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DIRECT LIMITS OF MONOUNARY ALGEBRAS

Emília Halušková, Košice1

(Received December 10, 1996)

1. Introduction

The direct limit construction is a well-known method for building up algebras from
families of algebras, e.g. [2], §21.

In this paper we investigate direct limits of monounary algebras.

Several examples of direct limit classes of monounary algebras will be given. We
will describe all monounary algebras A which satisfy the following condition:

(C) If an algebra B can be obtained as a direct limit of algebras which are isomorphic

to A, then B is isomorphic to A.
Further, we will show that every direct limit class of monounary algebras contains

at least one algebra A which satisfies the condition (C).

2. Preliminaries

As usual, by a monounary algebra we understand an algebra with a single unary

operation; cf. e.g. [8], [9]. The notion of homomorphism is essentially applied in the
construction of direct limits. Homomorphisms and endomorphisms of monounary

algebras were thoroughly studied in [4], [7]–[9].

The class of all monounary algebras will be denoted by U . We will use the symbol
f for the operation in algebras of U .

Let A be a monounary algebra.

The algebra A is said to be connected, if for each x, y ∈ A there are positive
integers m,n with fm(x) = fn(y). A maximal connected subalgebra of A is said to

be a component of A.

The class of all connected monounary algebras will be denoted by the symbol U c.

1 Supported by grant GA SAV 1230/96.
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Let � be the set of all positive integers, �0 = � ∪ {0}.
Let us denote by C0 the connected monounary algebra which has ℵ0 elements and

a bijective operation. If k ∈ N , then the connected monounary algebra which has

k elements and f is a bijective operation will be denoted by Ck. We will say that an
algebra A is a cycle of length k, if A is isomorphic to Ck. The class of all connected

monounary algebras having a cycle of length k as its subalgebra will be denoted by
U c

k . For the notation of the class of all connected monounary algebras without a

cycle we will use the symbol U c
0 , more precisely we put

U c
0 = U c −

⋃

k∈�
U c

k .

Let A ∈ U . We will say that A has a cycle, if there exists k ∈ � such that a cycle
of length k is a subalgebra of A.

These definitions immediately imply the following three lemmas:

Lemma 1. Let k ∈ �. If x ∈ Ck, then fk(x) = x and |{x, f(x), . . . , fk−1(x)}| =
k.

Lemma 2. Let A ∈ U and i, j ∈ �. Let u ∈ A. If f i(u) = u and v = f j(u), then

f i(v) = v.

Lemma 3. Let A ∈ U . If there exist n ∈ � and x ∈ A such that fn(x) = x, then
A has a cycle.

Lemma 4. Let A, B be monounary algebras, ϕ a homomorphism from A into B

and k ∈ �. If A has a cycle C of length k, then there exists l ∈ � such that ϕ(C) is

a cycle of length l and l divides k.

�����. Let x ∈ C. Then fk(ϕ(x)) = ϕ(fk(x)) = ϕ(x). Therefore there exists
l ∈ � such that l divides k and {ϕ(x), f(ϕ(x)), . . . , fk−1(ϕ(x))} is a cycle of length
l. Further, ϕ(C) = {ϕ(x), f(ϕ(x)), . . . , fk−1(ϕ(x))}. �

We recall the notion of the direct limit: in fact, we apply it to the case of mo-

nounary algebras.

Let 〈P,�〉 be a directed partially ordered set, P �= ∅. For each p ∈ P let Ap be a
monounary algebra and assume that if p, q ∈ P , p �= q, then Ap ∩ Aq = ∅. Suppose
that for each pair of elements p and q in P with p < q, a homomorphism ϕpq of Ap

into Aq is defined such that p < q < s implies that

ϕps = ϕpq ◦ ϕqs.
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For each p ∈ P let ϕpp be the identity on Ap. Then {Ap}p∈P is said to be a direct

family of monounary algebras.

Let p and q be elements of P and let x ∈ Ap, y ∈ Aq. We put x ≡ y if there
exists s ∈ P with p � s, q � s such that ϕps(x) = ϕqs(y). For each z ∈

⋃
p∈P

Ap put

z = {t ∈ ⋃
p∈P

Ap : z ≡ t}. Denote A = {z : z ∈ ⋃
p∈P

Ap}.

If z1, z2 are elements of
⋃

p∈P

Ap such that z1 = z2, then clearly f(z1) = f(z2).

Hence if we put f(z1) = f(z1), then the operation f on A is correctly defined and

with respect to this operation A is a monounary algebra. It is said to be the direct
limit of the direct family {Ap}p∈P . We express this situation by writing

{Ap}p∈P −→ A.(1)

The definition of the direct limit yields the following four assertions.

Lemma 5. Let (1) hold. Let p ∈ P and ϕp be the mapping of Ap into A such

that ϕp(x) = x for every x ∈ Ap. Then ϕp is a homomorphism of Ap into A.

Lemma 6. Let m ∈ � and let (1) be valid. If |Ap| � m for every p ∈ P , then

|A| � m.

Lemma 7. Let (1) be valid. If the operation of Ap is injective for every p ∈ P ,

then the operation of A is injective.

Lemma 8. Let (1) be valid and let p ∈ P . If q � p for all q ∈ P , then A ∼= Ap.

Lemma 9. Let A be an algebra and let (1) be valid. If Ap
∼= A for all p ∈ P and

ϕpq is an isomorphism between Ap and Aq for all p, q ∈ P , p � q, then A ∼= A.

It is obvious that Lemmas 5, 6, 8, 9 are not specific for monounary algebras, they

are valid for direct limits of arbitrary type of algebraic systems.

Example. Suppose that P is the set of all finite subsets of the interval
(0, 1). Let � = ⊆. For p ∈ P , p = {p1, . . . , pn}, where n ∈ �, put Ap =

{(0, p), (p1, p), . . . , (pn, p)}. Further, put f((0, p)) = f((pi, p)) = (0, p) for i =
1, . . . , n. If p ⊆ q, then let ϕpq((z, p)) = (z, q) for every z ∈ {0, p1, . . . , pn}. The
family {Ap}p∈P is direct and its direct limit is isomorphic to the algebra (〈0, 1), f),
where f(x) = 0 for each x ∈ 〈0, 1).
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This example shows that Lemma 6 cannot be generalized to the case when an

infinite cardinal number will be put instead of m.

Lemma 10. Let (1) be valid. The direct family {Ap}p∈P contains an algebra

with a cycle if and only if A has a cycle. More precisely, A contains a cycle of length

k, where k is the length of the shortest cycle in algebras of {Ap}p∈P .

�����. Assume that {Ap}p∈P contains an algebra with a cycle. Let l be the
length of the shortest cycle in algebras of {Ap}p∈P . Every algebra of {Ap}p∈P can

be homomorphically embedded into A according to Lemma 5. This implies that A is
an algebra with a cycle. Moreover, A has at least one cycle with length less or equal

to l.

Now let A have a cycle of length n, n ∈ �. Assume that p ∈ P and x ∈ Ap are
such that fn(x) = x. We have fn(x) ∈ x because fn(x) = fn(x). This means that

there exists q ∈ P such that ϕpq(x) = ϕpq(fn(x)). We obtain ϕpq(x) = fn(ϕpq(x)).
Thus Aq has a cycle with length less or equal to n. �

Lemma 11. Suppose that (1) is valid. Let A have no cycle and let the direct
family {Ap}p∈P contain an algebra with a subalgebra isomorphic to C0. Then A has

a subalgebra isomorphic to C0.

�����. Let p ∈ P be such that C is a subalgebra of Ap isomorphic to C0.

Consider the homomorphism ϕp from Lemma 5. Then ϕp(C) is a homomorphic
image of C and ϕp(C) is a subalgebra of A. The algebra A has no cycle by the

assumption and thus ϕp(C) ∼= C0. �

3. Direct limit classes

The operator L−→ on classes of algebras was introduced in the textbook [2], §23. By
this definition, if K is a class of algebras, then L−→(K ) is the class of all direct limits
of algebras of K .

Let K be a class of algebras. We denote by [K ] the class of all isomorphic copies
of algebras of K . Further, we denote by L−→

′(K ) the class of all isomorphic copies of

direct limits of algebras of K , i.e., L−→
′(K ) = [L−→(K )].

We will use L−→
′K instead of L−→

′(K ). For an algebra A we will use [A] instead of

[{A}].

Lemma 12. Let K be a class of algebras. Then K ⊆ L−→′[K ].

�����. It follows from Lemma 9. �
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Lemma 13. Let K1, K2 be classes of algebras. If K1 ⊆ K2, then L−→
′[K1] ⊆

L−→
′[K2].

�����. Let A ∈ L−→′[K1]. Then there exists a direct family {Ap}p∈P such that
Ap ∈ [K1] for every p ∈ P and {Ap}p∈P −→ A. Since Ap ∈ [K2] for every p ∈ P , we
have A ∈ L−→′[K2]. �

Definition. Let K be a class of algebras. If L−→
′[K ] = [K ] is satisfied, then we

will say that K is a direct limit class.

The next lemma we will often use without any notice.

Lemma 14. A classK is a direct limit class if and only if the following condition

is valid:

whenever (1) holds and Ap ∈ [K ] for each p ∈ P , then A ∈ [K ].

�����. It follows from definitions and Lemma 12. �

Lemma 15. a) Let J be a nonempty set and for j ∈ J let Kj be a direct limit

class. Then
⋂

j∈J

Kj is a direct limit class.

b) If K1 and K2 are direct limit classes, then K1 ∪K2 is a direct limit class.

�����. The assertion a) follows from definitions.

b) Suppose that (1) is valid and Ap ∈ [K1 ∪K2] for all p ∈ P . Denote Q = {q ∈
P : Aq ∈ [K2]}.
Let there exist p ∈ P such that for every q ∈ Q the relation p �� q holds. Put

R = {r ∈ P : p � r}. The set R is directed. Further, if r ∈ R, then Ar ∈ [K1]. If
s ∈ P , then we can choose s′ ∈ P such that s � s′, p � s′. We have s′ ∈ R. This
means that R is cofinal with P . Thus {Ar}r∈R −→ A and A ∈ [K1].
Now for every p ∈ P let there exists q ∈ Q such that p � q. Then Q is cofinal with

P and {Aq}q∈Q −→ A. Since K2 is a direct limit class, we obtain A ∈ [K2]. �

Direct limit classes of cyclically ordered groups have been dealt with by J. Jakubík

and G. Pringerová, [3].

Example. Let Oω be a monounary algebra such that �0 is the underlying set of
Oω and f(x) = 0 for all x ∈ �0 . Let k ∈ �. Let Ok = {0, 1, . . . , k} and f(x) = 0 for
all x ∈ {0, 1, . . . , k}. Put Kk = {C1, O1, . . . , Ok}.
Assume that (1) is valid and Ap ∈ [Kk] for all p ∈ P . Let op = f(x) for every

p ∈ P and x ∈ Ap. We have |A| � k + 1 according to Lemma 6. Suppose that
p, q ∈ P . Then there is s ∈ P such that p, q � s. Since ϕps(op) = os = ϕqs(oq), we

obtain op = oq. Further, f(x) = f(x) = op = oq = f(y) = f(y) for every x ∈ Ap and
y ∈ Aq. We conclude A ∈ [Kk] and Kk is a direct limit class.
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Consider K =
⋃

k∈�
Kk. Then K = {C1} ∪ {Oi, i ∈ �}. For every i ∈ � let Ei

be the trivial monounary algebra on the set {i} and let Ai = Oi ×Ei. Let ϕi,i+1 be

an embedding of Ai into Ai+1. Then {Ai}i∈� is a direct family which has the direct
limit isomorphic to Oω . Since Oω /∈ [K ], we have K is not a direct limit class.

This example shows that the union of direct limit classes need not be a direct limit

class. The following lemma and Proposition 4 give some sufficient conditions which
yield that the union of direct limit classes is a direct limit class.

Lemma 16. Let Kk ⊆ U c
k be a direct limit class for all k ∈ �0 . Then

⋃
k∈�0

Kk is

a direct limit class.

�����. Let K =
⋃

k∈�0
Kk. Suppose that K �= ∅. Let (1) be valid, Ap ∈ [K ] for

all p ∈ P .
Assume that {Ap}p∈P contains an algebra with a cycle. Let i be the length of

the shortest cycle in the algebras of {Ap}p∈P . Put Q = {q ∈ P : Aq ∈ U c
i }. A

homomorphic image of a cycle of length i can be only a cycle of length less or equal
than i, in our case thus a cycle of length i. If q ∈ Q and p ∈ P are such that q � p,

then p ∈ Q. Thus Q is directed and cofinal with P . We have {Aq}q∈Q −→ A and
A ∈ U c

i by Lemma 10. Because Ki is a direct limit class, we have A ∈ [Ki] and

A ∈ [K ].
Now assume that {Ap}p∈P contains no algebra with a cycle. Then Ap ∈ [K0] for

every p ∈ P . Since K0 is a direct limit class, we obtain A ∈ [K0] ⊆ [K ]. �

Proposition 1. The classes U , U c, U c
k and {Ck} are direct limit classes for

every k ∈ �0 .

�����. It is obvious that U is a direct limit class.

Let (1) be valid.
a) We will prove that U c is a direct limit class. Suppose that Ap ∈ U c for all

p ∈ P . Let x, y ∈ A. There exist p ∈ P and x1 ∈ x, y1 ∈ y such that x1, y1 ∈ Ap.
We can find m,n ∈ �0 such that fm(x1) = fn(y1) by the connectivity of Ap. This

means that fm(x) = fm(x1) = fn(y1) = fn(y). We obtain A ∈ U c and U c is a
direct limit class by Lemma 14 .

b) Suppose that k �= 0. Let Ap ∈ U c
k for all p ∈ P . We have A ∈ U c according to

a) and A has a cycle of length k by Lemma 10. So, U c
k is a direct limit class.

Now assume that Ap ∈ U c
0 for all p ∈ P . We have A ∈ U c

0 according to a) and
Lemma 10. Therefore U c

0 is a direct limit class.

c) Let k �= 0 and let Ap
∼= Ck for all p ∈ P . The algebra A is connected by a)

and A contains a cycle of length k according to Lemma 10. The operation f of A is
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injective according to Lemma 7. We have A ∼= Ck. Conclude {Ck} is a direct limit
class.

Let Ap
∼= C0 for all p ∈ P . The algebra A is connected by a) , A has no cycle by

Lemma 10 and A possesses a subalgebra isomorphic to C0 by Lemma 11 . In view
of Lemma 7 we have A ∼= C0. �

Let A be a monounary algebra. Let A satisfy the following condition: If C ⊆ A

and C is a cycle of A, then C ∼= C1. Then A is called a cycle-free algebra. Cycle-free
algebras have been dealt with by G. Bordalo [1].

Proposition 2. The class of all cycle-free monounary algebras is a direct limit
class.

�����. It follows from Lemma 10. �

4. Algebras of type τ

Let A be a monounary algebra and let {Aj}j∈J be a component partition of A.

We will say that A is of type τ if the following two conditions are valid:

1. If j ∈ J , then there exists k ∈ � such that Aj
∼= Ck;

2. if i, j ∈ J , i �= j and k, l ∈ � are such that Ai
∼= Ck, Aj

∼= Cl, then k does not
divide l.

Denote by T the class of all algebras of type τ .

We will prove that T is a direct limit class, and some special subclasses of T are
direct limit classes.

The definition of algebras of type τ yields that Ck ∈ T for every k ∈ �. Further,

if A is of type τ and C1 is a subalgebra of A, then A ∼= C1. Further, if A ∈ T and
B is a subalgebra of A, then B ∈ T .

Lemma 17. If A ∈ T , then the set {A} is a direct limit class.

�����. Suppose that (1) is valid and Ap
∼= A for each p ∈ P . Let p, q ∈ P . The

algebra A is of type τ and thus ϕpq is an isomorphism between Ap and Aq in view
of Lemma 4. This implies A ∼= A according to Lemma 9. �

Lemma 18. Let (1) be valid and let k ∈ �. If A contains a cycle of length k,

then there exists p ∈ P such that Aq contains a cycle of length k for each q ∈ P with
p � q.
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�����. We prove this assertion indirectly. Suppose that for each p ∈ P there

exists q ∈ P , p � q such that Aq does not contain a cycle of length k.
We will show that for every x ∈ A either fk(x) �= x or

|{x, f(x), . . . , fk−1(x)}| < k.

Then A does not contain a cycle of length k by virtue of Lemma 1.

Assume that x ∈ A and fk(x) = x. Let p ∈ P be such that x ∈ Ap. In view of
the relation fk(x) = x, there exists q ∈ P , p � q such that ϕpq(x) = ϕpq(fk(x)). We

obtain fk(ϕpq(x)) = ϕpq(x). Thus Aq has a cycle of length m, where m � k.
Let m < k. The equality

{x, f(x), . . . , fk−1(x)} = {ϕpq(x), f(ϕpq(x)), . . . , fk−1(ϕpq(x))}

is valid. Therefore |{x, f(x), . . . , fk−1(x)}| < k.

Let m = k. Choose s ∈ P , q � s such that As does not contain a cycle of length
k. Then the element ϕqs(ϕpq(x)) belongs to a cycle of As which has length n, n < k.

Analogously as in the previous case we obtain |{x, f(x), . . . , fk−1(x)}| � n < k. �

Proposition 3. The class T is a direct limit class.

�����. Let (1) be valid and Ap ∈ T for all p ∈ P . According to Lemma 7 and
Lemma 11, every component of A is isomorphic to Ck for some k ∈ �.

Assume that B,C are components of A such that B ∼= Ck, C ∼= Cl, k, l ∈ �. In
view of Lemma 18 there exist p, r ∈ P such that for each q ∈ P , p � q the algebra

Aq contains a cycle of length k and for each s ∈ P , r � s the algebra As contains a
cycle of length l. Choose t ∈ P such that r � t and p � t. We obtain that At has

cycles of lengths k, l. The algebra At is of type τ . We get that if k �= l, then k does
not divide l. If k = l, then B = C. �

Proposition 4. Let K ⊆ T and n ∈ �. If every element of K has less than n

components, then K is a direct limit class.

�����. Let (1) be valid and Ap ∈ [K ] for all p ∈ P . We have A ∈ T by the

previous theorem.
Let {Bi}i∈I be a component partition of A. Put

m =

{
|I| if I is finite,

n otherwise.

Let i(1), . . . , i(m) be different elements of I.
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Assume that j ∈ {1, . . . ,m} and k(j) ∈ � is such that Bi(j)
∼= Ck(j). We use

Lemma 18 and choose p(j) ∈ P which has the following property: if q ∈ P is such
that p(j) � q, then the algebra Aq has a cycle of length k(j).

Now let s ∈ P be such that p(1) � s, . . . , p(m) � s. The algebra As contains

cycles of lengths k(1), . . . , k(m). Numbers k(1), . . . , k(m) are different and thus A is
a subalgebra of As and m < n.

Assume that the algebra As has a component B such that B �∼= Ck(j) for j =

1, . . . ,m. Then B is a cycle of length k and k(j) does not divide k for j =
1, . . . ,m. So, the algebra As cannot be homomorphically embedded into A according

to Lemma 4, which is a contradiction with Lemma 5. Thus A ∼= As and A ∈ [K ].
�

5. One-element direct limit classes

In this section we will describe all monounary algebras A such that L−→
′[A] = [A];

in this case we will speak about one-element direct limit class.

Let A be a monounary algebra.

The notion of degree s(x) of an element x ∈ A was introduced by M. Novotný [9]
as follows. Let us denote by A(∞) the set of all elements x ∈ A such that there
exists a sequence {xn}n∈�0 of elements belonging to A with the property x0 = x and

f(xn) = xn−1 for each n ∈ �. Further, we put

A(0) = {x ∈ A : f−1(x) = ∅}.

Now we define a set A(λ) ⊆ A for each ordinal λ by induction. Let λ be an ordinal,

λ �= 0. Assume that we have defined A(α) for each ordinal α < λ. Then we put

A(λ) =

{
x ∈ A−

⋃

α<λ

A(α) : f−1(x) ⊆
⋃

α<λ

A(α)
}
.

The sets A(λ) are pairwise disjoint. For each x ∈ A, either x ∈ A(∞) or there is

an ordinal λ with x ∈ A(λ). In the former case we put s(x) =∞, in the latter we set
s(x) = λ. We put λ <∞ for each ordinal λ.
Let B be a subalgebra of A. Assume that there exists a homomorphism ϕ of A

onto B such that ϕ(b) = b for each b ∈ B. Then B is said to be a retract of A and

ϕ is called a retract mapping corresponding to B.

Retracts of monounary algebras were thoroughly studied by D. Jakubíková-
Studenovská [5], [6]. In view of [5], Theorem 1.3 we have
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Lemma 19. Let A ∈ U and let B be a subalgebra of A. Then B is a retract of

A if and only if the following conditions are satisfied:

(a) If y ∈ A is such that f(y) ∈ B, then there is z ∈ B such that s(y) � s(z) and
f(y) = f(z).

(b) For any componentD of A withD∩B = ∅, the following conditions are satisfied:
(b1) If D contains a cycle with d elements, then there is a component D′ of A

with D′ ∩ B �= ∅ and there is n ∈ � such that n divides d and D′ has a

cycle with n elements.

(b2) If D contains no cycle and x ∈ D, then there is y ∈ B such that s(fk(x)) �
s(fk(y)) for every k ∈ �0 .

Lemma 20. Let A ∈ U . If A contains a cycle, then there exists a retract T of A

such that T ∈ T .

�����. Follows from the previous statement. �

Lemma 21. Let A ∈ U and let B be a retract of A. Then B ∈ L−→′[A].

�����. Let ϕ be a retract mapping corresponding to B. Let P be the set of all
positive integers with the natural linear order. Assume that for each p ∈ P there

is an isomorphism ψp of A onto Ap. Put ϕpq(ψp(a)) = ψq(ϕ(a)) for all a ∈ A and
p, q ∈ P such that p < q. Then {Ap}p∈P is a direct family and the direct limit of

this family is an algebra isomorphic to B.

Corollary 5. Let K be a direct limit class. Let A ∈ K . If B is a retract of A,

then B ∈ [K ].

�����. We have L−→
′[A] ⊆ L−→′[K ] = [K ]. Thus Lemma 21 yields this assertion.

�

Corollary 6. LetK be a direct limit class of monounary algebras. IfK contains

an algebra with a cycle, then K contains an algebra of type τ .

�����. The class [K ] possesses an algebra of type τ according to Lemma 20
and Corollary 1. So, the claim follows from [T ] = T . �

Lemma 22. Let A ∈ U . Then there exists an algebra B ∈ L−→′[A] such that each
component of B is isomorphic to Ck for some k ∈ �0 .
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�����. Let P be the set of all positive integers with the natural linear order.

Assume that for each p ∈ P there is an isomorphism ψp of A onto Ap. If a ∈ A, we
will write ψp(a) = ap. If p ∈ P , then we define ϕp,p+1 by setting

ϕp,p+1(ap) = f(ap+1)

for each a ∈ A. So we have defined a direct family of monounary algebras. Let
{Ap}p∈P −→ A. We will show that the operation f on A is an injective and surjective

mapping. Then the proof will be ready.

Assume that u, v ∈ A and f(u) = f(v). Choose p, q ∈ P and a, b ∈ A such
that ap ∈ u, bq ∈ v. Then f(ap) = f(bq) and therefore there exists s ∈ P such

that p � s, q � s and ϕps(f(ap)) = ϕqs(f(bq)). Thus fs+1−p(as) = fs−p(f(as)) =
fs−q(f(bs)) = fs+1−q(bs). This yields fs+1−p(a) = fs+1−q(b) because ψs is an

isomorphism. We get ϕp,s+1(ap) = fs+1−p(as+1) = fs+1−q(bs+1) = ϕq,s+1(bq). This
means u = v.

Further, let p ∈ P and a ∈ A. Then ap = ϕp,p+1(ap) = f(ap+1) = f(ap+1). �

Corollary 7. Let K be a direct limit class of monounary algebras. If K �= ∅,
then there exists an algebra B ∈ K such that each component of B is isomorphic

to Ck for some k ∈ �0 .

�����. Lemma 22 yields this assertion. �

Theorem 1. Let A ∈ U . The following conditions are equivalent:

(i) {A} is a direct limit class,
(ii) L−→

′[A] = [A],

(iii) either A ∼= C0 or A ∈ T .

�����. The equivalence (i) and (ii) follows from the definition. Now let (iii)
hold. The set {C0} is a direct limit class in view of Proposition 1. If A is an algebra
of type τ , then {A} is a direct limit class by Lemma 17.
Conversely, assume that A �∼= C0 and A is not of type τ . Let K be a direct limit

class and A ∈ K .

If A has a cycle, then K contains an algebra of type τ by Corollary 2. Thus K

has more than one element.

If A has no cycle, then K contains an algebra B such that each component of

B is isomorphic to Ck for some k ∈ �0 according to Corollary 3. If A �∼= B, then
K possesses more than one element. If A ∼= B, then A is not connected and each

component of A is isomorphic to C0. Thus there exists a retract C of A such that
C ∼= C0 and C ∈ [K ] by Corollary 1. Therefore K has more than one element. �
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Theorem 2. Let K be a direct limit class of monounary algebras. Then there

exists an algebra A ∈ K such that {A} is a direct limit class.

�����. We will prove that K ∩ (T ∪ [C0]) �= ∅.
If K contains an algebra with a cycle, then K ∩T �= ∅ according to Corollary 2.
LetK contain no algebra with a cycle. Then Corollary 3 implies thatK contains

an algebra B which has all components isomorphic to C0. Thus B has a retract C
isomorphic to C0. We have C ∈ [K ] by Corollary 1 and C ∈ [C0]. Conclude
K ∩ [C0] �= ∅. �
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