Czechoslovak Mathematical Journal

Danica Jakubíková-Studenovská
 Retract irreducibility of monounary algebras

Czechoslovak Mathematical Journal, Vol. 49 (1999), No. 2, 363-390
Persistent URL: http://dml.cz/dmlcz/127494

Terms of use:

© Institute of Mathematics AS CR, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

RETRACT IRREDUCIBILITY OF MONOUNARY ALGEBRAS

Danica Jakubíková-Studenovská, Košice

(Received September 13, 1996)

Introduction

Retract irreducibility of connected monounary algebras was investigated in [4][6]. In this paper all monounary algebras (not only connected) which are retract irreducible are described (Theorem 4.5).

It turns out that

1) if a monounary algebra (A, f) is retract irreducible, then card $A \leqslant \aleph_{0}$;
2) the number of non-isomorphic types of retract irreducible monounary algebras is equal to \aleph_{0}.

Let (A, f) be a monounary algebra. A nonempty subset M of A is said to be a retract of (A, f) if there is a mapping h of A onto M such that h is an endomorphism of (A, f) and $h(x)=x$ for each $x \in M$. The mapping h is then called a retraction endomorphism corresponding to the retract M. Further, let $R(A, f)$ be the system of all monounary algebras (B, g) such that (B, g) is isomorphic to (M, f) for some retract M of (A, f).

A monounary algebra \mathcal{A} will be said to be retract irreducible if, whenever $\mathcal{A} \in$ $R\left(\prod_{i \in I} \mathcal{A}_{i}\right)$ for some monounary algebras $\mathcal{A}_{i}, i \in I$, then there exists $j \in I$ such that $\mathcal{A} \in R\left(\mathcal{A}_{j}\right)$. If the condition is not satisfied, then \mathcal{A} will be called retract reducible.

Analogous relations between retracts and direct product decompositions of partially ordered sets were studied by D. Duffus and I. Rival [1].

In some proofs, the results and methods of M. Novotný [8], [9] concerning homomorphisms of monounary algebras are used. Homomorphisms of monounary algebras were investigated also in [2], [3] and [7]. The notion of the degree $s_{f}(x)$ of an element x of a monounary algebra (A, f) was introduced in [8] (cf. also [7] and [3]).

[^0]Let \mathbb{N} be the set of all positive integers, \mathbb{Z} the set of all integers and let \mathbb{P} be the set of all primes. For $n \in \mathbb{N}$ let \mathbb{Z}_{n} be the set of all integers modulo n. We shall consider the following monounary algebras:
$\underline{\mathbb{N}}=(\mathbb{N}, f)$, where $f(i)=i+1$ for each $i \in \mathbb{N}$;
$\underline{\mathbb{Z}}=(\mathbb{Z}, f)$, where $f(i)=i+1$ for each $i \in \mathbb{Z}$;
$\underline{n}=\left(\mathbb{Z}_{n}, f\right)$, where $f(i)=i+1(\bmod n)$ for each $i \in \mathbb{Z}_{n}$.
As is often used, we will write also $B=(B, f)$ (without distinguishing between the set and the algebra).

By a large cycle we understand a cycle with at least two elements.
If we say that an algebra A contains no cycle, then we mean that no subalgebra of A is a cycle. Saying that A contains a cycle we mean that some subalgebra of A is a cycle.

If $B=\prod_{i \in I} B_{i}$ is a direct product of algebras, $x \in B$ and $j \in I$, then there is a natural projection $\eta_{j}: B \rightarrow B_{j}$. We denote

$$
x(j)=\eta_{j}(x) .
$$

Analogously, if C is a subalgebra of $B, j \in I$, then we denote

$$
C(j)=\eta_{j}(C)
$$

The following assertions can be easily proved and we sometimes use them without quotation.

Let B_{j} for $j \in J$ be monounary algebras, $B=\prod_{j \in J} B_{j}$ and let K be a connected component of B.
(A) If $j \in J$, then $K(j)$ is a connected component of B_{j}.
(B) If there is $j \in J$ such that $K(j)$ contains no cycle, then K contains no cycle.
(C) Suppose that for each $j \in J, K(j)$ contains a cycle C_{j}.
a) If l.c.m. $\left\{\operatorname{card} C_{j}: j \in J\right\}=n \in \mathbb{N}$, then K contains a cycle C with $\operatorname{card} C=n$.
b) If l.c.m. $\left\{\operatorname{card} C_{j}: j \in J\right\}$ does not exist, then K contains no cycle.
(D) If K contains a cycle C with $\operatorname{card} C=n$, then, for each $j \in J, K(j)$ contains a cycle C_{j} with card C_{j} dividing n.

Let us prove the following auxiliary result:
(E) Let B be a monounary algebra containing no cycle and let C be a cycle with k elements; $k \in \mathbb{N}$.

Then the algebra $B \times C$ is isomorphic to a disjoint sum of k copies of B.

Proof. Without loss of generality, assume that $C=\mathbb{Z}_{k}$. Let $x \in B, i, j \in C$, $i \neq j$. Suppose that (x, i) belongs to the same connected component of $B \times C$ as (x, j). Then there are $m, n \in \mathbb{N}$ with

$$
\begin{aligned}
f^{n}((x, i)) & =f^{m}((x, j)), \\
\left(f^{n}(x), i+n\right) & =\left(f^{m}(x), j+m\right), \\
f^{n}(x)=f^{m}(x), & i+n \equiv j+m(\bmod k) .
\end{aligned}
$$

Since $x \in B$ and B contains no cycle, we obtain $n=m$, thus $i=j$. Hence
(1) if $x \in B, i, j \in C, i \neq j$, then $(x, i),(x, j)$ belong to distinct components of $B \times C$.

Similarly,
(2) if $x, y \in B, i, j \in C$, then $(x, i),(y, j)$ belong to the same connected component of $B \times C$ if and only if there are $m, n \in \mathbb{N}$ such that $f^{m}(x)=f^{n}(y)$ and $i+m \equiv j+n$ $(\bmod k)$.

Suppose that $(x, i) \in B \times C$. Let D and E be the connected components of $B \times C$ or of B, respectively, such that $(x, i) \in D$ and $x \in E$. For $(z, l) \in D$ define

$$
\psi((z, l))=z .
$$

Then $z \in E$ and ψ is a mapping of D into E. Further, ψ is injective by (1). Let $q \in E$. There are $m, n \in \mathbb{N}$ with $f^{m}(x)=f^{n}(q)$. Then there is $j \in C$ with $j \equiv i+m-n$ $(\bmod k)$. Hence $(q, j) \in D$, which implies that ψ is bijective. Obviously, ψ is a homomorphism, thus

$$
\psi: D \rightarrow E
$$

is an isomorphism, which yields the required assertion.
Remark. In what follows, if we speak about sets (e.g., X, Y, \ldots) or elements (e.g., $x, y, \ldots)$ and if no relations between these sets or elements are explicitly stated, then we always assume that the sets under consideration are disjoint, the elements under consideration are distinct and do not belong to the sets mentioned.

In Sections $1-3$ we suppose that A is a monounary algebra.

1. Large cycles

In this section assume that A contains a subalgebra which is a large cycle.
In Lemma 1.k (for $k=2, \ldots, 10$) we suppose that the assumption expressed in Lemmas $1 . j$, where $j=1, \ldots, k-1$ is not valid.
1.1. Lemma. Suppose that there is a connected component D of A such that D contains a large cycle C with $C \neq D$. Then A is retract reducible.

Proof. Put $n=$ card C and let $\left\{D_{j}: j \in J\right\}$ be the system of all connected components D_{j} of A which contain cycles C_{j} such that card $C_{j}=n$ and $C_{j} \neq D_{j}$. Let j be an element of J. Then [6], Theorem and [5], 1.10 imply that D_{j} is retract reducible and that there are connected monounary algebras $E_{j 0}, E_{j 1}, \ldots, E_{j n}$ which satisfy the following conditions:
(1) $E_{j 0} \cong \underline{n}$;
(2) $E_{j 1}, \ldots, E_{j n}$ contain one-element cycles $\left\{e_{j 1}\right\}, \ldots,\left\{e_{j n}\right\}$;
(3) $D_{j} \in R\left(\prod_{i=0}^{n} E_{j i}\right)$, i.e., there is a subalgebra $\overline{D_{j}}$ of $\prod_{i=0}^{n} E_{j i}$, an isomorphism $\nu_{j}: \bar{D}_{j} \rightarrow D_{j}$ and a retraction homomorphism φ_{j} of $\prod_{i=0}^{n} E_{j i}$ onto \bar{D}_{j}.
If $i \in\{1, \ldots, n\}$, then let B_{i} be the disjoint sum of the algebras $E_{j i}$ for each $j \in J$. Denote $A^{\prime}=A-\bigcup_{j \in J} D_{j}$. Further, let B_{0} be the disjoint sum of the following algebras:

1) $E_{j 0}$ for each $j \in J$,
2) A^{\prime}.

Then B_{0} does not contain a subalgebra isomorphic to D, hence $A \notin R\left(B_{0}\right)$. Moreover, if $i \in\{1, \ldots, n\}$, then all cycles of B_{i} have cardinality 1 , thus $A \notin R\left(B_{i}\right)$. Therefore we have
(4) $A \notin R\left(B_{i}\right)$ for each $i \in\{0, \ldots, n\}$.

Take a fixed $k \in J$ and consider the following subsets T_{0}, T of the direct product $\prod_{i=0}^{n} B_{i}$. We put

$$
\begin{aligned}
T_{0} & =A^{\prime} \times \prod_{i=1}^{n}\left\{e_{k i}\right\}, \\
T & =T_{0} \cup \bigcup_{j \in J} \bar{D}_{j} .
\end{aligned}
$$

Then $D_{j_{1}} \cap D_{j_{2}}=\emptyset$ if j_{1}, j_{2} are distinct elements of J. Moreover, T is a subalgebra of $\prod_{i=0}^{n} B_{i}$. Define a mapping $\nu: T \rightarrow A$ as follows: If $x \in T$, then put

$$
\nu(x)= \begin{cases}x(0) & \text { if } x \in T_{0} \\ \nu_{j}(x) & \text { if } j \in J \text { and } x \in \bar{D}_{j}\end{cases}
$$

In view of (3), ν is an isomorphism,
(5) $T \cong A$.

Now let us show that T is a retract of $\prod_{i=0}^{n} B_{i}$. Define a mapping φ of $\prod_{i=0}^{n} B_{i}$ onto T as follows.

Let K be a connected component of $\prod_{i=0}^{n} B_{i}$. Then by $(A), K(i)$ is a connected component of B_{i} for $i \in\{1, \ldots, n\}$. If $K(0) \subseteq A^{\prime}$, then put $\varphi(x)=$ $\left(x(0), e_{k 1}, e_{k 2}, \ldots, e_{k n}\right)$ for each $x \in K$. Suppose that $K(0) \nsubseteq A^{\prime}$. Then there is a uniquely determined $j \in J$ such that $K(0)=E_{j 0}$. We distinguish two cases:
a) If $K(l) \subseteq E_{k l}$ for each $l \in\{1, \ldots, n\}$, then put $\varphi(x)=\varphi_{j}(x)$ for each $x \in K$.
b) Let there exist $l \in\{1, \ldots, n\}$ with $K(l) \nsubseteq E_{j l}$. Then
$K(0)$ contains a cycle with n elements,
$K(i)$ contains a cycle with 1 element for each $i \in\{1, \ldots, n\}$.
According to $(C), K$ is a connected algebra with an n-element cycle. Since $\bar{D}_{j} \cong D_{j}$, $\overline{D_{j}}$ contains a subalgebra isomorphic to \bar{n}. Thus K can be homomorphically mapped into $\overline{D_{j}}$; take an arbitrary homomorphism φ of K into \bar{D}_{j}.

Using (3), $\varphi(x)=x$ for each $x \in T$ and φ is a homomorphism of $\prod_{i=1}^{n} B_{i}$ onto T, i.e., it is a retraction homomorphism. Therefore the assertion that A is retract reducible is obtained from (4) and (5).
1.2. Lemma. Suppose that there is a connected component D of A such that D is a cycle with $p \cdot q$ elements, where $p, q \in \mathbb{N}-\{1\}$, g.c.d. $(p, q)=1$. Then A is retract reducible.

Proof. Let $\left\{D_{j}: j \in J\right\}$ be the system of all connected components of A which are cycles with $p \cdot q$ elements, $A^{\prime}=A-\bigcup_{j \in J} D_{j}$. For $j \in J$ let $D_{j 1}$ be a cycle with p elements and $D_{j 2}$ a cycle with q elements. Then put

$$
\begin{aligned}
B_{1} & =\bigcup_{j \in J} D_{j 1} \cup A^{\prime} \\
B_{2} & =\bigcup_{j \in J} D_{j 2} \cup A^{\prime}
\end{aligned}
$$

Neither B_{1} nor B_{2} contains a cycle with cardinality $p \cdot q$, hence $A \notin R\left(B_{1}\right), A \notin$ $R\left(B_{2}\right)$. Consider the following subset T of $B_{1} \times B_{2}$:

$$
T=\bigcup_{j \in J}\left(D_{j 1} \times D_{j 2}\right) \cup\left\{(a, a): a \in A^{\prime}\right\}
$$

Then T is a subalgebra of $B_{1} \times B_{2}$ and it is isomorphic to A (by multiplying cycles \underline{p} and \underline{q} we obtain a cycle isomorphic to $\underline{p \cdot q}$). We have to show that T is a retract of $B_{1} \times B_{2}$.
(a) Let $j \in J$. Put $\varphi_{j j}=i d_{D_{j 1} \times D_{j 2}}$. Further, if $k \in J-\{j\}$, then there exists an isomorphism $\varphi_{j k}$ of $D_{j 1} \times D_{k 2}$ onto $D_{j 1} \times D_{j 2}$.
(b) If $x \in D_{j 1} \times A^{\prime}, j \in J$, then put $\varphi^{\prime}(x)=(x(2), x(2))$. Then φ^{\prime} is a homomorphism of $D_{j 1} \times A^{\prime}$ onto $\left\{(a, a): a \in A^{\prime}\right\}$.
(c) If $c \in A^{\prime} \times B_{2}$, then put $\varphi^{\prime \prime}(x)=\left(x(1),(x(1))\right.$. The mapping $\varphi^{\prime \prime}$ is a homomorphism of $A^{\prime} \times B_{2}$ onto $\left\{(a, a): a \in A^{\prime}\right\}$.

For $x \in B_{1} \times B_{2}$ now put

$$
\varphi(x)= \begin{cases}\varphi_{j k}(x) & \text { if } x \in D_{j 1} \times D_{k 2}, \quad j, k \in J \\ \varphi^{\prime}(x) & \text { if } x \in D_{j 1} \times A^{\prime}, \quad j \in J \\ \varphi^{\prime \prime}(x) & \text { if } x \in A^{\prime} \times B_{2} .\end{cases}
$$

Then φ is a retraction endomorphism of $B_{1} \times B_{2}$ onto T, therefore A is retract reducible.
1.3. Lemma. Suppose that A contains at least two connected components which are large cycles with the same cardinality. Then A is retract reducible.

Proof. Let $n \in \mathbb{N}-\{1\}$ and let $\left\{D_{j}: j \in J\right\}$ be the system of all connected components of A such that D_{j} is a cycle with n elements, card $J>1$. Then $A^{\prime}=$ $A-\bigcup_{j \in J} D_{j}$ contains no cycle with cardinality n. We can suppose that $0 \notin J$; put $D_{0}=\underline{n}$. Further let $\left\{c_{j}\right\}, j \in J$, be a system of mutually distinct one-element algebras. Let us define new algebras (as disjoint sums)

$$
\begin{aligned}
& B_{0}=D_{0} \cup A^{\prime} \\
& B_{j}=D_{j} \cup\left\{c_{j}\right\} \text { for each } j \in J .
\end{aligned}
$$

Then
(1) $A \notin R\left(B_{j}\right)$ for each $j \in J \cup\{0\}$, since A is not isomorphic to a subalgebra of B_{j} for $j \in J \cup\{0\}$.

If we multiply $\underline{n} \times \prod_{j \in J} D_{j}$, i.e., we multiply cycles with the same cardinality n, then the product consists of at least $2^{\text {card } J}$ cycles with cardinality n according to (C)a). Thus there exists a subalgebra T_{0} of $\prod_{j \in J \cup\{0\}} D_{j}$ which is isomorphic to $\bigcup_{j \in J} D_{j}$. Further,

$$
T_{1}=A^{\prime} \times \prod_{j \in J}\left\{c_{j}\right\} \cong A^{\prime}
$$

Then $T=T_{0} \cup T_{1}$ is a subalgebra of $\prod_{j \in J \cup\{0\}} B_{j}$ such that
(2) $T \cong A$.

It suffices to prove that T is a retract of $\prod_{j \in J \cup\{0\}} B_{j}$. Consider a connected component C of $\prod_{j \in J \cup\{0\}} B_{j}$. Then either
(3.1) $C(0)=D_{0}$
or
$(3.2) \quad C(0) \subseteq A^{\prime}$.
If (3.1) is valid, then $C \subseteq D_{0} \times \prod_{j \in J} D_{j}$, thus C is an n-element cycle. If $C \subseteq T_{0}$, we can map C identically. If $C \nsubseteq T_{0}$, then C can be homomorphically embedded into T_{0}.

Let (3.2) hold. Then C contains no cycle of cardinality n and $C \cap T_{0}=\emptyset$. If $x \in C$, let $y \in T_{1}$ be such that $y(0)=x(0)$. Then the mapping $x \rightarrow y$ is a homomorphism of C into T_{1} and, if $x \in T_{1}$, then x is mapped identically.

Hence there exists a homomorphism $\varphi: \prod_{j \in J \cup\{0\}} B_{j} \rightarrow T$ such that $\varphi(x)=x$ for each $x \in T$, i.e.,
(4) $T \in R\left(\prod_{j \in J \cup\{0\}} B_{j}\right)$.

Then A is retract reducible according to (1), (2) and (4).
1.4. Lemma. Suppose that A contains connected components C_{1} and C_{2} which are cycles such that C_{1} has cardinality k, C_{2} has cardinality n and $1<k<n, k$ divides n. Then A is retract reducible.

Proof. Take B_{1} such that B_{1} is a disjoint union of two cycles $C_{1}^{\prime}, C_{1}^{\prime \prime}$ and of $A^{\prime}=A-C_{1}-C_{2}$, where card $C_{1}^{\prime}=\operatorname{card} C_{1}^{\prime \prime}=k$. Further, let B_{2} be a disjoint union of two cycles, C_{2} and $\{c\}$. We can suppose that the assumption of 1.3 fails to hold. Then A is not isomorphic to any subalgebra of B_{1}. Obviously,
(1) $A \notin R\left(B_{1}\right), A \notin R\left(B_{2}\right)$,
because A^{\prime} contains no cycle isomorphic to C_{2}.
Since k divides n, we get that $C_{1}^{\prime \prime} \times C_{2}$ consists of k cycles with n elements, thus there is a subalgebra T_{0} of $C_{1}^{\prime \prime} \times C_{2}$ such that $T_{0} \cong C_{2}$. Denote

$$
T=T_{0} \cup\left(\left(A^{\prime} \cup C_{1}^{\prime}\right) \times\{c\}\right)
$$

Then
(2) $T \cong A$.

Let D be a connected component of $B_{1} \times B_{2}$. One of the following conditions is valid:
(3.1) $D \subseteq C_{1}^{\prime \prime} \times C_{2}$,
(3.2) $D \subseteq C_{1}^{\prime \prime} \times\{c\}$,
(3.3) $D \subseteq\left(C_{1}^{\prime} \cup A^{\prime}\right) \times C_{2}$,
(3.4) $D \subseteq\left(C_{1}^{\prime} \cup A^{\prime}\right) \times\{c\}$.

Let (3.1) hold. Then D is a cycle with n elements. Since $T_{0} \subseteq C_{1}^{\prime \prime} \times C_{2}$ is a cycle with n elements, too, thus either $D=T_{0}$ or $D \cap T_{0}=\emptyset$. If $D \cap T_{0}=\emptyset$, then (3.1) yields

$$
D \cap T \subseteq\left(C_{1}^{\prime \prime} \times C_{2}\right) \cap\left(\left(A_{1}^{\prime} \cup C_{1}^{\prime}\right) \times\{c\}\right)=\emptyset
$$

If $D=T_{0}$, put $\varphi \upharpoonright D=\operatorname{id}_{D}$. If $D \cap T=\emptyset$, then the relation $D \cong C_{2}\left(D\right.$ and C_{2} are n-element cycles) implies that there is an isomorphism ψ_{D} of D onto T_{0}; in this case put $\varphi \upharpoonright D=\psi_{D}$.

Let (3.2) be valid. Then $D=C_{1}^{\prime \prime} \times\{c\} \cong C_{1}^{\prime} \times\{c\}$ is a cycle with k elements, $D \cap T_{0}=\emptyset$. Analogously as above, $D \cap T=\emptyset$. There is an isomorphism $\eta_{D}: D \rightarrow$ $C_{1}^{\prime} \times\{c\} \subseteq T$; put $\varphi \upharpoonright D=\eta_{D}$.

Suppose that (3.3) holds. Then

$$
\begin{aligned}
D \cap T & \subseteq\left[\left(C_{1}^{\prime} \cup A^{\prime}\right) \times C_{2}\right] \cap\left[\left(C_{1}^{\prime \prime} \times C_{2}\right) \cup\left(\left(A^{\prime} \cup C_{1}^{\prime}\right) \times\{c\}\right)\right] \\
& =\left[\left(C_{1}^{\prime} \cup A^{\prime}\right) \times C_{2}\right] \cap\left(C_{1}^{\prime \prime} \times C_{2}\right)=\left[\left(C_{1}^{\prime} \cup A^{\prime}\right) \cap C_{1}^{\prime \prime}\right] \times C_{2}=\emptyset .
\end{aligned}
$$

If $x \in D$, denote

$$
\varphi(x)=(x(1), c) .
$$

Obviously, φ is a homomorphism of D into $\left(A^{\prime} \cup C_{1}^{\prime}\right) \times\{c\} \subseteq T$.
Now let (3.4) be valid. Then $D \subseteq T$ and we set $\varphi \upharpoonright D=\operatorname{id}_{D}$.
The mapping φ described for each connected component D of $B_{1} \times B_{2}$ is a homomorphism of $B_{1} \times B_{2}$ into T and such that $\varphi \upharpoonright T=\mathrm{id}_{T}$. Thus T is a retract of $B_{1} \times B_{2}$. In view of (1) and (2), A is retract reducible.
1.5. Lemma. Suppose that A contains no connected component with a oneelement cycle and that there is a connected component of A which contains no cycles. Then A is retract reducible.

Proof. Let D be the union of all elements of A which belong to a cycle, $A^{\prime}=A-D$. The assumption of 1.1 is not valid, thus $D \neq \emptyset$ is a subalgebra of A and $A^{\prime} \neq \emptyset$ is a subalgebra of A, too. Take some new element c. Let B_{2} be a disjoint union of a one-element cycle $\{c\}$ and of $A^{\prime}, B_{1}=D$. Then A is not isomorphic to any subalgebra of B_{1}, A is not isomorphic to any subalgebra of B_{2}, thus
(1) $A \notin R\left(B_{1}\right), A \notin R\left(B_{2}\right)$.

By (E), $B_{1} \times A^{\prime}$ consists of some copies of A^{\prime}; take one of them and denote it by T_{1}. If we denote $T_{2}=B_{1} \times\{c\}$, then $D \cong T_{2}$. We have $A=D \cup A^{\prime}, D \cong T_{2}, A^{\prime} \cong T_{1}$, $T_{1} \cap T_{2}=\emptyset$, thus
(2) $A \cong T_{1} \cup T_{2}$.

Obviously, $T_{1} \cup T_{2}$ is a retract of $B_{1} \times B_{2}$. Therefore A is retract reducible.
1.6. Lemma. Suppose that some of the following conditions is satisfied:
(a) there is a connected component of A which contains no cycles,
(b) the set A^{\prime} of all elements of A which belong to connected components with one element cycles has at least two elements.
Then A is retract reducible.
Proof. Let D be the set of all elements which belong to a large cycle, $A^{\prime \prime}=$ $A-\left(A^{\prime} \cup D\right)$. Then $A^{\prime \prime}$ is the set of all elements of the connected components of A which do not contain a cycle. Let c be an arbitrary new element. Further, let B_{1} be a disjoint sum of D and of a cycle $\{c\}$ and let B_{2} be a disjoint sum of $A^{\prime} \cup A^{\prime \prime}$ and of a cycle $\{c\}$. Consider the following subsets of $B_{1} \times B_{2}$:

$$
T_{1}=D \times\{c\}, \quad T_{2}=\{c\} \times\left(A^{\prime} \cup A^{\prime \prime}\right), \quad T=T_{1} \cup T_{2} .
$$

Obviously,
(1) $A \cong T$.

Further, since (a) or (b) holds, we get that A is not a subalgebra of B_{1}, thus
(2) $A \notin R\left(B_{1}\right)$.

The algebra B_{2} contains no large cycles, thus
(3) $A \notin R\left(B_{2}\right)$.

Let C be a connected component of $B_{1} \times B_{2}$. By (A), the set $C(1)$ is a connected component of B_{1} and $C(2)$ is a connected component of B_{2}. There are the following possibilities:
(4.1) $C(1) \subseteq D, \quad C(2)=\{c\}$,
(4.2) $C(1)=\{c\}, \quad C(2) \subseteq A^{\prime} \cup A^{\prime \prime}$,
(4.3) $C(1) \subseteq D, \quad C(2) \subseteq A^{\prime} \cup A^{\prime \prime}$,
(4.4) $C(1)=\{c\}, C(2)=\{c\}$.

If (4.1) or (4.2) is valid, then $C \subseteq T$ and we can map C identically. If (4.3) or (4.4) holds, then C can be homomorphically mapped onto a one-element cycle, thus C can be homomorphically mapped into A^{\prime}, hence into T_{2} as well. Therefore T is a retract of $B_{1} \times B_{2}$ and (1)-(3) imply that A is retract reducible.
1.7. Lemma. Suppose that A contains a one-element cycle and that there are at least two connected components of A which are large cycles. Then A is retract reducible.

Proof. The assumptions of 1.6 and 1.1 are not valid, thus A is a union of a one-element cycle $\{c\}$ and of some (at least two) large cycles. Let $\left\{D_{j}: j \in J\right\}$ be the system of all large cycles of A. For $j \in J$ put $B_{j}=D_{j} \cup\{c\}$. Further, let

$$
\begin{aligned}
T_{j} & =\left\{x \in \prod_{i \in J} B_{i}: x(j) \in B_{j}, x(i)=c \text { for each } i \in J, i \neq j\right\} \\
T_{0} & =\left\{x \in \prod_{i \in J} B_{i}: x(i)=c \text { for each } i \in J\right\} \\
T & =T_{0} \cup \bigcup_{j \in J} T_{j} .
\end{aligned}
$$

Obviously,
(1) $A \notin R\left(B_{j}\right)$ for each $j \in J$,
(2) $A \cong T$.

Further, analogously as above, each connected component C of $\prod_{j \in J} B_{j}$ either satisfies $C \subseteq T$ or can be homomorphically mapped onto a one-element cycle, i.e., onto T_{0}. Hence T is a retract of $\prod_{j \in J} B_{j}$ and A is retract reducible.
1.8. Lemma. Suppose that A consists of two cycles, one having p^{n} elements (p being a prime, $n \in \mathbb{N}$), the second having 1 element. Then A is retract irreducible.

Proof. By way of contradiction assume that A is retract reducible. Then there are $B_{j}, j \in J$ and $T \subseteq \prod_{j \in J} B_{j}$ such that
(1) $T \cong A$,
(2) there is a retraction homomorphism of $\prod_{j \in J} B_{j}$ onto T,
(3) $A \notin R\left(B_{j}\right)$ for each $j \in J$.

By $(1), T=\{c\} \cup\left\{a, f(a), f^{2}(a), \ldots, f^{k-1}(a)\right\}$, where $f(c)=c, k=p^{n}, f^{k}(a)=a$ and $f^{l}(a) \neq a$ for $1<l<k$. Then, for $j \in J$,

$$
f(c(j))=(f(c))(j)=c(j)
$$

i.e., B_{j} contains a one-element subalgebra. Further, if $j \in J$, then

$$
f^{k}(a(j))=\left(f^{k}(a)\right)(j)=a(j)
$$

hence $a(j)$ belongs to a cycle with cardinality k_{j} dividing k. Then
(4) $f^{k_{j}}(a(j))=a(j)$.

Now suppose
(5) $k_{j}=k$ for some $j \in J$.

Then B_{j} contains a subalgebra isomorphic to A. Moreover, $A \in R\left(B_{j}\right)$, since a connected component of B_{j} containing $a(j)$ can be homomorphically embedded into the cycle $\left\{a(j), f(a(j)), \ldots, f^{k}(a(j))\right\}$, and the other elements of B_{j} can be mapped onto $c(j)$. Thus (5) contradicts (3). Hence
$\left(5^{\prime}\right) k_{j}<k$ for each $j \in J$.
If $j \in J$, we have

$$
k_{j}=p^{n_{j}} \text { for some } 0 \leqslant n_{j}<n,
$$

thus $m=$ l.c.m. $\left\{p^{n_{j}}: j \in J\right\}<p^{n}$. Then k_{j} divides m for each $j \in J$ and (4) implies

$$
f^{m}(a(j))=a(j) .
$$

Hence $f^{m}(a)=a, m<p^{n}$, which is a contradiction.
1.9. Lemma. Let the following conditions be valid:
(a) A consists of cycles $C_{i}, i \in I$, where $\operatorname{card} C_{i}=p_{i}^{k_{i}}, p_{i} \in \mathbb{P}, k_{i} \in \mathbb{N}$;
(b) $\mathbb{P}-\left\{p_{i}: i \in I\right\} \neq \emptyset$.

Then A is retract reducible.
Proof. The assumptions of 1.3 and 1.4 are not satisfied, thus $p_{i} \neq p_{k}$ for each $i, k \in I, i \neq k$. Let $q \in \mathbb{P}-\left\{p_{i}: i \in I\right\}$. For $j \in \mathbb{N}$ denote by B_{j} the disjoint sum of A and of a cycle D_{j} with q^{j} elements. Since $p_{i}^{k_{i}}$ does not divide q^{j}, we obtain that D_{j} cannot be homomorphically mapped onto A, thus
(1) $A \notin R\left(B_{j}\right)$ for each $j \in \mathbb{N}$.

Denote

$$
T=\left\{x \in \prod_{j \in \mathbb{N}} B_{j}: \text { there is } a \in A \text { with } x(j)=a \text { for each } j \in \mathbb{N}\right\}
$$

Obviously,
(2) $T \cong A$.

Let E be a connected component of $\prod_{j \in \mathbb{N}} B_{j}$. By (A), the set $E(j)$ is a connected component of B_{j} for each $j \in \mathbb{N}$. If $E \subseteq T$, then we can map E identically. Suppose that $E \nsubseteq T$. Then $E \cap T=\emptyset$. If $E(j)=D_{j}$ for each $j \in \mathbb{N}$, then E contains no cycle, thus E can be homomorphically mapped onto an arbitrary cycle, hence also into T. Suppose that there is $j \in \mathbb{N}$ with $E(j) \subseteq A$, i.e., there is $i \in \mathbb{N}$ such that $E(j)$ is a cycle with $p_{i}^{k_{i}}$ elements. Then E can be homomorphically mapped (by the natural projection) onto $E(j)$, i.e., onto a $p_{i}^{k_{i}}$-element cycle, thus E can be homomorphically mapped into T. Therefore we obtain
(3) T is a retract of $\prod_{j \in \mathbb{N}} B_{j}$
and, in view of (1) and (2), A is retract reducible.
1.9.1. Corollary (cf. also [6], Theorem). If A is a large cycle, then A is retract reducible.

Proof. It follows from 1.9 if $\operatorname{card} I=1$.
1.10. Lemma. Let (a) of 1.9 hold and suppose that the set $\left\{i \in I: k_{i}>1\right\}$ is infinite. Then A is retract reducible.

Proof. Let $J=\left\{i \in I: k_{i}>1\right\}$. For $j \in J$ denote by B_{j} the disjoint sum of $A-C_{j}$ and of C_{j}^{\prime}, where C_{j}^{\prime} is a cycle with p_{j} elements. The assumption of 1.4 is not valid, thus $p_{i} \neq p_{k}$ for each $i, k \in I, i \neq k$, hence
(1) $A \notin R\left(B_{j}\right)$ for each $j \in J$.

Denote, for $i \in I-J$,

$$
S_{i}=\left\{x \in \prod_{j \in J} B_{j}: x(j) \in C_{i} \text { for each } j \in J\right\}
$$

and if $i \in J$, let

$$
S_{i}=\left\{x \in \prod_{j \in J} B_{j}: x(j) \in C_{i} \text { for each } j \in J-\{i\}, x(i) \in C_{i}^{\prime}\right\}
$$

First let $i \in I-J$. If K is a connected component of S_{i}, then $K(j)=C_{i}$ for each $i \in I$, i.e., $K(j)$ is a cycle with p_{i} elements. Then (C) implies that K is a cycle with the same number of elements. Hence S_{i} contains only cycles with p_{i} elements and there is a subalgebra T_{i} of S_{i} with $T_{i} \cong C_{i}$.

Now let $i \in J$. If K is a connected component of S_{i}, then $K(i)=C_{i}^{\prime}$ and $K(j)=C_{i}$ for each $j \in I-J$. Since C_{i}^{\prime} is a cycle with p_{i} elements and C_{i} is a cycle with $p_{i}^{k_{i}}$ elements, the assertion $\left.(C) a\right)$ implies that K is a cycle with $p_{i}^{k_{i}}$ elements, i.e., $K \cong C_{i}$. Hence there is a subalgebra T_{i} of S_{i} with $T_{i} \cong C_{i}$, too.

Denote $T=\bigcup_{i \in I} T_{i}$. As above, a connected component E of $\prod_{j \in J} B_{j}$ satisfies either (3.1) $E \subseteq T$
or
(3.2) $E \cap T=\emptyset$.

In the first case E can be mapped identically. Let (3.2) hold. If E contains no cycle, then there is a homomorphism of E into an arbitrary cycle, thus there exists a homomorphism of E into T. Suppose that E contains a cycle with m elements. This implies $E \cong \underline{m}$. By $(D), E(j)$ is a cycle with m_{j} elements, where m_{j} divides m (for each $j \in J$). Then
(4) $m=$ l.c.m. $\left\{m_{j}: j \in J\right\}$.

First assume that the following condition is satisfied:
(5.1) there is $i \in I$ such that $p_{i}^{k_{i}}$ divides m.

Then \underline{m} can be homomorphically embedded onto a cycle $p_{i}^{k_{i}}$, thus E can be homomorphically embedded into T.

Now let (5.1) fail to hold. Then, for each $j \in J, m_{j} \notin\left\{p_{i}^{k_{i}}: i \in I\right\}$, therefore $m_{j}=p_{j}$ for each $j \in J$. Thus (4) yields

$$
m=\text { l.c.m. }\left\{p_{j}: j \in J\right\},
$$

a contradiction, because the set J is infinite.
Hence we have proved that there exists a retraction homomorphism of $\prod_{j \in J} B_{j}$ onto T and according to (1) and (2) we obtain that A is retract reducible.
1.11. Lemma. Suppose that the following conditions are satisfied:
(a) A consists of cycles $C_{i}, i \in I$, where $\operatorname{card} C_{i}=p_{i}^{k_{i}}, p_{i} \in \mathbb{P}, k_{i} \in \mathbb{N}$ and $p_{i} \neq p_{k}$ for each $i, k \in I, i \neq k$;
(b) $\left\{p_{i}: i \in I\right\}=\mathbb{P}$;
(c) $\left\{i \in I: k_{i}>1\right\}$ is finite.

Then A is retract irreducible.
Proof. By way of contradiction, assume that A is retract reducible. There are $B_{j}, j \in J$ and $T \subseteq \prod_{j \in J} B_{j}$ such that
(1) $T \cong A$,
(2) there is a retraction homomorphism of $\prod_{j \in J} B_{j}$ onto T,
(3) $A \notin R\left(B_{j}\right)$ for each $j \in J$.

For $i \in I$ we denote by D_{i} the cycle of T which corresponds to C_{i} under the isomorphism (1).

Consider $j \in J$. If $i \in I$, then by $(D), D_{i}(j)$ is a cycle whose cardinality divides $\operatorname{card} C_{i}$, i.e. card $D_{i}(j)=p_{i}^{n_{i j}}$, where $0 \leqslant n_{i j} \leqslant k_{i}$. There are two possibilities:
(4.1) $n_{i j}=k_{i}$ for each $i \in I$,
(4.2) there is $i \in I$ with $n_{i j}<k_{i}$.

Let (4.1) hold. Then there is a subalgebra of B_{j} which is isomorphic to A. In view of (3) we get that
(5) there exists a cycle E_{j} in B_{j} with q_{j} elements such that if $i \in I$, then $p_{i}^{k_{i}}$ does not divide q_{j}.
If (4.2) is valid, we can put $q_{j}=p_{i}^{n_{i j}}$ and then (5) is valid, too.
According to (b), there is $I_{1} \subseteq I$ with $I_{1} \neq \emptyset$ such that
(6) $q_{j}=\prod_{i \in I_{1}} p_{i}^{\alpha_{i}}$ for some numbers $\alpha_{i} \in \mathbb{N}$.

Let $i \in I_{1}$. Then p_{i} divides q_{j}. In view of (5) we obtain that $p_{i}^{k_{i}}$ does not divide q_{j}, thus $k_{i}>1$. By (c), the set I_{1} is then finite. Further, $\alpha_{i}<k_{i}$ for each $i \in I_{1}$. Hence
(7) $q_{j}=\prod_{i \in I_{1}} p_{i}^{\alpha_{i}}, 1 \leqslant \alpha_{i}<k_{i}$ for each $i \in I_{1}$ and I_{1} is finite.

For $j \in J$ take an arbitrary element $z_{j} \in E_{j}$ and let $z \in \prod_{j \in J} B_{j}$ be such that $z(j)=z_{j}$. Denote
(8) $m=$ l.c.m. $\left\{q_{j}: j \in J\right\}$;
it exists in view of (c) and (7). Then z belongs to a cycle E with m elements. From (2) and (1) we get that

$$
p_{i}^{k_{i}} \text { divides } m \text { for some } i \in I
$$

According to (7) and (8) we have a contradiction. Therefore A is retract irreducible.
1.12. Proposition. Suppose that A contains a subalgebra which is a large cycle. Then A is retract irreducible if and only if A satisfies the assumption of 1.8 or of 1.11 .

Proof. If the assumptions of 1.8 or of 1.11 are satisfied, then A is retract irreducible. Conversely, let A be retract irreducible. By 1.1, each connected component of A containing a large cycle is a cycle and, in view of 1.2 , with p^{k} elements, where $p \in P, k \in N$. From 1.3 and 1.4 it follows that if C_{1} and C_{2} are distinct large cycles of A, then there are distinct primes p, q and $k, l \in N$ such that $\operatorname{card} C_{1}=p^{k}$, $\operatorname{card} C_{2}=q^{l}$. If there is a connected component of A which contains no cycles, then A is retract reducible in view of $1.6(\mathrm{a})$, a contradiction. Suppose that each connected component of A contains a cycle. By $1.6(\mathrm{~b})$, the set M of all elements of A which belong to no large cycle has at most one element. If card $M=1$, then 1.7 implies that the assumption of 1.8 is valid. Let $M=\emptyset$. Then 1.9 and 1.10 imply that the assumption of 1.11 is satisfied.

2. Small cycles

In this section assume that A contains no connected component with a large cycle and that A contains an element x_{0} with $f\left(x_{0}\right)=x_{0}$.
2.1. Lemma. Suppose that there is a connected component D of A which contains a cycle $\{d\}$ and such that $D \neq\{d\}$. Further, let A be not connected. Then A is retract reducible.

Proof. Let $\left\{D_{j}: j \in J\right\}$ be the system of all connected components of A which contain a cycle (by the assumption, a one-element cycle). We can suppose that $1 \in J$ and $d \in D_{1}$. Denote $A^{\prime}=A-\bigcup_{j \in J} D_{j}$. Then either
(1.1) $\operatorname{card} J>1$
or
(1.2) $A^{\prime} \neq \emptyset$.

Let $c \notin A$ and let $\{c\}$ be a cycle. Denote by D_{0} a disjoint union of $\{c\}$ and A^{\prime}. Put $B_{1}=D_{1}$. If $j \in J-\{1\}$, let B_{j} be the disjoint union of $\{c\}$ and D_{j}. Since A^{\prime} contains no cycles, the assumption yields that $A \notin R\left(B_{0}\right)$. Obviously, $A \notin R\left(B_{1}\right)$. If
(1.1) is valid, then A is not isomorphic to a subalgebra of B_{j} for $j \in J-\{1\}$, hence $A \notin R\left(B_{j}\right)$. If (1.2) holds, then $A \notin R\left(B_{j}\right)$ for $j \in J-\{1\}$ as well. We have got
(2) $A \notin R\left(B_{j}\right)$ for each $j \in J \cup\{0\}$.

Consider the direct product $B=\prod_{j \in J \cup\{0\}} B_{j}$ and denote

$$
\begin{aligned}
& T_{0}=\left\{x \in B: x(0) \in A^{\prime}, x(1)=d, x(j)=c \text { for each } j \in J-\{1\}\right\}, \\
& T_{1}=\left\{x \in B: x(1) \in D_{1}, x(j)=c \text { for each } j \in J \cup\{0\}, j \neq 1\right\}
\end{aligned}
$$

and, for $k \in J-\{1\}$,

$$
T_{k}=\left\{x \in B: x(k) \in D_{k}, x(1)=d, x(j)=c \text { for each } j \in(J \cup\{0\})-\{k, 1\}\right\}
$$

Then $T_{0} \cong A^{\prime}, T_{1} \cong D_{1}, T_{k} \cong D_{k}$ for each $k \in J-\{1\}$. Further, let $T=\underset{k \in J \cup\{0\}}{\bigcup} T_{k}$. We obviously have
(3) $T \cong A$.

Let $\bar{d} \in T_{1}$ be such that $\bar{d}(1)=d, \bar{d}(j)=c$ for each $j \in J \cup\{0\}-\{1\}$.
Let K be a connected component of $\prod_{j \in J \cup\{0\}} B_{j}$. Then (A) implies that $K(j)$ is a connected component of B_{j} for each $j \in J \cup\{0\}$, hence $K(1)=B_{1}$.

We are going to define a retraction homomorphism of B into T. Let us describe how to map the connected component K.
a) First suppose $K(0) \subseteq A^{\prime}$. If $j \in J \cup\{0\}-\{1\}$, then $K(0) \cap T_{j}(0) \subseteq A^{\prime} \cap\{c\}=\emptyset$, thus
(4) $K \cap T_{j}=\emptyset$ for each $j \in J \cup\{0\}-\{1\}$.

If $K(j)=\{c\}$ for each $J-\{1\}, x \in K$, then define $\varphi(x) \in T_{0}$ by the formula

$$
(\varphi(x))(j)= \begin{cases}x(j) & \text { if } j \in J \cup\{0\}-\{1\} \\ d & \text { if } j=1\end{cases}
$$

Let there be $k \in J-\{1\}$ with $K(k)=D_{k}$. Then

$$
K(k) \cap T_{1}(k) \subseteq D_{k} \cap\{c\}=\emptyset
$$

hence $K \cap T_{1}=\emptyset$ and (4) implies $K \cap T=\emptyset$. In this case put $\varphi(x)=\bar{d}$ for each $x \in K$.

The mapping $\varphi \upharpoonright K$ is a homomorphism of K into T.
b) Now suppose that $K(0)=\{c\}$ and that there are $j_{1}, j_{2} \in J-\{1\}, j_{1} \neq j_{2}$, such that
(5) $K\left(j_{1}\right)=D_{j_{1}}, \quad K\left(j_{2}\right)=D_{j_{2}}$.

We have

$$
\begin{aligned}
& K\left(j_{1}\right) \cap T_{k}\left(j_{1}\right)=D_{j_{1}} \cap\{c\}=\emptyset \text { for each } k \in J \cup\{0\}-\left\{j_{1}\right\}, \\
& K\left(j_{2}\right) \cap T_{k}\left(j_{2}\right)=D_{j_{2}} \cap\{c\}=\emptyset \text { for each } k \in J \cup\{0\}-\left\{j_{2}\right\},
\end{aligned}
$$

which yields

$$
K \cap T_{k}=\emptyset \text { for each } k \in J \cup\{0\}
$$

i.e., $K \cap T=\emptyset$. Define $\varphi(x)=\bar{d}$ for each $x \in K$. Then $\varphi \upharpoonright K$ is a homomorphism of K into T.
c) Suppose that $K(0)=\{c\}$ and that there is $j_{0} \in J-\{1\}$ such that $K\left(j_{0}\right)=D_{j_{0}}$ and $K(j)=\{c\}$ for each $j \in J-\left\{1, j_{0}\right\}$. If $x \in K$, then define

$$
(\varphi(x))(j)= \begin{cases}d & \text { if } j=1 \\ x(j) & \text { otherwise }\end{cases}
$$

Then $\varphi(x) \in T_{j_{0}}$ and φ is a homomorphism of K into T.
From the definition of φ it follows that if $x \in T$, then $\varphi(x)=x$. Therefore φ is a retraction homomorphism of B onto T and, in view of (2) and (3), A is retract reducible.
2.2. Lemma. Suppose that there are at least two one-element connected components of A and that card $A>2$. Then A is retract reducible.

Proof. Let $\left\{D_{j}: j \in J\right\}$ be the system of all one-element connected components $\left\{d_{j}\right\}$ of $A, A^{\prime}=A-\bigcup_{j \in J} D_{j}$. By 2.1 we can suppose that A^{\prime} contains no subalgebra which is a cycle. Let $\{c\}$ be a new cycle. We set

$$
\begin{aligned}
& B_{0}=\{c\} \cup A^{\prime} \\
& B_{j}=\{c\} \cup\left\{d_{j}\right\} \text { for each } j \in J .
\end{aligned}
$$

By the assumption,
(1) $A \notin R\left(B_{j}\right)$ for each $j \in J \cup\{0\}$.

Denote

$$
T_{0}=\left\{x \in \prod_{j \in J \cup\{0\}} B_{j}: x(0) \in A^{\prime}, x(j)=c \text { for each } j \in J\right\}
$$

and, if $k \in J$,

$$
T_{k}=\left\{x \in \prod_{j \in J \cup\{0\}} B_{j}: x(k)=d_{k}, x(j)=c \text { for each } j \in J \cup\{0\}, j \neq k\right\} .
$$

Put

$$
T=\prod_{j \in J \cup\{0\}} T_{j} .
$$

Obviously,
(2) $T \cong A$.

Let K be a connected component of $\prod_{j \in J \cup\{0\}} B_{j}$. If $K \subseteq T$, put $\varphi(x)=x$ for each $x \in K$; if $K \cap T=\emptyset, x \in K$, define $(\varphi(x))(j)=c$ for each $j \in J \cup\{0\}$. The relation
(3) $K \nsubseteq T, K \cap T \neq \emptyset$
implies a contradiction since if (3) is valid, then we have either
(4.1) $K \cap T_{j} \neq \emptyset$ for some $j \in J, K \nsubseteq T$,
or
(4.2) $K \cap T_{0} \neq \emptyset, K \nsubseteq T$.

If (4.1) is valid, then

$$
\emptyset \neq K(l) \cap T_{j}(l)= \begin{cases}K(l) \cap\{c\} & \text { if } l \in J \cup\{0\}-\{j\} \\ K(l) \cap\left\{d_{j}\right\} & \text { if } l=j\end{cases}
$$

and according to (A),

$$
K(l)= \begin{cases}\{c\} & \text { if } l \in J \cup\{0\}-\{j\} \\ \left\{d_{j}\right\} & \text { if } l=j\end{cases}
$$

Then $K=T_{j} \subseteq T$, a contradiction to (4.1). Further, suppose that (4.2) holds. If $l \in J$, then $\emptyset \neq K(l) \cap T_{0}(l)=K(l) \cap\{c\}$, hence $K(l)=\{c\}$. Next, $\emptyset \neq$ $K(0) \cap T_{0}(0) \subseteq K(0) \cap A^{\prime}$ and since $K(0)$ is connected, we obtain that $K(0) \subseteq A^{\prime}$. Therefore $K \subseteq T_{0} \subseteq T$, which is a contradiction to (4.2).

Hence φ is a retraction endomorphism of $\prod_{j \in J \cup\{0\}} B_{j}$ onto T. According to (1) and (2), A is retract reducible.
2.3. Lemma. Let A consist of two one-element cycles. Then A is retract irreducible.

Proof. Suppose that A is retract reducible. Then there are $B_{j}, j \in J$ and $T \subseteq \prod_{j \in J} B_{j}$ such that
(1) $T \cong A$,
(2) there is a retraction homomorphism of $\prod_{j \in J} B_{j}$ onto T,
(3) $A \notin R\left(B_{j}\right)$ for each $j \in J$.

According to (1), $T=\{c, d\}$, where $\{c\}$ and $\{d\}$ are distinct cycles. If $j \in J$, then $\{c(j)\}$ and $\{d(j)\}$ are cycles of B_{j}. From (3) it follows that B_{j} can contain at most one one-element cycle, thus $c(j)=d(j)$. But, since $c \neq d$, there exists $i \in J$ with $c(i) \neq d(i)$, a contradiction.
2.4.1. Remark. If A does not satisfy the assumptions of $2.1-2.3$, then either
(a) $A=\{c\} \cup A^{\prime}$, where $\{c\}$ is a cycle of A and A^{\prime} contains no connected component with a cycle,
or
(b) A is connected.
2.4.2. Lemma. Let (a) of 2.4.1 hold. If A^{\prime} is retract reducible, then A is retract reducible.

Proof. Suppose that A^{\prime} is retract reducible. Then there are $B_{j}^{\prime}, j \in J$ and $T^{\prime} \subseteq \prod_{j \in J} B_{j}^{\prime}$ such that
(1') $T^{\prime} \cong A^{\prime}$,
$\left(2^{\prime}\right)$ there is a retraction homomorphism φ^{\prime} of $\prod_{j \in J} B_{j}^{\prime}$ onto T^{\prime},
$\left(3^{\prime}\right) A^{\prime} \notin R\left(B_{j}^{\prime}\right)$ for each $j \in J$.
We can suppose that $c \notin B_{j}^{\prime}$ for each $j \in J$. If $j \in J$, then put

$$
B_{j}=\{c\} \cup B_{j}^{\prime} .
$$

Let $\bar{c} \in \prod_{j \in J} B_{j}$ be such that $\bar{c}(j)=c$ for each $j \in J$ and let

$$
T=T^{\prime} \cup\{\bar{c}\}
$$

Then (1 ${ }^{\prime}$) implies
(1) $T \cong A$
and (3^{\prime}) yields
(3) $A \notin R\left(B_{j}\right)$ for each $j \in J$.

Let $x \in \prod_{j \in J} B_{j}$. Define

$$
\varphi(x)= \begin{cases}\varphi^{\prime}(x) & \text { if } x \in \prod_{j \in J} B_{j}^{\prime} \\ \bar{c} & \text { otherwise }\end{cases}
$$

Then $\varphi(x)=x$ for each $x \in T$ and φ is a homomorphism of $\prod_{j \in J} B_{j}$ onto T according to $\left(2^{\prime}\right)$, i.e.,
(2) there is a retraction homomorphism φ of $\prod_{j \in J} B_{j}$ onto T.

Hence (1)-(3) imply that A is retract reducible.

3. Monounary algebras without cycles

Throughout this section suppose that no subalgebra of A is a cycle.
3.1. Lemma. Assume that there is $x \in A$ with $s_{f}(x)=\infty$. Then A is retract reducible.

Proof. Let $\left\{D_{j}: j \in J\right\}$ be the system of all connected components of A such that, for each $j \in J$, there is $x_{j} \in D_{j}$ with $s_{f}\left(x_{j}\right)=\infty$. Let $j \in J$. According to [6], Theorem and [5], 2.8, there exist a system of distinct primes $\left\{p_{i}: i \in \mathbb{Z}\right\}$ and a system of algebras $\left\{B_{j i}: i \in \mathbb{Z}\right\}$ with the following properties:
(1) if $i \in Z$, then $B_{j i}$ is connected and contains a cycle with p_{i} elements,
(2) there is a subalgebra T_{j} of $\prod_{i \in \mathbb{Z}} B_{j i}$ such that $T_{j} \cong D_{j}$,
(3) there is a retraction homomorphism φ_{j} of $\prod_{i \in \mathbb{Z}} B_{j i}$ onto T_{j}.

Denote $A^{\prime}=A-\bigcup_{j \in J} D_{j}$. If $i \in \mathbb{Z}$, then put

$$
B_{i}=\bigcup_{j \in J} B_{j i} \cup A^{\prime}
$$

We can suppose that $B_{j_{1} i_{1}} \cap B_{j_{2} i_{2}}=\emptyset$ for each distinct $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right) \in \mathbb{Z} \times J$. The algebra A is not isomorphic to any subalgebra of B_{i} for $i \in \mathbb{Z}$, thus
(4) $A \notin R\left(B_{i}\right)$ for each $i \in \mathbb{Z}$.

Further, denote

$$
\begin{aligned}
T_{0} & =\left\{x \in \prod_{i \in \mathbb{Z}} B_{i}:\left(\exists a \in A^{\prime}\right)(\forall i \in \mathbb{Z})(x(i)=a)\right\}, \\
T & =\bigcup_{j \in J \cup\{0\}} T_{j} .
\end{aligned}
$$

Then (2) implies
(5) $T \cong A$.

Let K be a connected component of $\prod_{i \in \mathbb{Z}} B_{i}$. Suppose that K contains a cycle with m elements. Then $K(i)$ contains a cycle for each $i \in \mathbb{Z}$, too. Since $K(i) \subseteq B_{i}$, we get that $K(i)$ contains a cycle with p_{i} elements, hence
(6) p_{i} divides m for each $i \in \mathbb{Z}$.

We have $p_{i} \neq p_{k}$ for each $i, k \in \mathbb{Z}, i \neq k$, thus (6) yields a contradiction. Therefore K contains no cycle. Consider the following conditions:
(7.1) there is $j \in J$ such that $K \subseteq \prod_{i \in \mathbb{Z}} B_{j i}$,
(7.2) $K \subseteq T_{0}$,
(7.3) neither (7.1) nor (7.2) is valid.

If (7.1) holds and $x \in K$, then put $\varphi(x)=\varphi_{j}(x)$. If (7.2) holds, define $\varphi(x)=x$ for each $x \in K$. Let (7.3) hold. First suppose
(8.1) $K(i) \nsubseteq A^{\prime}$ for each $i \in \mathbb{Z}$.

Since (7.1) is not valid, there are $k, l \in \mathbb{Z}, k \neq l$ and $j_{1}, j_{2} \in J, j_{1} \neq j_{2}$ such that $K(k)=B_{j_{1} k}, K(l)=B_{j_{2} l}$. Then

$$
K(k) \cap T_{0}(k) \subseteq B_{j_{1} k} \cap A^{\prime}=\emptyset,
$$

therefore

$$
\text { (9.1) } K \cap T_{0}=\emptyset
$$

Further,

$$
K(l) \cap T_{j_{1}}(l) \subseteq B_{j_{2} l} \cap B_{j_{1} l}=\emptyset,
$$

hence

$$
\text { (9.2) } K \cap T_{j_{1}}=\emptyset
$$

If $j \in J-\left\{j_{1}\right\}$, then

$$
K(k) \cap T_{j}(k) \subseteq B_{j_{1} k} \cap B_{j k}=\emptyset
$$

and
(9.3) $K \cap T_{j}=\emptyset$.

Thus (9.1)-(9.3) imply
(9) $K \cap T=\emptyset$.

Since K contains no cycle, it can be homomorphically mapped into \mathbb{Z}, hence it can be homomorphically mapped into an arbitrary $T_{j}, j \in J$, thus K can be homomorphically mapped into T, too.

Now suppose
(8.2) there are $i, l \in \mathbb{Z}$ with $K(i) \subseteq A^{\prime}$ and $K(l)=B_{j l}$ for some $j \in J$.

Analogously as in the case dealing with the condition (8.1), we get $K \cap T=\emptyset$ and K can be homomorphically mapped into T.

Finally, suppose
(8.3) $K(i) \subseteq A^{\prime}$ for each $i \in \mathbb{Z}$.

If $x \in K$, then put $\varphi(x)=y$, where

$$
y(i)=x(0) \text { for each } i \in \mathbb{Z} .
$$

Then $y \in T_{0}$ and φ is a homomorphism of K into T.
Thus φ is a retraction homomorphism of $\prod_{i \in \mathbb{Z}} B_{i}$ onto T. Therefore (4) and (5) imply that A is retract reducible.

Suppose that X is a connected monounary algebra which satisfies the following condition:
$(*) s_{f}(x) \neq \infty$ for each $x \in X$ and there are distinct elements $a, b \in X$ with $f(a)=f(b)$.

In [5], 3.4, to each such X a uniquely defined positive integer m was assigned. We slightly modify the notation from [5] and write $m(X)$ instead of m. Let us recall the definition.

According to $(*)$, the set $L=\left\{x \in A: f^{-1}(x)=\emptyset\right\}$ is nonempty and

$$
\left\{k \in \mathbb{N}: \operatorname{card} f^{-1}\left(f^{k}(x)\right)>1\right\} \neq \emptyset \text { for each } x \in L
$$

If $x \in L$, then denote

$$
k(x)=\min \left\{k \in \mathbb{N}: \operatorname{card} f^{-1}\left(f^{k}(x)\right)>1\right\}
$$

and put

$$
m(X)=\min \{k(x): x \in L\}
$$

3.2. Lemma. Suppose that $s_{f}(x) \neq \infty$ for each $x \in A$ and that there are distinct elements $a, b \in A$ with $f(a)=f(b)$. Then A is retract reducible.

Proof. Let $m=\min \{m(D): D$ is a connected component of A and D satisfies $(*)\}$. Further, let $\left\{D_{j}: j \in J\right\}$ be the system of all connected components of A which satisfy $(*)$ and such that $m\left(D_{j}\right)=m$ for each $j \in J$. Let $j \in J$. According to [5], 3.4-3.7, D_{j} is retract reducible and there exist a set I_{j} and algebras $B_{j i}$ for each $i \in I_{j} \cup\{0\}$ with the following properties:
(1) $B_{j 0}$ satisfies $(*)$ and $m\left(B_{j 0}\right)>m$,
(2) if $i \in I_{j}$, then $B_{j i}$ is isomorphic to $(\{0,1, \ldots, m\}, f)$, where $f(0)=1, f(1)=$ $2, \ldots, f(m-1)=f(m)=m$,
(3) there is a subalgebra T_{j} of $\prod_{i \in I_{j} \cup\{0\}} B_{j i}$ such that $T_{j} \cong D_{j}$,
(4) there is a retraction homomorphism φ_{j} of $\prod_{i \in I_{j} \cup\{0\}} B_{j i}$ onto T_{j}.

Denote $A^{\prime}=A-\bigcup_{j \in J} D_{j}, I=\bigcup_{j \in J} I_{j}$. We can suppose that the sets I_{j} for $j \in J$ are mutually disjoint. If $j \in J, i \in I-I_{j}$, then let $B_{j i}$ be a one-element cycle $\{c\}$. If $i \in I \cup\{0\}$, then put

$$
B_{i}=\bigcup_{j \in J} B_{j i} \cup A^{\prime}
$$

and let

$$
B=\prod_{i \in I \cup\{0\}} B_{i} .
$$

Obviously, B_{0} contains no cycles. We have $m(X)>m$ for each connected component X of A^{\prime} in view of the choice of m, thus (1) implies that $m(X)>m$ for each connected component X of B_{0}, hence
(5) $A \notin R\left(B_{0}\right)$.

Similarly, (2) implies that if $i \in I$, then no connected component of B_{i} satisfies $(*)$, thus A is not isomorphic to any subalgebra of B_{i} and
(6) $A \notin R\left(B_{i}\right)$ for each $i \in I$.

Further, denote

$$
T_{0}^{\prime}=\left\{x \in \prod_{i \in I \cup\{0\}} B_{i}:\left(\exists a \in A^{\prime}\right)(\forall i \in I \cup\{0\})(x(i)=a)\right\}
$$

If $j \in J$, then we put

$$
\begin{gathered}
T_{j}^{\prime}=\left\{x \in B:\left(\exists t \in T_{j}\right)\left(x(i)=t(i) \text { for each } i \in I_{j} \cup\{0\},\right.\right. \\
\left.\left.x(i)=c \text { for each } i \in I-I_{j}\right)\right\}
\end{gathered}
$$

obviously,

$$
T_{j}^{\prime} \cong T_{j}
$$

Let

$$
T=\bigcup_{j \in J \cup\{0\}} T_{j}^{\prime} .
$$

According to (3) and in view of the relation $A^{\prime} \cong T_{0}^{\prime}$ we obtain
(7) $T \cong A$.

We are going to define a retraction homomorphism of B onto T. We can suppose that $I \cup\{0\}$ is well-ordered. Let $x \in B$. If there is $i \in I \cup\{0\}$ such that $x(i) \in A^{\prime}$ and

$$
i_{0}=\min \left\{i \in I \cup\{0\}: x(i) \in A^{\prime}\right\}
$$

then define $\varphi(x)=y \in T_{0}^{\prime}$, where

$$
y\left(i_{0}\right)=x\left(i_{0}\right)
$$

Now let $x(i) \notin A^{\prime}$ for each $i \in I \cup\{0\}$. Then $x(0) \in B_{k 0}$ for some $k \in J$. There is $y \in T_{k}^{\prime}$ with

$$
y(0)=x(0)
$$

put $\varphi(x)=y$.
It can be verified that φ is a retraction homomorphism of B onto T. Then A is retract reducible according to (5), (6) and (7).
3.3. Lemma. Let A not satisfy the assumptions of 3.1 and 3.2. If A is not connected, then A is retract reducible.

Proof. Suppose that A is not connected. The assumption implies that A consists of connected components $D_{j}, j \in J$ such that if $j \in J$, then $D_{j} \cong \mathbb{N}$. Let $0 \notin J$ and $D_{0} \cong \underline{\mathbb{N}}$. Denote by B_{0} a disjoint sum of D_{0} and of a one-element cycle $\{c\}$. Put $B_{j}=D_{j}$ for $j \in J$. Obviously,
(1) $A \notin R\left(B_{j}\right)$ for each $j \in J \cup\{0\}$.

Then $\prod_{j \in J \cup\{0\}} B_{j}$ consists of connected components isomorphic to \mathbb{N} and there is a subalgebra T of $\prod_{j \in J \cup\{0\}} B_{j}$ such that $T \cong A$. This yields that $A \in R\left(\prod_{j \in J \cup\{0\}} B_{j}\right)$ and that A is retract reducible.
3.4. Proposition. Suppose that no subalgebra of A is a cycle. Then A is retract irreducible if and only if $A \cong \underline{\mathbb{N}}$.

Proof. If $A \cong \mathbb{N}$, then [6], Thm. (b) and [5], (R1) imply that A is retract irreducible. Conversely, let A be retract irreducible. By 3.1, we get
(1) $s_{f}(x) \neq \infty$ for each $x \in A$.

Then 3.2 yields
(2) $(\forall a, b \in A)(f(a)=f(b) \Rightarrow a=b)$.

According to $3.3, A$ is connected, thus (1) and (2) imply that $A \cong \mathbb{N}$.

4. Main Result

4.1. Notation. Let $n \in \mathbb{N}$. We will denote by S_{n} the following algebra $\left(S_{n}, f\right)$ (all elements written here are mutually distinct):

$$
\begin{aligned}
S_{n} & =\left\{a_{i}^{n}: i \in \mathbb{N}\right\} \cup\left\{b_{1}^{n}, \ldots, b_{n}^{n}\right\} \cup\left\{c_{j k}^{n}: j \in \mathbb{N}, k \in\{1, \ldots, j\}\right\}, \\
f\left(a_{i}^{n}\right) & =a_{i+1}^{n} \text { for each } i \in \mathbb{N}, \\
f\left(b_{i}^{n}\right) & =b_{i+1}^{n} \text { for each } i \in\{1, \ldots, n-1\}, \quad f\left(b_{n}^{n}\right)=a_{n+1}^{n}, \\
f\left(c_{j k}^{n}\right) & =c_{j, k+1}^{n} \text { for each } j \in \mathbb{N}, k \in\{1, \ldots, j-1\}, \\
f\left(c_{j j}^{n}\right) & =b_{1}^{n} \text { for each } j \in \mathbb{N} .
\end{aligned}
$$

(Cf. Fig. 1 for the case $n=2$).

Fig. 1
4.2. Lemma. If $n \in \mathbb{N}$, then $\mathbb{N} \notin R\left(S_{n}\right)$.

Proof. The assertion is a corollary of [5], 3.1.
4.3. Lemma. There is a connected component K of $\prod_{n \in \mathbb{N}} S_{n}$ such that $\underline{\mathbb{N}} \in R(K)$.

Proof. If $k \in \mathbb{N}$, then denote by \bar{a}_{k} the element of $\prod_{n \in \mathbb{N}} S_{n}$ such that $\bar{a}_{k}(n)=a_{k}^{n}$ for each $k \in \mathbb{N}$.

Let K be a connected component of $\prod_{n \in \mathbb{N}} S_{n}$ such that $\overline{a_{1}} \in K$. We are going to show that
(1) for each $k \in \mathbb{N}, f^{-(k+1)}\left(f^{k}\left(\overline{a_{1}}\right)\right)=\emptyset$;
then [5], 3.1 implies that $\underline{\mathbb{V}} \in R(K)$. By way of contradiction, let $k \in \mathbb{N}$ be such that $f^{-(k+1)}\left(f^{k}\left(\overline{a_{1}}\right) \neq \emptyset, y \in f^{-(k+1)}\left(f^{k}\left(\overline{a_{1}}\right)\right)\right.$. We have

$$
f^{k+1}(y)=f^{k}\left(\overline{a_{1}}\right)=\overline{a_{k+1}},
$$

thus

$$
\begin{aligned}
f^{k+1}(y(k+1)) & =\left(f^{k+1}(y)\right)(k+1)=a_{k+1}^{k+1} \\
y(k+1) & \in f^{-(k+1)}\left(a_{k+1}^{k+1}\right)=\emptyset
\end{aligned}
$$

a contradiction.
4.4. Lemma. Suppose that A is a monounary algebra with two connected components, where one is a one-element cycle and the other is isomorphic to \mathbb{N}. Then A is retract reducible.

Proof. Let $\{c\}$ be a cycle and denote by $B_{n}($ for $n \in \mathbb{N})$ a disjoint sum of $\{c\}$ and of S_{n}. Then 4.2 implies
(1) $A \notin R\left(S_{n}\right)$ for each $n \in \mathbb{N}$.

Let $\bar{c} \in \prod_{n \in \mathbb{N}} B_{n}$ be such that $\bar{c}(n)=c$ for each $n \in \mathbb{N}$. By 4.3 there is a connected component K of $\prod_{n \in \mathbb{N}} S_{n}$ with $\underline{\mathbb{N}} \in R(K)$, i.e., there exist $T_{0} \subseteq K$ with $T_{0} \cong \mathbb{N}$ and a retraction homomorphism φ_{0} of K onto T_{0}. Denote $T=T_{0} \cup\{\bar{c}\}$. Hence
(2) $T \cong A$.

If C is a connected component of $\prod_{n \in \mathbb{N}} S_{n}$, then either $C \subseteq K$ or $C \cap K=\emptyset$. In the first case put $\varphi(x)=\varphi_{0}(x)$ for each $x \in C$; in the latter case, if $x \in C$, put $\varphi(x)=\bar{c}$. Then φ is a retraction homomorphism of $\prod_{n \in \mathbb{N}} B_{n}$ onto T and, according to (1) and (2), A is retract reducible.
4.5. Theorem. Let A be a monounary algebra. Then A is retract irreducible if and only if one of the following conditions is satisfied:
(a) A is a disjoint union of two cycles, one of them having p^{k} elements $(p \in \mathbb{P}$, $n \in \mathbb{N}$), the other having 1 element;
(b) A satisfies the assumption of 1.11;
(c) A contains a cycle $\{c\}$, is connected and $f(a)=f(b)$ for $a, b \in A-\{c\}$ implies $a=b$;
(d) A is a disjoint union of two 1-element cycles;
(e) $A \cong \underline{\mathbb{N}}$.

Proof. If A satisfies (a) or (b), then A is retract irreducible in view of 1.8 and 1.11. If A satisfies (c) or (e), then [5] (R), (R1) and [6], Theorem imply that A is retract irreducible. If A satisfies (d), then A is retract irreducible by 2.3 .

Now suppose that A is retract irreducible.
a) Let A contain a subalgebra which is a large cycle. Then 1.12 yields that either (a) or (b) is valid.

Assume that A contains no subalgebra which is a large cycle.
b) Let there be $x_{0} \in A$ with $f\left(x_{0}\right)=x_{0}$. If A is connected, then (c) holds according to [4]. Suppose that A is not connected. By 2.1, each connected component with a one-element cycle is a cycle and 2.2 implies that either
(1.1) A consists of two 1-element cycles
or
(1.2) A contains only one 1 -element cycle $\{c\}$.

The condition (1.1) is (d). Let (1.2) be valid. Then 2.4.2 yields that $A-\{c\}$ is retract irreducible. By $3.4, A-\{c\} \cong \underline{N}$. But then 4.4 implies that A is retract reducible, which is a contradiction.

Assume that A contains no subalgebra which is a cycle. We obtain according to 3.4 that $A \cong \underline{N}$, i.e., (e) is satisfied.
4.6. Corollary. a) If A is a retract irreducible monounary algebra, then $\operatorname{card} A \leqslant \aleph_{0}$.
b) The number of non-isomorphic types of retract irreducible monounary algebras is equal to \aleph_{0}.

References

[1] D. Duffus, I. Rival: A structure theory for ordered sets. Discrete Math. 35 (1981), 53-118.
[2] D. Jakubiková: Homomorphisms of unary algebras. Math. Slovaca 26 (1976), 317-322. (In Russian.)
[3] D. Jakubíková: Systems of unary algebras with common endomorphisms I.. Czechoslovak Math. J. 29 (1979), 406-420. II. ibid., 421-429.
[4] D. Jakubiková-Studenovská: Retract irreducibility of connected monounary algebras I. Czechoslovak Math. J. 46 (121) (1996), 291-308.
[5] D. Jakubiková-Studenovská: Retract irreducibility of connected monounary algebras II. Czechoslovak Math. J. 47 (1997), 113-126.
[6] D. Jakubíková-Studenovská: Two types of retract irreducibility of connected monounary algebras. Math. Bohemica 121 (1996), 143-150.
[7] O. Kopeček, M. Novotný: On some invariants of unary algebras. Czechoslovak Math. J. 24 (1974), 219-246.
[8] M. Novotný: U̇ber Abbildungen von Mengen. Pacif. J. Math. 13 (1963), 1359-1369.
[9] M. Novotny: Construction of all homomorphisms of unary algebras. Dept. Math. Ped. Fac. Univ. J. E. Purkyně. Seminar on new directions in mathematical education, Brno, 1973. (In Czech.)

Author's address: 04154 Košice, Jesenná 5, Slovakia (Prírodovedecká fakulta UPJŠ.).

[^0]: This work was supported by the Slovak Grant VEGA 1/4379/97.

