gamma$, then neither $g^{\prime}+g^{\prime \prime}$ nor $g^{\prime} \cdot g^{\prime \prime}$ need to belong to Γ. Also, if $g \in \Gamma$, g^{-1} need not be an element of Γ.

The first two statements are obvious. To be sure that it may happen that $g^{-1} \notin \Gamma$ it is sufficient to give an example. The element α satisfying the equation $x^{3}+x^{2}+$ $1=0$ over F_{5} is an NB-generator of $G F\left(5^{3}\right) \mid G F(5)$. But α^{-1} which satisfies (the irreducible) equation $y^{3}+y+1=0$ is certainly not an NB-generator. (For any N -polynomial with root β we have necessarily trace $(\beta) \neq 0$.)

2. The description of the multiplicative semigroup \bar{R}

It is known that the factorization of $x^{n}-1$ into the product of monic irreducible factors over F_{q} is of the form $x^{n}-1=\left[f_{1}(x) \cdot f_{2}(x) \ldots f_{r}(x)\right]^{t}$, where

$$
t= \begin{cases}1, & \text { if }(n, p)=1 \\ p^{s}, & \text { if } n=n_{0} p^{s},\left(n_{0}, p\right)=1\end{cases}
$$

The ring $R=F_{q}[x] /\left(x^{n}-1\right)$ admits a decomposition as a direct sum of r rings in the form

$$
R \approx F_{q}[x] / f_{1}(x)^{t} \oplus \ldots \oplus F_{q}[x] / f_{r}(x)^{t} .
$$

This can be considered an "external" description of R, and as such it is not suitable for computations in R itself.

Our aim is to describe some properties of R (and \bar{R}) using only elements of R, so to say to give an "internal" description of R. To this end we describe the multiplicative semigroup \bar{R} as a set-theoretical union of disjoint subsemigroups each of which has a unique idempotent. We then use this decomposition to prove Proposition 2.5 (below), which is a starting point to numerical computations.
A) We first recall some notions used in the elementary theory of semigroups. Let S be a finite commutative semigroup with a zero element 0 and an identity element 1 .

We shall say that $a \in S$ belongs to the idempotent e if there is an integer $\ell=\ell(a)$ such that $a^{\ell}=e$. Any $a \in S$ belongs to one and only one idempotent of S. Let $K(e)$ be the set of all elements of S belonging to the idempotent e. Then $K(e)$ is a subsemigroup of S (the maximal subsemigroup of S belonging to the idempotent e). We have $S=\bigcup_{e \in E} K(e)$, where E is the set of all idempotents.

Each $K(e), e \in E$, has the property that $K(e)$. e is a group, denoted by $G(e)$ and called the maximal group belonging to the idempotent e. Note that $G(e) \subset K(e)$.

In particular, $K(1)$ is the set of all "absolutely" invertible elements of S, i.e. the group of all elements $a \in S$ for which there is an element a^{\prime} such that $a a^{\prime}=1$. Hence $K(1)$ is a group, which will be denoted by $G(1)$.

The set $K(0)$ is the set of all nilpotent elements of S and $G(0)=\{0\}$ is a one-point group.

The number of maximal subgroups contained in S is equal to the number of idempotents in S. If $G(e)$ is a maximal subgroup we may speak also about the "relative inverses" with respect to the idempotent e (i.e. inside of $G(e)$).
B) We now apply the foregoing notions and results to the semigroup \bar{R}. Our goal is first to prove Proposition 2.4 (concerning any idempotent $e \in \bar{R}$) and then Proposition 2.5 (in which only the primitive idempotents appear).

In accordance with section A, we denote by $G(1)$ the group of all polynomials $a=a(x) \in \bar{R}$ of degree $\leqslant n-1$ which are relatively prime to $x^{n}-1$. Also we denote $\operatorname{deg} f_{i}=n_{i}$, so that $n=\sum_{i=1}^{r} n_{i} t$.

The method used in the sequel is analogous to that of [5] and [6].
Any element $h=h(x) \in \bar{R}$ can be written in the form $h=f_{1}^{s_{1}} f_{2}^{s_{2}} \ldots f_{r}^{s_{r}} \cdot a$, where $a \in G(1)$. If, e.g., $s_{1}>t$, then $f_{1}^{s_{1}}$ can be written in the form $f_{1}^{s_{1}}=f_{1}^{t}\left(f_{1}^{s_{1}-t}+\right.$ $\left.f_{2}^{t} \ldots f_{r}^{t}\right)=f_{1}^{t} a_{1}, a_{1} \in G(1)$, so that $h=f_{1}^{\min \left(s_{1}, t\right)} \cdot f_{2}^{\min \left(s_{2}, t\right)} \ldots f_{r}^{\min \left(s_{r}, t\right)} \cdot b$ with $b \in G(1)$. Hence we have

Lemma 2.1. Any element $h \in \bar{R}$ can be written in the form $h=f_{1}^{\tau_{1}} \cdot f_{2}^{\tau_{2}} \ldots f_{r}^{\tau_{r}} \cdot b$, where $0 \leqslant \tau_{i} \leqslant t, b \in G(1)$.

Suppose that $\varepsilon=f_{i_{1}}^{\tau_{1}} \ldots f_{i_{v}}^{\tau_{v}} \cdot a$ is an idempotent $\varepsilon \neq 1,\left(i_{1}<i_{2}<\ldots<i_{v}\right)$, $\tau_{i}>0,1 \leqslant v<r, a \in G(1)$. Then $\varepsilon=\varepsilon^{t}$ implies $\varepsilon=g_{i_{1}}^{t \tau_{1}} \ldots f_{i_{v}}^{t \tau_{v}} a^{t}$. Here $t \tau_{j} \geqslant t$. If $t \tau_{j}>1$, then $f_{i_{j}}^{t \tau_{j}}=f_{i_{j}}^{t} \cdot b_{j}, b_{j} \in G(1)$, whence $\varepsilon=f_{i_{1}}^{t} \ldots f_{i_{v}}^{t} \cdot c, c \in G(1)$. If $v=r$, we have $\varepsilon=0$. ($\varepsilon=1$ is obtained for $\tau_{1}=\ldots=\tau_{r}=0$ and $a=1$.) This implies

Lemma 2.2. \bar{R} contains 2^{r} idempotents. Each of the idempotents can be written in the form

$$
e=f_{1}^{\tau_{1}} f_{2}^{\tau_{2}} \ldots f_{r}^{\tau_{r}} \cdot c, c \in G(1), \quad \text { and } \quad \tau_{i} \quad \text { is either } 0 \quad \text { or } \quad t .
$$

Write (in an obvious notation) $x^{n}-1=f_{i}^{t} \cdot F_{i}^{t}(i=1,2, \ldots, r)$, then the primitive idempotents are $e_{1}=F_{1}^{t} a_{1}, \ldots, e_{r}=F_{r}^{t} a_{r}\left(a_{i} \in G(1)\right)$. Clearly $e_{i} \cdot e_{j}=0$ for $i \neq j$. Next, the sum $F_{1}^{\cdot t} a_{1}+\ldots+F_{r}^{\cdot t} a_{r}$ is contained in $G(1)$ [since, e.g., f_{1} divides F_{2}, \ldots, F_{r}, and does not divide F_{1}]. Since this sum is an idempotent we have $e_{1}+\ldots+e_{r}=1$.

We now specify the maximal subsemigroup $K(e), e \neq 1$, belonging to the idempotent $e=f_{i_{1}}^{t} f_{i_{2}}^{t} \ldots f_{i_{v}}^{t} a, a \in G(1), i_{1}<i_{2}<\ldots<i_{v}$.

An element $h=f_{1}^{\tau_{1}} \ldots f_{r}^{\tau_{r}} \cdot b \in \bar{R}, 1 \leqslant \tau_{i} \leqslant t, b \in G(1)$, belongs to the idempotent e if there is an integer k such that $f_{1}^{k \tau_{1}} \ldots f_{r}^{k \tau_{r}} b^{k}=e$.

Hence

$$
f_{1}^{\min \left(k \tau_{1}, t\right)} \ldots f_{r}^{\min \left(k \tau_{r}, t\right)} \cdot c \cdot b^{k}=f_{i_{1}}^{t} f_{i_{2}}^{t} \ldots f_{i_{v}}^{t} a
$$

where $c \in G(1)$. If $k \geqslant t$ and $v<r$, we have necessarily $\tau_{j}=0$ for all indices j for which $j \notin\left\{i_{1}, \ldots, i_{v}\right\}$. Hence, $h(x)$ is necessarily of the form $h=f_{i_{1}}^{\tau_{1}} f_{i_{2}}^{\tau_{2}} \ldots f_{i_{v}}^{\tau_{v}} \cdot b_{1}$, $b_{1} \in G(1)$. This holds also for $v=r$, in which case $e=0$.

Conversely, let $h=f_{i_{1}}^{\tau_{1}} \ldots f_{i_{v}}^{\tau_{v}} \cdot b_{2}, 1 \leqslant \tau_{i} \leqslant t$, and let b_{2} be any element of $G(1)$. Then

$$
h^{t}=f_{i_{1}}^{\tau_{1} t} \ldots f_{i_{v}}^{\tau_{v} t} \cdot b_{2}^{t}=f_{i_{1}}^{t} \ldots f_{i_{v}}^{t} c \cdot b_{2}^{t}=f_{i_{1}}^{t} \ldots f_{i_{v}}^{t} \cdot a\left(c b_{2}^{t} a^{-1}\right)=e\left(c b_{2}^{t} a^{-1}\right)
$$

If ℓ is the order of the group $G(1)$, we eventually obtain $h^{t \ell}=e$. Since b_{2} is any element of $G(1)$, we have $f_{i_{1}}^{\tau_{1}} \ldots f_{i_{v}}^{\tau_{v}} G(1) \subset K(e)$.

We have proved

Lemma 2.3. If $e=f_{i_{1}}^{t} \ldots f_{i_{v}}^{t} a$ is an idempotent of $\bar{R}, 1 \leqslant v \leqslant r, a \in G(1)$, then $K(e)=\bigcup_{\tau_{1}, \ldots, \tau_{v}} f_{i_{1}}^{\tau_{1}} \ldots f_{i_{v}}^{\tau_{v}} \cdot G(1)$, where $1 \leqslant \tau_{i} \leqslant t$.

Clearly $K(e)$ is a (set theoretical) union of t^{v} such "complexes", and these "complexes" are disjoint.

To specify the maximal group $G(e)$ belonging to the idempotent

$$
e=f_{i_{1}}^{t} f_{i_{2}}^{t} \ldots f_{i_{v}}^{t} a,\left(i_{1}<i_{2} \ldots<i_{v}\right)
$$

we use the formula $G(e)=K(e) \cdot e$.
The term $f_{i_{1}}^{t+\tau_{1}} f_{i_{2}}^{t+\tau_{2}} \ldots f_{i_{v}}^{t+\tau_{v}} G(1)$ multiplied by e is equal to $f_{i_{1}}^{t+\tau_{1}} f_{i_{2}}^{t+\tau_{2}} \ldots$ $f_{i_{v}}^{t+\tau_{v}} a G(1)=f_{i_{1}}^{t} f_{i_{2}}^{t} \ldots f_{i_{v}}^{t} \cdot b a G(1)=e \cdot b \cdot G(1)=e G(1)$, hence it is independent of $\left(\tau_{1}, \ldots, \tau_{v}\right)$.

We have proved

Proposition 2.4. If e is any idempotent of \bar{R}, then the maximal group $G(e)$ belonging to e is given by the formula $G(e)=G(1) \cdot e$.

In the following $A \oplus B$ denotes the set of all elements $a+b$, where $a \in A, b \in B$. Consider the set $U=G(1) e_{1} \oplus \ldots \oplus G(1) e_{r}$. All elements of U are contained in $G(1)$ (since, e.g., f_{1} divides all summands with the exception of $G(1) e_{1}$, which is not divisible by f_{1}). Hence $U \subset G(1)$. Next, $1=e_{1}+\ldots+e_{r} \in U$, so that for any $b \in G(1)$ we have $b \in b G(1) e_{1} \oplus \ldots \oplus b G(1) e_{r}=G(1) \cdot e_{1} \oplus \ldots \oplus G(1) \cdot e_{r}=U$, whence $G(1) \subset U$. Therefore $U=G(1)$. Using Proposition 2.4 we have

Proposition 2.5. If $G\left(e_{i}\right)$ is the maximal group belonging to the primitive idempotent e_{i}, then

$$
G(1)=G\left(e_{1}\right) \oplus G\left(e_{2}\right) \oplus \ldots \oplus G\left(e_{r}\right) .
$$

Let us underline that $G\left(e_{i}\right)$ is a multiplicative group but not an additive one. Any element $\xi \in G(1)$ can be written in the form $\xi=\xi_{1}+\xi_{2}+\ldots+\xi_{r}, \xi_{i} \in G\left(e_{i}\right)$, and $\xi_{i} \neq 0(i=1, \ldots, r)$. This result is of essential importance for all what follows. It will turn out that the computation of the elements of the $G\left(e_{i}\right)$'s can be relatively easily established.
C) For computational purposes we need an explicit description of e_{i}. In this connection we prove

Lemma 2.6. If $x^{n}-1=f_{i}^{t} \cdot F_{i}^{t}$, then the r primitive idempotents are given by the formula $e_{i}=\frac{1}{n_{0}}\left[x \cdot f_{i}^{\prime} F_{i}\right]^{t}, i=1,2, \ldots, r$.

Proof. a) Suppose first $t=1$, i.e. $n=n_{0}$. We can use the well known formula that if $f(x)=x^{n}-1=f_{1} f_{2} \ldots f_{r}$, then $e_{i}=\frac{f_{i}^{\prime} F_{i}}{f^{\prime}}=\frac{f_{i}^{\prime} F_{i}}{n x^{n-1}}=\frac{1}{n} x \cdot f_{i}^{\prime} F_{i}$, $(i=1,2, \ldots, r)$.
b) Suppose next $t>1$, hence $x^{n}-1=\left(x^{n_{0}}-1\right)^{t}$, $t=p^{s}$. We have $x^{n_{0}}-1=$ $f_{1} f_{2} \ldots f_{r}$, and $\varepsilon_{i}=\frac{1}{n_{0}} x \cdot f_{i}^{\prime} F_{i}$ satisfies $\varepsilon_{i}^{2} \equiv \varepsilon_{i}\left(\bmod \left(x^{n_{0}}-1\right)\right)$, i.e. $\varepsilon_{i}^{2}-\varepsilon_{i}=v(x)\left(x^{n_{0}}-\right.$ $1)$, where $v(x) \in R$. Taking to the power $t=p^{s}$ we have $\varepsilon_{i}^{2 t}-\varepsilon_{i}^{t}=v(x)^{t}\left(x^{n}-1\right)=0$ (in R), whence $e_{i}=\frac{1}{n_{0}}\left[x \cdot f_{i}^{\prime} \cdot F_{i}\right]^{t}$.

Remark. It should be remarked that the cardinality $|G(1)|$ can be calculated in advance knowing only the degrees of the irreducible factors f_{i}. We owe O. Ore (1934) the following result. If $\operatorname{deg} f_{i}=n_{i}$, so that $n=\sum_{i=1}^{r} n_{i} t$, we have $|G(1)|=$ $q^{n}\left(1-q^{-n_{1}}\right) \ldots\left(1-q^{-n_{r}}\right)$.
[To be historically more precise, this formula appears (in a more general setting) even in the book R. Fricke [1] in the case of the ground field F_{p}.]

3. The case $(n, p)=1$

In this case $t=1$, and we have $x^{n}-1=f_{1} \ldots f_{r}$. Any idempotent $e \neq 1$ is of the form $e=f_{i_{1}} \cdot f_{i_{2}} \ldots f_{i_{v}} a, 1 \leqslant v \leqslant r, a \in G(1)$. By Proposition 2.4 the maximal semigroup belonging to $e \in \bar{R}$ is $K(e)=f_{i_{1}} \ldots f_{i_{v}} G(1)=f_{i_{1}} \ldots f_{i_{v}} \cdot a \cdot G(1)=$ $e G(1)=G(e)$. Hence $K(e)=G(e)$. This implies

Proposition 3.1. If $(n, p)=1$, then \bar{R} is a (set theoretical) union of disjoint groups (including $G(1)$ and $\{0\}$).

Let e_{i} be a primitive idempotent of \bar{R}, and $\varrho \in R$.
a) If $\varrho \in G\left(e_{i}\right)$, then $\varrho e_{i}=\varrho$, hence $\varrho\left(1-e_{i}\right)=0$.
b) If $\varrho \notin G\left(e_{i}\right)$ and $\varrho \neq 0$, then there is an idempotent $\varepsilon \neq 0$ such that $\varrho \in G(\varepsilon) \neq$ $G\left(e_{i}\right)$. Next, $\varrho e_{i} \in G(\varepsilon) \cdot e_{i}=G(1) \cdot \varepsilon e_{i}$.

Since $\varepsilon \cdot e_{i}$ is either 0 or e_{i}, we have either $\varrho e_{i}=0$ or $\varrho e_{i} \in G\left(e_{i}\right)$. In both cases we have $\varrho \neq \varrho e_{i}$.

We have proved

Proposition 3.2. If $(n, p)=1$, a non-zero element $\varrho \in \bar{R}$ is contained in the group $G\left(e_{i}\right)$ if and only if $\varrho\left(1-e_{i}\right)=0$.

This last statement enables us to describe all elements of $G\left(e_{i}\right)$ in the polynomial form $\varrho=r_{0}+r_{1}+\ldots+r_{n-1} x^{n-1}$. The unknowns $r_{i}(i=0, \ldots, r-1)$ appear as a solution of a system of linear equations.

The following two examples show how this works.
Example 3.3. We have to find all NB-generators of $F_{5^{3}} \mid F_{5}$ (supposing that one NB-generator α is known).

The problem reduces to finding all elements of $R=F_{5}[x] /\left(x^{3}-1\right)$ which are relatively prime to $x^{3}-1$.

In F_{5} we have $x^{3}-1=f_{1} f_{2}=(x-1)\left(1+x+x^{2}\right)$ and $|G(1)|=|\Gamma(3,5)|=5^{3}(1-$ $\left.5^{-1}\right)\left(1-5^{-2}\right)=96$. The primitive idempotents are (by Lemma 2.6) $e_{1}=2\left(1+x+x^{2}\right)$, $e_{2}=4+3 x+3 x^{2}$.
a) We describe $G\left(e_{1}\right)$. The element $\varrho=r_{0}+r_{1} x+r_{2} x^{2}, r_{i} \in F_{5}, \varrho \neq 0$ is contained in $G\left(e_{1}\right)$ if and only if $\varrho\left(1-e_{1}\right)=0$, i.e. $\left(r_{0}+r_{1} x+r_{2} x^{2}\right)\left(4+3 x+3 x^{2}\right)=0$. This leads to the system of linear equations (of rank 2)

$$
\begin{aligned}
& 4 r_{0}+3 r_{1}+3 r_{2}=0, \\
& 3 r_{0}+4 r_{1}+3 r_{2}=0, \\
& 3 r_{0}+3 r_{1}+4 r_{2}=0,
\end{aligned}
$$

whence $r_{0}=r_{1}=r_{2}$. Finally, $G\left(e_{1}\right)=\left\{r_{0}\left(1+x+x^{2}\right) \mid r_{0} \neq 0\right\}$. Clearly $\left|G\left(e_{1}\right)\right|=4$.
b) We specify $G\left(e_{2}\right)$. Put $\varrho^{\prime}=r_{0}^{\prime}+r_{1}^{\prime} x+r_{2}^{\prime} x^{2}$. Then $\varrho^{\prime}\left(1-e_{2}\right)=\left(r_{0}^{\prime}+r_{1}^{\prime} x+\right.$ $\left.r_{2}^{\prime} x^{2}\right)\left(2+2 x+2 x^{2}\right)=0$ implies a linear system of rank 1 . Namely, $r_{o}^{\prime}+r_{1}^{\prime}+r_{2}^{\prime}=0$. Hence $r_{0}^{\prime}=4\left(r_{1}^{\prime}+r_{2}^{\prime}\right)$, and $\varrho^{\prime}=4\left(r_{1}^{\prime}+r_{2}^{\prime}\right)+r_{1}^{\prime} x+r_{2}^{\prime} x^{2},\left(r_{1}^{\prime}, r_{2}^{\prime}\right) \neq(0,0)$. Also $\left|G\left(e_{2}\right)\right|=24$.
c) Changing the notation $\left(r_{1}^{\prime} \rightarrow r_{1}, r_{2}^{\prime} \rightarrow r_{2}\right)$ we have

$$
G(1)=\left\{r_{0}\left(1+x+x^{2}\right) \oplus\left[4\left(r_{1}+r_{2}\right)+r_{1} x+r_{2} x^{2}\right]\right\} .
$$

Using the mapping Ω we get the following result:
If α is one NB-generator of $F_{5^{3}} \mid F_{5}$, then all NB-generators of $F_{5^{3}} \mid F_{5}$ are given by the set of 96 elements

$$
\Gamma(3,5)=\left\{r_{0}\left(\alpha+\alpha^{5}+\alpha^{25}\right)+r_{1}\left(4 \alpha+\alpha^{5}\right)+r_{2}\left(4 \alpha+\alpha^{25}\right\},\right.
$$

where the triples $\left(r_{0}, r_{1}, r_{2}\right)$ are subject to the conditions $r_{0} \neq 0,\left(r_{1}, r_{2}\right) \neq(0,0)$.

Remark 1. There is of course a natural question how to decide whether an element $\alpha \in F_{q^{n}}$ is an NB-generator of $F_{q^{n}} \mid F_{q}$ or not. In this direction we refer to [7], where it is proved that α is an NB-generator of $F_{q}(\alpha)$ if and only if $\Omega\left(f_{i}^{t-1} F_{i}^{t}\right) \neq 0$ for $i=1, \ldots, r$.

Remark 2. If we know a concrete N-polynomial of degree 3 over F_{5}, the formula for $\Gamma(3,5)$ can be reduced to a polynomial in α of degree 2 . For instance, $x^{3}+x^{2}+1$ is an N-polynomial over F_{5}. If α is the root of this polynomial, then $\alpha^{5}=4+\alpha+3 \alpha^{2}$, $a^{25}=3 \alpha+2 \alpha^{2}$, and we have $\Gamma(3,5)=\left\{4 r_{0}+r_{1}\left(4+3 \alpha^{2}\right)+r_{2}\left(2 \alpha+2 \alpha^{2}\right)\right\}$.

Remark 3. It follows from the foregoing results: If we know a "parametric expression" for the generators $g=g\left(r_{1}, \ldots r_{n}\right)$, then $(x-g)\left(x-g^{q}\right) \ldots\left(x-g^{q^{n-1}}\right)$ is an N-polynomial of degree n over F_{q} with parameters $\left(r_{1}, \ldots, r_{n}\right)$ comprising all N-polynomials of degree n over F_{q}. Unfortunately the "technical realization" turns out to be rather complicated. We will return to this question in Section 5.

Example 3.4. We have to find all NB-generators of $F_{7^{4}} \mid F_{7}$.
The factorization of $x^{4}-1$ over F_{7} is $x^{4}-1=(x-1)(x+1)\left(x^{2}+1\right)$. The primitive idempotents of $F_{7}[x] /\left(x^{4}-1\right)$ are $e_{1}=2\left(1+x+x^{2}+x^{3}\right), e_{2}=2\left(1-x+x^{2}-x^{3}\right)$, $e_{3}=4\left(1-x^{2}\right)$.
a) To find $G\left(e_{1}\right)$ we put $\varrho\left(e_{1}-1\right)=\left(r_{0}+r_{1} x+r_{2} x^{2}+r_{3} x^{3}\right)\left(1+2 x+2 x^{2}+2 x^{3}\right)=0$. This leads to the system of linear equations

$$
\left(\begin{array}{llll}
1 & 2 & 2 & 2 \\
2 & 1 & 2 & 2 \\
2 & 2 & 1 & 2 \\
2 & 2 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
r_{0} \\
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right)=0
$$

which implies $r_{0}=r_{1}=r_{2}=r_{3}$, so that $G\left(e_{1}\right)=\left\{r_{0}\left(1+x+x^{2}+x^{3}\right) \mid r_{0} \neq 0\right\}$.
b) Next, in order to find $G\left(e_{2}\right)$ we write $\varrho^{\prime}\left(e_{2}-1\right)=\left(r_{0}^{\prime}+r_{1}^{\prime} x+r_{2}^{\prime} x^{2}+r_{3}^{\prime} x^{3}\right)$ $\left(1-2 x+2 x^{2}-2 x^{3}\right)=0$. This implies

$$
\left(\begin{array}{cccc}
1 & -2 & 2 & -2 \\
-2 & 1 & -2, & 2 \\
2 & -2 & 1 & -2 \\
-2 & 2 & -2 & 1
\end{array}\right)\left(\begin{array}{c}
r_{0}^{\prime} \\
r_{1}^{\prime} \\
r_{2}^{\prime} \\
r_{3}^{\prime}
\end{array}\right)=0
$$

whence $r_{o}^{\prime}+r_{1}^{\prime}=0, r_{1}^{\prime}+r_{2}^{\prime}=0, r_{2}^{\prime}+r_{3}^{\prime}=0$ and $r_{1}^{\prime}=-r_{0}^{\prime}, r_{2}^{\prime}=r_{0}^{\prime}, r_{3}^{\prime}=-r_{0}^{\prime}$, so that $G\left(e_{2}\right)=\left\{r_{0}^{\prime}\left(1-x+x^{2}-x^{3}\right) \mid r_{0}^{\prime} \neq 0\right\}$.
c) Finally, $\varrho^{\prime \prime}\left(1-e_{3}\right)=\left(r_{0}^{\prime \prime}+r_{1}^{\prime \prime} x+r_{2}^{\prime \prime} x^{2}+r_{3}^{\prime \prime} x^{3}\right) \cdot 4 \cdot\left(1+x^{2}\right)=0$ implies $\left(r_{0}^{\prime \prime}+\right.$ $\left.r_{2}^{\prime \prime}\right)+\left(r_{1}^{\prime \prime}+r_{3}^{\prime \prime}\right) x+\left(r_{0}^{\prime \prime}+r_{2}^{\prime \prime}\right) x^{2}+\left(r_{1}^{\prime \prime}+r_{3}^{\prime \prime}\right) x^{3}=0$ and $r_{2}^{\prime \prime}=-r_{0}^{\prime \prime}, r_{3}^{\prime \prime}=-r_{1}^{\prime \prime}$, so that $G\left(e_{3}\right)=\left\{r_{0}^{\prime \prime}\left(1-x^{2}\right)+r_{1}^{\prime \prime}\left(x-x^{3}\right)\right\}$, where $\left(r_{0}^{\prime \prime}, r_{1}^{\prime \prime}\right) \neq(0,0)$.

We have $\left|G\left(e_{1}\right)\right|=\left|G\left(e_{2}\right)\right|=6,\left|G\left(e_{3}\right)\right|=48$ and $|G(1)|=1728$.
By changing the notation, we have

$$
G(1)=\left\{r_{0}\left(1+x+x^{2}+x^{3}\right) \oplus r_{1}\left(1-x+x^{2}-x^{3}\right) \oplus\left[r_{2}\left(1-x^{2}\right)+r_{3}\left(x-x^{3}\right]\right\} .\right.
$$

This implies the following result.
If α is one NB-generator of $F_{7^{4}} \mid F_{7}$, then all NB-generators of $F_{7^{4}} \mid F_{7}$ are given by the set of 1728 elements

$$
\begin{aligned}
\Gamma(4,7)= & \left\{r_{0}\left(\alpha+\alpha^{7}+\alpha^{49}+\alpha^{343}\right)+r_{1}\left(\alpha-\alpha^{7}+\alpha^{49}-\alpha^{343}\right)\right. \\
& \left.+r_{2}\left(\alpha-\alpha^{49}\right)+r_{3}\left(\alpha^{7}-\alpha^{343}\right)\right\} .
\end{aligned}
$$

Hereby the quadruples $\left(r_{0}, r_{1}, r_{2}, r_{3}\right)$ are subject to the conditions $r_{0} \neq 0, r_{1} \neq 0$ and $\left(r_{2}, r_{3}\right) \neq(0,0)$.

Remark. The polynomial $x^{4}+x^{3}+1$ is an N -polynomial over F_{7}. If we choose α as the root of this polynomial, we get

$$
\begin{aligned}
\Gamma(4,7)= & \left\{6 r_{0}+r_{1}\left(1+4 \alpha^{2}+\alpha^{3}\right)+r_{2}\left(2 \alpha+5 \alpha^{2}+3 \alpha^{3}\right)\right. \\
& \left.+r_{3}\left(3+5 \alpha+4 \alpha^{2}+4 \alpha^{3}\right)\right\},
\end{aligned}
$$

where $r_{0} \neq 0, r_{1} \neq 0$ and $\left(r_{2}, r_{3}\right) \neq(0,0)$.

4. The case $(n, p)>1$

We now suppose $x^{n}-1=\left(x^{n_{0}}-1\right)^{t}=\left(f_{1} \ldots f_{r}\right)^{t}, t=p^{s}>1$. Our goal is to find $G\left(e_{i}\right)$, where $e_{i}(i=1, \ldots, r)$ are the primitive idempotents.

In this case the semigroup \bar{R} is not a set-theoretical union of disjoint groups. So we have to follow a slightly different way.

Write $U=\bar{R} e_{1} \oplus \ldots \oplus \bar{R} e_{r}$. It is easy to see that $U=\bar{R}$ and $\bar{R} e_{i} \cap \bar{R} e_{j}=\{0\}$. The set $\bar{R} e_{i}$ is an ideal of the semigroup \bar{R}, containing exactly two idempotents, namely e_{i} and 0 . It is known that if an ideal I of any semigroup contains an idempotent e, then I contains the whole maximal group $G(e)$.

Therefore we may write $\bar{R} e_{i}=G\left(e_{i}\right) \cup I\left(e_{i}\right), G\left(e_{i}\right) \cap I\left(e_{i}\right)=\emptyset$, and $I\left(e_{i}\right)$ is the set of all nilpotent elements of $\bar{R} e_{i}$. The set $\bar{R} e_{i}$ is the set of all $\varrho \in \bar{R}$ for which $\varrho e_{i}=\varrho$, i.e., $\varrho\left(1-e_{i}\right)=0$.

Any $\varrho \in R$ can be written in the form $\varrho=f_{j_{1}}^{\tau_{1}} \cdot f_{j_{2}}^{\tau_{2}} \ldots f_{j_{v}}^{\tau_{v}} b, 1 \leqslant \tau_{j} \leqslant t$, and $e_{i}=F_{i}^{t} a_{i}$, where $b, a_{i} \in G(1)$. We have $\varrho \cdot e_{i}=f_{j_{1}}^{\tau_{1}} f_{j_{2}}^{\tau_{2}} \ldots f_{j_{v}}^{\tau_{v}} \cdot F_{i}^{t} a_{i} \cdot b=f_{i}^{\tau_{i}} \cdot F_{i}^{t} c$, $c \in G(1)$. It is immediately seen that ϱe_{i} is nilpotent if and only if $\tau_{i} \geqslant 1$, i.e., if
and only if $f_{i}(x)$ divides $\varrho \in R e_{i}$. [Also, if $\tau_{i} \geqslant 1$, it is clear that $\varrho^{t}=0$.] We have proved

Proposition 4.1. Let $(n, p)>1$. An element $\varrho \in \bar{R}$ is contained in the maximal group $G\left(e_{i}\right)$ if and only if $\varrho\left(1-e_{i}\right)=0$, and f_{i} does not divide ϱ.

Hence, to find $G\left(e_{i}\right)$ we have first to find all ϱ satisfying $\varrho\left(1-e_{i}\right)=0$ and then to exclude all those which are divisible by f_{i}.

Remark. The condition that $f_{i}(x)$ divides $\varrho(x)=r_{0}+r_{1} x+\ldots r_{n-1} x^{n-1}$ leads to a system of n_{i} homogeneous linear equations for $\left\{r_{0}, \ldots, r_{n-1}\right\}$ from which the constrains for the $r_{i}{ }^{\prime} s$ follow. To see this let ξ be a root of the irreducible polynomial $f_{i}(x)$. Then $f_{i}(\xi)=0$ enables us to compute ξ^{k} for all $k \geqslant n_{i}$ in the form $\xi^{k}=$ $b_{0}^{(k)}+b_{1}^{(k)} \xi+\ldots b_{n_{i}-1}^{(k)} \xi^{n_{i}-1}$. We then have $\varrho(\xi)=r_{0}+r_{1} \xi+\ldots+r_{n-1} \xi^{n-1}=$ $c_{0}+c_{1} \xi+\ldots+c_{n_{i}-1} \xi^{n_{i}-1}$, where the $c_{i}{ }^{\prime} s$ are linear forms of $\left\{r_{0}, r_{1}, \ldots, r_{n-1}\right\}$ (with coefficients in F_{q}). Now, $f_{i}(x)$ divides $\varrho(x)$ if and only if $c_{0}=c_{1}=\ldots=c_{n_{i}-1}=0$.

Example 4.2. We have to find all NB-generators of $F_{3^{6}} \mid F_{3}$ (supposing that one NB-generator α is known).

We have $x^{6}-1=(x-1)^{3}(x+1)^{3}$. By Proposition 2.6 the primitive idempotents of $F_{3}[x] /\left(x^{6}-1\right)$ are $e_{1}=2\left(1+x^{3}\right)$ and $e_{2}=2\left(1-x^{3}\right)$.
a) Write $\varrho=r_{0}+r_{1} x+\ldots+r_{5} x^{5}$. The condition $\varrho\left(1-e_{1}\right)=\left(r_{0}+r_{1} x+\ldots+\right.$ $\left.r_{5} x^{5}\right)\left(x^{3}-1\right)=\left(r_{3}-r_{0}\right)+\left(r_{4}-r_{1}\right) x+\left(r_{5}-r_{2}\right) x^{2}+\left(r_{0}-r_{3}\right) x^{3}+\left(r_{1}-r_{4}\right) x^{4}+\left(r_{2}-r_{5}\right) x^{5}=$ 0 implies $r_{3}=r_{0}, r_{4}=r_{1}, r_{5}=r_{2}$. Hence all polynomials $\varrho \neq 0$ satisfying $\varrho e_{1}=\varrho$ are $\left\{r_{0}+r_{1} x+r_{2} x^{2}+r_{o} x^{3}+r_{1} x^{4}+r_{2} x^{5}\right\}=\left\{\left(1+x^{3}\right)\left(r_{0} x+r_{1} x+r_{2} x^{2}\right)\right\}$, where $\left(r_{0}, r_{1}, r_{2}\right) \neq(0,0,0)$.

Now we have to exclude those polynomials which are divisible by $f_{1}=x-1$. These are the polynomials for which $r_{0}+r_{1}+r_{2}=0$. Hence

$$
G\left(e_{1}\right)=\left\{\left(r_{o}\left(1+x^{3}\right)+r_{1}\left(x+x^{4}\right)+r_{2}\left(x^{2}+x^{5}\right)\right\}, \quad \text { where } \quad r_{0}+r_{1}+r_{2} \neq 0\right.
$$

Clearly, $\left|G\left(e_{1}\right)\right|=18$.
b) Next, write $\varrho^{\prime}=r_{0}^{\prime}+r_{1}^{\prime} x+\ldots+r_{5}^{\prime} x^{5}$. The condition $\varrho\left(1-e_{2}\right)=\left(r_{0}^{\prime}+r_{1}^{\prime} x+\ldots+\right.$ $\left.r_{5}^{\prime} x^{5}\right)\left(2+2 x^{3}\right)=0$ implies $r_{0}^{\prime}+r_{3}^{\prime}=0, r_{1}^{\prime}+r_{4}^{\prime}=0, r_{2}^{\prime}+r_{5}^{\prime}=0$.

Hence all elements ϱ of R satisfying $\varrho e_{2}=\varrho$ are

$$
\left\{r_{0}^{\prime}+r_{1}^{\prime} x+r_{2}^{\prime} x^{2}-r_{0}^{\prime} x^{3}-r_{1}^{\prime} x^{4}-r_{2}^{\prime} x^{5}\right\}, \quad \text { where } \quad\left(r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}\right) \neq(0,0,0)
$$

From these polynomials we have to exclude those which are divisible by $f_{2}=x+1$. These are the polynomials for which $r_{0}^{\prime}-r_{1}^{\prime}+r_{2}^{\prime}=0$. Hence

$$
G\left(e_{2}\right)=\left\{r_{0}^{\prime}\left(1-x^{3}\right)+r_{1}^{\prime}\left(x-x^{4}\right)+r_{2}^{\prime}\left(x^{2}-x^{5}\right)\right\}, \quad \text { where } \quad r_{0}^{\prime}-r_{1}^{\prime}+r_{2}^{\prime} \neq 0
$$

Again, $\left|G\left(e_{2}\right)\right|=18$.
c) Finally, $G(1)=G\left(e_{1}\right) \oplus G\left(e_{2}\right)$ implies

$$
\begin{aligned}
\Gamma(6,3)= & {\left[r_{0}\left(\alpha+\alpha^{27}\right)+r_{1}\left(\alpha^{3}+\alpha^{81}\right)+r_{2}\left(\alpha^{9}+\alpha^{243}\right)\right] } \\
& \oplus\left[r_{0}^{\prime}\left(\alpha-\alpha^{27}\right)+r_{1}^{\prime}\left(\alpha^{3}-\alpha^{81}\right)+r_{2}^{\prime}\left(\alpha^{9}-\alpha^{243}\right)\right] .
\end{aligned}
$$

Denoting $A=\alpha+\alpha^{27}, B=\alpha-\alpha^{27}$, we may write this in the form

$$
\Gamma(6,3)=\left\{\left[r_{0} A+r_{1} A^{3}+r_{2} A^{9}\right] \oplus\left[r_{0}^{\prime} B+r_{1}^{\prime} B^{3}+r_{2}^{\prime} B^{9}\right]\right\}
$$

where $r_{0}+r_{1}+r_{2} \neq 0$ and $r_{0}^{\prime}-r_{1}^{\prime}+r_{2}^{\prime} \neq 0$. Clearly, $|\Gamma(6,3)|=324$.
Example 4.3. To see how the results look like for larger n we give here (without the necessary computations) the result concerning the set of all NB-generators of $G F\left(3^{12}\right) \mid G F(3)$.

The factorization of $x^{12}-1$ into irreducible factors over F_{3} is $x^{12}-1=(x-$ $1)^{3}(x+1)^{3}\left(x^{2}+1\right)^{3}=f_{1}^{3} f_{1}^{3} f_{3}^{3}$. By Proposition 2.6 the primitive idempotents are $e_{1}=1+x^{3}+x^{6}+x^{9}, e_{2}=1-x^{3}+x^{6}-x^{9}, e_{3}=x^{6}-1$.

$$
\begin{gathered}
G\left(e_{1}\right)=\left\{\left(r_{0}+r_{1} x+r_{2} x^{2}\right)\left(1+x^{3}+x^{6}+x^{9}\right) \mid r_{0}+r_{1}+r_{2} \neq 0\right\}, \text { and }\left|G\left(e_{1}\right)\right|=18 \\
G\left(e_{2}\right)=\left\{\left(r_{0}^{\prime}+r_{1} x^{\prime}+r_{2}^{\prime} x^{2}\right)\left(1-x^{3}+x^{6}-x^{9}\right) \mid r_{0}^{\prime}-r_{1}^{\prime}+r_{2}^{\prime} \neq 0\right\}, \text { and }\left|G\left(e_{2}\right)\right|=18 \\
G\left(e_{3}\right)=\left\{\left(r_{0}^{\prime \prime}+r_{1}^{\prime \prime} x+r_{2}^{\prime \prime} x^{2}+r_{3}^{\prime \prime} x^{3}+r_{4}^{\prime \prime} x^{4}+r_{5}^{\prime \prime} x^{5}\right)\left(1-x^{6}\right)\right\}
\end{gathered}
$$

where $\left(r_{0}^{\prime \prime}-r_{2}^{\prime \prime}+r_{4}^{\prime \prime}, r_{1}^{\prime \prime}-r_{3}^{\prime \prime}+r_{5}^{\prime \prime}\right) \neq(0,0)$, and $\left|G\left(e_{3}\right)\right|=2^{3} \cdot 3^{4}$.
Hence $G(1)=G\left(e_{1}\right) \oplus G\left(e_{2}\right) \oplus G\left(e_{3}\right)$ and $|G(1)|=2^{5} \cdot 3^{8}=209952$.
Denote $A_{1}=\alpha+\alpha^{3^{3}}+\alpha^{3^{6}}+\alpha^{3^{9}}, A_{2}=\alpha-\alpha^{3^{3}}+\alpha^{3^{6}}-\alpha^{3^{9}}, A_{3}=\alpha-\alpha^{3^{6}}$. Then the set of all NB-generators of $G F\left(3^{12}\right) \mid G F(3)$ is given by the formula

$$
\begin{aligned}
\Gamma(12,3)= & \left\{\left(r_{0} A_{1}+r_{1} A_{1}^{3}+r_{2} A_{1}^{9}\right) \oplus\left(r_{0}^{\prime} A_{2}+r_{1}^{\prime} A_{2}^{3}+r_{2}^{\prime} A_{2}^{9}\right)\right. \\
& \left.\oplus\left(r_{0}^{\prime \prime} A_{3}+r_{1}^{\prime \prime} A_{3}^{3}+r_{2}^{\prime \prime} A_{3}^{9}+r_{3}^{\prime \prime} A_{3}^{27}+r_{4}^{\prime \prime} A_{3}^{81}+r_{5}^{\prime \prime} A_{3}^{243}\right)\right\},
\end{aligned}
$$

where the restrictions for the $r_{i}{ }^{\prime} s$ are given above.
Example 4.4. Simple results are obtained if we consider the extension $F_{q^{n}} \mid F_{q}$, where n is a power of the characteristic, $p=\operatorname{char}\left(F_{q}\right)$.

Consider, e.g., the case $F_{p^{p}} \mid F_{p}$. The ring $F_{p}[x] /\left(x^{p}-1\right)=F_{p}[x] /(x-1)^{p}$ contains a unique non-zero idempotent (namely 1), and $G(1)$ consists of all polynomials $\varrho=$ $r_{0}+r_{1} x+\ldots+r_{p-1} x^{p-1}$ which are not divisible by $x-1$, i.e., such that $r_{0}+r_{1}+$ $\ldots+r_{p-1} \neq 0$. Hence $G(1)=\left\{r_{0}+r_{1} x+\ldots+r_{p-1} x^{p-1} \mid r_{0}+r_{1}+\ldots+r_{p-1} \neq 0\right\}$. If α is one NB-generator of $F_{p^{p}} \mid F_{p}$, then all the others are given by

$$
\Gamma(p, p)=\left\{r_{0} \alpha+r_{1} \alpha^{p}+\ldots+r_{p-1} \alpha^{p^{p-1}} \mid r_{0}+r_{1}+\ldots+r_{p-1} \neq 0\right\}
$$

Here $|\Gamma(p, p)|=p^{p}-p^{p-1}$.

5. Some consequences for N-polynomials

In the preceding sections we have shown how to describe all NB-generators of $F_{q^{n}} \mid F_{q}$ by one formula (containing parameters). If $g=g\left(\alpha, r_{1}, \ldots, r_{n}\right)$ is this "general expression", then $h(x)=h\left(x, r_{1}, \ldots, r_{n}\right)=(x-g)\left(x-g^{q}\right) \ldots\left(x-g^{q^{n-1}}\right)$ is a "general expression" for all N-polynomials of degree $n \geqslant 2$ over F_{q}. In other words, if we know one N-polynomial of degree $n \geqslant 2$, we are able (in principle) to describe all N -polynomials of degree n by one formula (containing parameters r_{i}). It is sufficient to write down $h(x)$ as a polynomial with coefficients $\in F_{q}$. For $n=2$ this is rather easy. For $n=3$ we show in Example 3.3 how the straightforward procedure looks like. For $n \geqslant 4$ the evaluation is rather cumbersome.

Example 5.1. We prove two statements concerning quadratic N-polynomials.
Statement 1. Let $x^{2}+a_{1} x+a_{2}$ be one N-polynomial over F_{q}, $\operatorname{char}\left(F_{q}\right)=p>2$. Then the set $\{h(x)\}$ of all quadratic N-polynomials over F_{q} is given by the formula

$$
h(x)=x^{2}+2 a_{1} r_{0} x+r_{o}^{2} a_{1}^{2}-r_{1}^{2}\left(a_{1}^{2}-4 a_{2}\right),
$$

where $r_{0}, r_{1} \in F_{q}$ and $r_{0} r_{1} \neq 0$.
Proof. The factorization $x^{2}-1=(x-1)(x+1)$ over F_{q} implies that the primitive idempotents of $F_{q}[x] /\left(x^{2}-1\right)$ are $e_{1}=\frac{1}{2}(1+x)$ and $e_{2}=\frac{1}{2}(1-x)$, so that $G(1)=r_{0}(1+x) \oplus r_{1}(1-x)$, where $r_{0} r_{1} \neq 0$, and $\Gamma(2, q)=\left\{r_{0}\left(\alpha+\alpha^{q}\right) \oplus r_{1}\left(\alpha-\alpha^{q}\right)\right\}$, where α is a root of $x^{2}+a_{1} x+a_{2}=0$.

If $g=r_{0}\left(\alpha+\alpha^{q}\right)+r_{1}\left(\alpha-\alpha^{q}\right)$, then $g^{q}=r_{0}\left(\alpha^{q}+\alpha\right)+r_{1}\left(\alpha^{q}-\alpha\right)$, and $g+g^{q}=$ $2 r_{0}\left(\alpha+\alpha^{q}\right)=-2 a_{1} r_{0}, g g^{q}=r_{0}^{2}\left(\alpha+\alpha^{q}\right)^{2}-r_{1}^{2}\left(\alpha-\alpha^{q}\right)^{2}=r_{0}^{2} a_{1}^{2}-r_{1}^{2}\left(a_{1}^{2}-4 a_{2}\right)$. This proves our statement. [Clearly there are $\frac{1}{2}(q-1)^{2}$ different quadratic N-polynomials over F_{q}.]

To have a numerical example let us describe (by one formula) the set of all quadratic N -polynomials over F_{7}, knowing that, e.g., $x^{2}+x+3$ is an N -polynomial over F_{7}. We then have $h(x)=x^{2}+2 r_{0} x+r_{o}^{2}+r_{1}^{2}$. To obtain all the 18 different ones it is sufficient to choose $r_{0} \in\{1,2, \ldots, 6\}, r_{1}^{2} \in\{1,2,4\}$.

To complete our considerations we have to consider also the case $\operatorname{char}\left(F_{q}\right)=2$, $q=2^{s}, n=2$.

Statement 2. Let $x^{2}+b_{1} x+b_{2}$ be one N-polynomial of degree 2 over $F_{q}=$ $G F\left(2^{s}\right)$. Then all N-polynomials of degree 2 over F_{q} are given by the formula

$$
h(x)=x^{2}+b_{1}\left(r_{0}+r_{1}\right) x+\left(r_{0}+r_{1}\right)^{2} b_{2}+r_{0} r_{1} b_{1}^{2},
$$

where $r_{0}, r_{1} \in F_{q}$ and $r_{0} \neq r_{1}$.

Proof. The ring $F_{q}[x] /(x-1)^{2}$ has a unique non-zero idempotent (namely $e=1$). To find $G(1)$ we have (in accordance with Proposition 4.1) to exclude all those polynomials $r_{0}+r_{1} x$ which are divisible by $f(x)=x+1$. These are the polynomials for which $r_{0}+r_{1}=0$ (i.e. $r_{0}=r_{1}$). We have therefore

$$
G(1)=\left\{r_{0}+r_{1} x \mid r_{0}, r_{1} \in F_{q}, r_{0} \neq r_{1}\right\} .
$$

If β is the root of $x^{2}+b_{1} x+b_{2}$ we immediately obtain the set of all NB-generators

$$
\Gamma(2, q)=\Gamma\left(2,2^{s}\right)=\left\{r_{0} \beta+r_{1} \beta^{q} \mid r_{0}, r_{1} \in F_{q}, r_{0} \neq r_{1}\right\} .
$$

If $g=r_{0} \beta+r_{1} \beta^{q}$ is an NB-generator, we have $g+g^{q}=\left(r_{0} \beta+r_{1} \beta^{q}\right)+\left(r_{0} \beta^{q}+r_{1} \beta\right)=$ $b_{1}\left(r_{0}+r_{1}\right)$ and $g \cdot g^{q}=\left(r_{0} \beta+r_{1} \beta^{q}\right)\left(r_{o} \beta^{q}+r_{1} \beta\right)=\left(r_{0}+r_{1}\right)^{2} \cdot b_{2}+r_{0} r_{1}\left(\beta+\beta^{q}\right)^{2}=$ $\left(r_{0}^{2}+r_{1}^{2}\right) b_{2}+r_{0} r_{1} b_{1}^{2}$. Therefore $h(x)=(x-g)\left(x-g^{q}\right)=x^{2}+b_{1}\left(r_{0}+r_{1}\right) x+\left(r_{0}+\right.$ $\left.r_{1}\right)^{2} b_{2}+r_{0} r_{1} b_{1}^{2}$. This formula comprises all the $\frac{1}{2} q(q-1) N$-polynomials of degree 2 over F_{q}.

Example 5.2. We have to find all N-polynomials of degree 3 over F_{5}.
In Example 3.3 we have proved that any NB-generator g of $F_{5^{3}} \mid F_{5}$ is of the form

$$
g=r_{0}\left(\alpha+\alpha^{5}+\alpha^{25}\right)+r_{1}\left(4 \alpha+\alpha^{5}\right)+r_{2}\left(4 \alpha+\alpha^{25}\right),
$$

whence

$$
\begin{aligned}
g^{5} & =r_{0}\left(\alpha+\alpha^{5}+\alpha^{25}\right)+r_{1}\left(4 \alpha^{5}+\alpha^{25}\right)+r_{2}\left(4 \alpha^{5}+\alpha\right), \\
g^{25} & =r_{0}\left(\alpha+\alpha^{5}+\alpha^{25}\right)+r_{1}\left(4 \alpha^{25}+\alpha\right)+r_{2}\left(4 \alpha^{25}+\alpha^{5}\right)
\end{aligned}
$$

Here α is a root of an N-polynomial $x^{3}+a_{1} x^{2}+a_{2} x+a_{3}=0$, and an admissible triple $\left(r_{0}, r_{1}, r_{2}\right)$ is defined by the restrictions $r_{0} \neq 0,\left(r_{1}, r_{2}\right) \neq(0,0)$.

Our goal is to calculate

$$
h(x)=(x-g)\left(x-g^{5}\right)\left(x-g^{25}\right)
$$

as a polynomial over F_{5}.
Since $r_{0}\left(\alpha+\alpha^{p}+\alpha^{p^{2}}\right)=-r_{0} a_{1}$, we shall write $g+r_{0} a_{1}=g_{1}$, so that $g_{1}=$ $r_{1}\left(4 \alpha+\alpha^{5}\right)+r_{2}\left(4 \alpha+\alpha^{25}\right)$, and we shall evaluate the product

$$
h_{1}(y)=\left(y-g_{1}\right)\left(y-g_{1}^{5}\right)\left(y-g_{1}^{25}\right)=y^{3}+b_{1} y^{2}+b_{2} y+b_{3} .
$$

Note first that $-b_{1}=g_{1}+g_{1}^{5}+g_{1}^{25}=g+g^{5}+g^{25}+3 r_{0} a_{1}=3 r_{0}\left(\alpha+\alpha+\alpha^{25}\right)+3 r_{0} a_{1}=$ $-3 r_{0} a_{1}+3 r_{0} a_{1}=0$ (independently of the choice of α).

Now choose α as a root of the N-polynomial $x^{3}+x^{2}+1$ (over F_{5}). Then $g_{1}=$ $r_{1}\left(4 \alpha+\alpha^{5}\right)+r_{2}\left(4 \alpha+\alpha^{25}\right)=r_{1}\left(4+3 \alpha^{2}\right)+r_{2}\left(2 \alpha+2 \alpha^{2}\right)$ satisfies an equation $g_{1}^{3}+b_{2} g_{1}+b_{3}=0$ with unknowns b_{2}, b_{3}.

Hence

$$
\left[r_{1}\left(4+3 \alpha^{2}\right)+r_{2}\left(2 \alpha+2 \alpha^{2}\right)\right]^{3}+b_{2}\left[r_{1}\left(4+3 \alpha^{2}\right)+r_{2}\left(2 \alpha+2 \alpha^{2}\right)\right]+b_{3}=0
$$

i.e.,

$$
\begin{aligned}
{\left[r_{1}^{3}\left(1+3 \alpha^{2}\right)+r_{1}^{2} r_{2}(4+2 \alpha)+r_{1} r_{2}^{2}(3\right.} & \left.+2 \alpha)+r_{2}^{3}\left(3+2 \alpha+2 \alpha^{2}\right)\right] \\
& +b_{2}\left[4 r_{1}+2 r_{2} \alpha+\left(3 r_{1}+2 r_{2}\right) \alpha^{2}\right]+b_{3}=0
\end{aligned}
$$

This leads to the following three equations:

$$
\begin{aligned}
& r_{1}^{3}+4 r_{1}^{2} r_{2}+3 r_{1} r_{2}^{2}+3 r_{2}^{2}+4 b_{2} r_{1}+b_{3}=0 \\
& 2 r_{1}^{2} r_{2}+2 r_{1} r_{2}^{2}+2 r_{2}^{3}+2 r_{2} b_{2}=0 \\
& 3 r_{1}^{3}+2 r_{2}^{3}+b_{2}\left(3 r_{1}+2 r_{2}\right)=0
\end{aligned}
$$

From the second (which is equivalent to the third if $r_{2} \neq 0$ or $r_{1}-r_{2} \neq 0$) we get $b_{2}=4\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)$, and from the first $b_{3}=3 r_{1}^{3}+r_{1} r_{2}^{2}+2 r_{2}^{3}$. This holds also if $r_{2}=0$ or $r_{1}-r_{2}=0$. Hence

$$
h_{1}(y)=y^{3}+4\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right) y+\left(3 r_{1}^{3}+r_{1} r_{2}^{2}+2 r_{2}^{3}\right),
$$

and replacing y by $x+r_{0} a_{1}=x+r_{0}$, we finally get

$$
\begin{equation*}
h(x)=\left(x+r_{0}\right)^{3}+4\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)\left(x+r_{0}\right)+\left(3 r_{1}^{3}+r_{1} r_{2}^{2}+2 r_{2}^{3}\right) \tag{*}
\end{equation*}
$$

The formula (*) contains formally 96 polynomials. It is of course clear that three different triples $\left(r_{0}, r_{1}, r_{2}\right)$ always lead to the same N-polynomial. We show that in our case the triples $\left(r_{0}, r_{1}, r_{2}\right),\left(r_{0}, 4 r_{1}+4 r_{2}, r_{1}\right),\left(r_{0}, r_{2}, 4 r_{1}+4 r_{2}\right)$ are giving the same polynomial $h(x)$.

To see this it is sufficient to find $\left(r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}\right)$ such that $\left(r_{0}^{\prime}+4 r_{1}^{\prime}+4 r_{2}^{\prime}\right) \alpha+\left(r_{0}^{\prime}+\right.$ $\left.r_{1}^{\prime}\right) \alpha^{5}+\left(r_{0}^{\prime}+r_{2}^{\prime}\right) \alpha^{25}=g^{5}=\left(r_{0}+4 r_{1}+4 r_{2}\right) \alpha^{5}+\left(r_{0}+r_{1}\right) \alpha^{25}+\left(r_{0}+r_{2}\right) \alpha$. This implies $r_{0}^{\prime}+4 r_{1}^{\prime}+4 r_{2}^{\prime}=r_{0}+r_{2}, r_{0}^{\prime}+r_{1}^{\prime}=r_{0}+4 r_{1}+4 r_{2}, r_{0}^{\prime}+r_{2}^{\prime}=r_{0}+r_{1}$, whence $r_{0}^{\prime}=r_{0}$, $r_{1}^{\prime}=4 r_{1}+r_{2}, r_{2}^{\prime}=r_{1}$. Applying once more "the shift" $\left(r_{0}, r_{1}, r_{2}\right) \rightarrow\left(r_{0}, 4 r_{1}+4 r_{2}, r_{1}\right)$ to the second term we obtain the third triple ($r_{0}, r_{2}, 4 r_{1}+4 r_{2}$).

We have proved
Statement 3. The formula (*) comprises exactly all the $32 N$-polynomials of degree 3 over F_{5}, when $\left(r_{0}, r_{1}, r_{2}\right)$ runs through all admissible triples. Hereby the triples
$\left(r_{0}, r_{1}, r_{2}\right),\left(r_{0}, 4 r_{1}+4 r_{2}, r_{1}\right)$ and $\left(r_{0}, r_{2}, 4 r_{1}+4 r_{2}\right)$ are giving the same polynomial $h(x)$.

Remark. It is clear from our considerations that formulas of the type (*) exist for any $n \geqslant 2$ and any F_{q}, but the effective construction of the corresponding Npolynomials for $n \geqslant 4$ is rather complicated.

References

[1] Fricke, R.: Lehrbuch der Algebra, Vol 3. Branschweig, 1928.
[2] Lidl, R.; Niedereiter, H.: Finite Fields. Addison-Wesley Publ. Comp., 1983.
[3] Jungnickel, D.: Finite Fields, Structure and Arithmetics. Wissenschaftsverlag, Mannheim, 1993.
[4] Menezes, A.; Blake, I.; Gao, S.; Mullin, R.; Vanstone, S.; Yaghoobian, T.: Applications of Finite Fields. Kluwer, 1992.
[5] Nemoga, K.: Algebraic theory of pseudocyclic codes, unpublished Ph. D. thesis. Math. Inst. of the Slovak Acad. of Sciences, Bratislava (1988).
[6] Schwarz, \check{S}.: The role of semigroups in the elementary theory of numbers. Math. Slovaca 31 (1981), 369-395.
[7] Schwarz, Š:: Irreducible polynomials over finite fields with linearly independent roots. Math. Slovaca 38 (1988), 147-158.

Authors' address: Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 81473 Bratislava; Slovakia.

