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Abstract. We characterize statistical independence of sequences by the LP-discrepancy
and the Wiener LP-discrepancy. Furthermore, we find asymptotic information on the dis-
tribution of the Lz-discrepancy of sequences.
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1. INTRODUCTION

Let z,, and y, be two infinite sequences in the unit interval [0,1). The pair of
sequences (&, yn) is called statistically independent if

lim( fon ynNiij ; )>0

N—o0
n=1

for all continuous real functions f, g defined on [0,1], cf. [11]. In other words,
the double sequence (x,,yy,) is called statistically independent if it has statistically
independent coordinate sequences x,, and y,,.

t This author is supported by the Austrian Science Foundation project Nr. P10223-PHY
1 These two authors are supported by the scientific cooperation program of the Austrian
Academy of Sciences
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For (x,,yn) and any p > 0 we define the LP statistical independence discrepancy
SDE\I;), the Wiener LP statistical independence discrepancy SWI(\/P ), and the statistical
independence star discrepancy sD7% by the following: denote

Fn = % g )(yn)a

where x[0,2)(t) is the characteristic function of the interval [0,x). Then
11
D@ = [ [ IFv) - By )E L) ded,
o Jo
N

[ 2 sttt = 55 3 st S ot s,

sDy = sup |Fn(z,y)— Fn(z,1)Fn(1,9)],
z,y€(0,1]

(1'1) SWJ(\?) .

where df is the Wiener measure on the set Cy of all continuous functions defined on
[0, 1] satisfying f(0) = 0. Furthermore, we write SD%’) = SD%’) (%, Yn) and similarly
for W and sD%.

These definitions of discrepancy originate from the theory of uniform distribu-
tion of sequences, where the star discrepancy, the LP-discrepancy and the Wiener
discrepancy are given by

Dy (zn) = sup |Fy(z)—a,

z€[0,1]
1
(1.2) Dy :/o |Fy(z) — af” da,
») 1 g: ' Y
WY = [ |5 X s - [ s@as ar,
N col N = 0
where Fy(x) := % Z X[0,z)(Zn). Again, a sequence x,, is called uniformly distrib-

n=1

uted, if D} (z,) tends to 0 for N — oco. This is equivalent to I\}im Dg\’,’) = 0 and
lim W& =0 (cf. [9]).
N—o0

The following explicit formulse for statistical independence discrepancies are
known. In [5] the following formula is given:

0o 2

N N

(2) _ 1 2mi(ka p+1yn 1 2ri(KTn +1Ym )

(13) sDy = 164 Z k2l2 Z ncrlon) — N2 Z Z ety
k n=1m=1

Jl=—o0

k,1#£0
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Furthermore, in [13] an alternative expression is presented:

N
(1'4) SDE\?) = % Z (1 - max(a:m, xn)) (1 - max(ym, yn)>
m,n
1 N
+ Vi Z (1 — max(xm,xk)) (1 — max(Yn, yl))
m,n,k,l=1
9 N
-~ Z (1 — max(mm,xk)) (1 - max(ym,yl)).
m,k,l=1

For the Wiener L? statistical independence discrepancy in [13] we have

(1.5) WY =

L i\[: min(a:m, J:n) min(ym, yn)

N . .
1 Z min (e, ) min(yk, yi)

tNa 2 2

m,n,k,l=1

N . .
2 Z min(x,,, k) min(ym, yi)
N3 2 2 '
m,k,l=1
These are extensions of classical formulse, which can be found in [9]. The notion of
Wiener discrepancy was introduced in [13].
In [5] it is proved that Nlim sD7% = 0 does not characterize the statistical indepen-
— 00

) =0 for p = 2 is a characterization

dence of (2, yn). On the other hand, I\}Enoo SD%’
and it has been conjectured that the same is true also for any p > 0. In Section 2 we
will prove this conjecture and we will also prove the same for the Wiener discrepancy
SWJ(VP ), Moreover, we will see that the statistical independence is fully described by
the set of distribution functions of a given sequence (2, yn ).

In [13] it is proved that SWI(\/?) = ing\?), but a similar relation for SW](\?), p>0
is not valid, which we will demonstrate in Section 4.

In Section 3 of this paper we will discuss the asymptotical distribution of L2-
discrepancy. This continues investigations of the star discrepancy due to Kolmogorov
[8]. It is now well-known that

(1.6) ]\;iirlmp<mD7V(xn) <t> = i (—1)ke 2K,

We will make use of a heuristic approach to this result due to Doob [4], which has
been justified by Donsker [3]. The heuristics states that the discrepancy function
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Fn(x) — x behaves like a trajectory of the Wiener process. Especially this behaviour
holds for continuous functionals of the discrepancy function, as the supremum or the

LP-norm.

2. STATISTICAL INDEPENDENCE
As we have mentioned in the introduction, the equivalence
(n,yn) is statistically independent <= A}im ng\%) =0
— 00

was proved in [5]. We shall extend this characterization of statistical independence
to any p > 0. To do this we need the following notation:

For a given infinite sequence (z,,y,) in [0,1)2, let G(zy,,y,) be the set of all
distribution functions of (x, yn).

Here g: [0,1]> — [0,1] is a distribution function of (z,,y,) if there exists an
increasing sequence of indices N7 < N < ... such that klirglo Fy, (z,y) = g(z,y) for

every point (z,y) € [0,1]2. Following [9, p. 54] two distribution functions g; and go
are considered to be equivalent, if g;(z,y) = ga(x,) a.e. on [0,1]? or equivalently,
g1(z,y) = ga(z,y) for every (z,y) € [0,1]? if both g; and g2 are continuous.

Theorem 1. For any sequence (2,,y,) in [0,1)? and any p > 0 we have

(Tn,yn) is statistically independent < I\}im SD%’) =0.
—00

Proof. By the well known first Helly lemma and the Lebesgue theorem of
dominated convergence we have

1,1
lim // |FN(x,y)fFN(w,l)FN(l,y)|pdxdy:0<:>
0Jo

V(g € Clrn,un) / / 9(.9) — gz, Dg(Ly)P drdy = 0.

The right hand side is true for all p > 0, and for p = 2, the left hand side characterizes
the statistical independence. Thus the proof is complete. O

The following is an immediate consequence of the above proof:
Theorem 2. For every (z,,yn) € [0,1)

(zn, yn) is statistically independent <>
V(g € G(xn,yn))g(x,y) =g(z,1)g(1,y) a.e. on [0, 1]2.
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Using the proof of Theorem 1 with Remark 1 in [13] and observing that any
neighbourhood in the supremum topology in Cy has a positive Wiener measure,
we have a condition for statistical independence in terms of the Wiener statistical
independence discrepancy.

Theorem 3. For any p > 0 the sequence (x,,yy) is statistically independent, if
and only if
li (p) =0.
Ngnoo SWN 0

Using Theorem 2 we can describe the case when the star discrepancy D7, tends
to 0.

Theorem 4. If G(x,,yn) contains only continuous distribution functions, then

(Zn,yn) Is statistically independent < A}gnoc sDx =0.

Proof. The case < follows immediately. The implication = follows from
Theorem 2 and the fact that, for continuous g € G(zy,, y»), the convergence

is uniform in [0,1]>. Hence we have klim sDy, = 0 and this leads to
— 00

lim gD} =0. a

N—oo

In [14] it is shown that one can use the Wiener-Schoenberg theorem for the proof
of continuity of g € G(x,,) (cf. the monograph of L. Kuipers and H. Niederreiter [9,
Th. 7.5, p. 55]). The same method can be used for G(xy,yn).

3 UNIFORM DISTRIBUTION

In order to describe the asymptotic distribution function of the L2-discrepancy, we
use a theorem due to Donsker [3] and the well-known Feynman-Kac formula (cf. [7]).
Donsker’s theorem states that for a functional F', which is continuous in the uniform
topology on the space of sample paths of the Wiener process, the following limit
relation holds:

(3.1) Jim P (F (W(FN(x) - a:)) < a) = P(F(z(.)) < a),

where z(t) is a trajectory of the Wiener process with z(0) = (1) = 0.
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The Feynman-Kac formula relates the Laplace transform of the distribution func-
tion of the integral fot V(z(1))dr (V is a positive function) to the solutions of the
eigenvalue problem

1

SY"(x) = V(2)y(z) = —X(x), ¢ € L*(~00,00).

(3.2) :

The relation is given by the formula

33) E (exp (— /0 t V(x(r))dr)

where \,, are the eigenvalues and 1,, are the corresponding normalized eigenfunctions
of (3.2).
In order to get information on the distribution function of L2-discrepancy we have

a(t) = o) = V2rt Y e M, (0)?,

to study equation (3.2) for V(z) = 22. Clearly, this procedure could also be applied
for V() = |z|P to study the distribution of LP-discrepancy, but it is not enough
known to get as precise information as in the L?-case. We will write

N—o0

(3.4) o(1) = lim P(VNDY <7)

for the limit distribution of the L2-discrepancy.
First, we notice that by the rescaling property of the Wiener process we have

(3.5)
E <exp (— /Otx(T)Z dr) () = 0) _E <exp <—t2 /01 2(r)? dT>

For the case studied here equation (3.2) has the form

(1) = 0) .

1

S (x) — () = ~Mb(a),
which is the differential equation for the Hermite functions (cf. [10,p. 253]). Thus we
have \, = 2%1 and

X e
wn<x>=7§me B, (Var),

where H,, are the Hermite polynomials as defined in [10,p. 249]. Hence we derive
t e’}
n+1 1 (2n
E(exp|— z(7)?dr ) |z(t)=0) =/2V2t ex <— t>—< ):
(00 (= rar) [0 =0) =V en (775 5 (1

V2t
sinh /2t '
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Using (3.5) we obtain
E (exp (8/01 x(7)2d7) z(1) = o) = &

for the Laplace transform of the distribution function of the limit distribution of

N (Dg\?))Q. Notice that this function is holomorphic in the region s > — % Further-
more, it has a branch cut of the square-root type at the point s = fg. Thus using
the Laplace inversion theorem and asymptotic techniques for the Laplace transform
(cf. [2]) we obtain

1 1
3.6 O(T)=1- e2T+O<—3e2T).
(36) @) VrT T3

We remark here that for the case of LP-discrepancy the whole procedure also

works. Again the Laplace transform of the distribution function is holomorphic in
a region Rs > —e for some £ > 0, but this is a consequence of (1.6). We could
not derive this analytic information from the knowledge of the asymptotics of the
eigenvalues and eigenfunctions (cf. [15], [12]), nor could we find the location of the
singularity of the largest real part, whose type would yield asymptotic information
on the limiting distribution of the LP-discrepancy.

4. RELATION BETWEEN WIENER AND CLASSICAL L2 DISCREPANCY

We start with the Paley-Wiener formula (cf. [1]):

[l seramo]r= G5 [ wruman = [Futon

where F(u) is a (real or complex-valued) measurable function defined on (—o0, 00)
such that e_“2F(bu) is of class L; and m(1) = 0. Thus, putting F(u) = |u|P and
m(x) = Fn(z) — x, in the classical case we have

e () (08)

Assuming m(z,y) = mi(z)ma(y) on [0,1]? and m1(1) = ma(1) = 0, the Paley-
Wiener formula can also be used for computing the two-dimensional integral

/ /c U / f(@)g(y) dm(a, y)] dy dg.
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For any z1,x2 and y1, y2 in [0, 1), there exist mq(z) and ma(y), m1(1) = ma(1) =0,
such that Fy(z,y) — Fa(z,1)F5(1,y) = my(z)ma(y) (z,y € [0,1]). Hence

b
2

i = () (o)

for every p > 0.
The proof of SW](VZ) = iSDg\?) in [13] is also extremely simple: Using (1.3) we have

S-Dg\?)(l'n,yn) = SDg\?)(l — T, 1-— yn)

and using 1 — max(zy,, zy) = min(l — z,,,1 — z,) and (1.5) we have the result.
These results give rise to the question whether there is a relation of the type

(4.1) WY =¢ (5953)) 2

between the different notions of statistical independence discrepancy. In the following
we give explicit formulae for these discrepancies which lead to the negative answer.
The Paley-Wiener formula is equivalent to

/CO (/01 f(z) dm(x)>2k df = W(/Ol dt(/ﬂlx[t’l](x) dm(x))2>k,

where k = 1,2,..., and (2k — 1)!! = (2k — 1)(2k — 3)...3 -1 and for the exponent
2k + 1 the left hand integral is zero. (For this formula the assumption m(1) = 0 is
superfluous.) The formal two-dimensional analogue is the relation A = ¢B, where

=[] [ 1w dm(x,w)% af dg.
s (L ([ ) nn)

and c is independent of m(z,y). These integrals can be expressed as

A/Ol.../ol( cof(ul)...f(ugk)df)</Cog(v1)...g(v2k)dg)

dm(uy,v1) ... dm(uak, var),

1 1
B = / .. / (min(uy, ug) ... min(ugk—1, uz)) (min(vy,ve) ... min(vak—1,vak))
0 0

dm(uy,v1) ... dm(uak, vor).
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Furthermore, by the well known formula (which can also be proved by applying the
above Paley-Wiener formula)

(2k — 1)! .
. flur)... flugg)df = SRR me Ur(1), Ur(2)) - - - MIN(Ur (251 Un(2k) )
0

where the summation ) ranges over all permutations = of (1,...,2k). For the odd
T
case 2k + 1 the integral vanishes. Next we choose m(x,y) such that dm(a;,b;) = z;

fori=1,...2k, and dm(x,y) = 0 otherwise. Here we shall view z; as independent
variables. Assuming A = ¢B and comparing the coefficients at z; ... zo,, we have
C = ' D, where

C = Z (min(an(l), an@)) ... min(an(gk_l), an(gk))) X
X Z (min(br(1y, br(ay) - - - min(brar—1): be(2r))) »

D = Z (min(an(l), an@)) Ce min(an(gk_l), an(gk))) X

T

x (min(br1), br(2)) - - - min(br(2r—1), br(2r))) -

Putting a; = b;, i = 1,...,2k, we have

2
<Z (min(az(1), arz)) - - - min(arzp—1), an(Zk))))

T

. . 2
= Z (rnln(aﬂ(l)7 Ar(2)) - - .mln(an(%,l),an(%))) ,

which is impossible, for £ > 1 and general a;.
The proof of impossibility of (4.1) is more difficult. First, we have mentioned that
for

m(z,y) = Fn(x,y) — Fn(z,1)Fn(1,y)

we have A = SW](\,%) and B = (SDg\?))k. Moreover, dm(z,y) # 0 only for x = z,,
and y = yn, where 1 < m,n < N. Precisely, assuming that z1,...,zx5 and y1,...,yn
are one-to-one we have

1

L
dm(xmayn) = 1 .
—xz in other cases.

1 _
mlfm—n,
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For brevity, we shall use the following notations:

m:= (mq,...,Mak),
n(m) := (Mx(1), -+ Mr(2k)),
Xm = (Tmys s Tmoy)s

1<mN<<=1<m <NA...ANL<mg <N,

[(m,n) := #{1 <i < 2k;m; = n;},
k

1(Xm) 1= H min(Zm,,_y s T, )-
i=1

Computing the integrals A and B for such m(x,y) we can find

y 1 1\?
sSWH = Nk (QTI@') D> pxm)p(yn) ¥

1<m<N
1<n<N
X Z (N — 1)1(7‘1(m)»ﬂ2(n)) . (_1)2k—l(ﬂ1(m)»ﬂ2(n))7
1,2
k 1
2
(Sng)) = Nik Z /‘(Xm)/‘(yn)x
1<m<N
1<n<N

% (N o 1)l(m,n) . (71)2k71(m,n).

We can regard z1,...,xy and y1,...,yn as independent variables. Then we see that
SWJ(V%) and (SDg\?)) are homogeneous polynomials of the degree k in x1,...,xx
and 1, ...,YN, respectively.

In the following denote

Tg = Max Tj, Tp = Max T, Yc= MaX Y;, Yq =

max
1<i<N 1<i< N i#a 1<i<N 1<i< N, i#c

and let a # ¢ and b = d. Next we shall find coefficients of x’;_lxbyf_lyd in SW](V%)

@)" :
and (SDN ) , respectively.

k—1
a

First, u(xm) = ¢~ 'y only for

(a,...,a,b,a,...,a) (type I),
m =
(a,...,a,b,b,a,...,a) (type II),

where the couple (b, ) lies at the place with indices (2i — 1, 2¢). We have 2k vectors
of type I and k(2k — 1) vectors of type II. If m is of type I and = ranges over all
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permutations of (1,...,2k), then all vectors of type I occur in n(m) (2k —1)! times.
If m is of type II, then all vectors of the form

(a,...,a,b,a,...,a,b,a,...,a) (type II)

occur in n(m) with multiplicity 2.(2k—2)!. For (m, n) of type (I,I) we have [(m,n) =
1 in 2k cases and [(m,n) = 0 in (2k)? — k cases. For (m,n) of type (I,II) we have
[(m,n) =1 in 2k cases and [(m,n) = 0 in 2k? — 2k cases. For (m, n) of type (ILII)
we have only /(m,n) = 2 in k cases and [(m,n) = 0 in k% — k cases. Similarly, for
type (LII') we have

1 in 2k(2k — 1) cases,
l[(m,n) =
0 in k(2k — 1)(2k — 2) cases,

and for (II',IT") we have

2 in k(2k — 1) cases,
I(m,n) =< 1in 2k(2k — 1)(2k — 2) cases,
0 in k(2k — 1)(k — 1)(2k — 3) cases.

Summing up all of the above we have

Z (N _ 1)l(m,n) . (_1)2k—l(m,n)

1<mg<N
1<n<N
p(em) =25y

1(yn)=yl " ya

= k(N —1)2 — 6k(N — 1) + 9k* — Tk,

Z Z (N — 1)im(m)mz(0) . (_1)2k=l(m1(m),52(n))

1<mgN T1,T2
1<n<N
p(Xm) =2 @
1(¥n)=yt " 'ya

= ((2k))? (2K — k)(N — 1)® — (8k® — 4k® + 2k)(N — 1) + (4k* — 4k® + 3k* — k)) ,
which is a contradiction to

SWI(VZIC) = Cok (Sl)g\?))]C .
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5. EXAMPLES AND FURTHER RESULTS ON STATISTICAL INDEPENDENCE
Using the expressions (1.3), (1.4) and (1.5) we immediately have:

Theorem 5.

(i) The sequences (Ty,Yn); YnsTn), (1 —Zn,yn), (1 —2n, 1 —y,) and (t12,, taxy,)
are simultaneously statistically independent. Here t1,t2 € (0,1], and in the
case x, = 0 we reduce 1 — x,, mod 1.

(ii) (c,yn) is statistically independent with any yy,, ¢ € [0, 1), where c is a constant.

Using an example given in [5] we will generalize (ii) in the following way. Define,
for o € [0, 1], the one-jump distribution function c,(z) as

(@) 0, for0<z<a,
ca(z) =
“ 1, fora<ax<l1.

Theorem 6. Assume that the sequence x, in [0,1) has the limit law c,,
ie. I\}im Fn(z) = co(x) a.e. Then for any sequence y, in [0,1) (zn,yn) is statis-
—00

tically independent.

Proof. For a continuous g: [0,1] — R we have

¥ 2 Fendalon) = g D ) 3 glon)

and for a continuous f: [0,1] — R we have

R
dim oy D 17e) ~ (o = [ 156) - S deate) =0

<2 sup \g I—Zlf zn) = f@)],

Theorem 7. For sequences x,, yn, =, and y,, in [0,1) we assume that
LN
lim — " (lzn — 2| + [y — yh|) = 0.

N—oco N
n=1

Then the sequences (x,,y,) and (x},y.,) are simultaneously statistically indepen-
dent.

Proof. This follows from the expression (1.5) and from the fact that
|z —yllu—vl =o' =g/ |l ="l < Jo = 2| + ]y = /| + [u — '] + v — |
for z,y,u,v, o',y , v, 0" € [0,1]. O
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Motivated by Theorem 2, a trivial example of statistical independence is given by
a sequence (Zn,Yyn) which is uniformly distributed in the square. Another example
is any sequence (z,,¥yy) which has only one-jump distribution functions. A more
general example:

Let G; and G5 be any nonempty closed and connected sets of one-dimensional
distribution functions. Denote

G1-Ga = {g1(x)92(y); 91 € G1,92 € Ga}.

Again G; - G2 is nonempty closed and connected and thus by R. Winkler [16] there
exists a sequence (r,,%,) in [0,1)? such that G(z,,y,) = G - G2. By Theorem 2,
this sequence is statistically independent.

Furthermore, Theorem 2 may be used for a generalization of the notion of statis-
tical independence to the multidimensional sequence (z,,yn, 2n,...) in [0,1)* (pre-
cisely, the statistical independence of its coordinate sequences %y, Yn, zn, . ..) as fol-
lows:

(Tny Yn, Zn, - - .) is statistically independent if, for every distribution function g €
G(Zn, Yn, Zn, - . .) we have

g(z,y,2,...) =g(z,1,1,..)9(1,y,1,..)g9(1,1,2,...) ...

a.e. on [0,1]°. As an example we give the following sequences described in [6]:
Let x,, be defined by

X, = ((_1)[[log<f> n]t/?1] [log(j) n]1/p1 S (_1)[[1og<j> n]t/Ps) [log(j) n]l/ps) mod 1,

where log(j) n denotes the jth iterated logarithm log...logn, and py,...,ps are co-
prime positive integers. Then, for j > 1, the set of all distribution functions of x,,
coincides (under equivalence) with the set of all one-jump distribution functions on
[0,1]%, and thus the sequence x,, is statistically independent.
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