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σ-INTERPOLATION LATTICE-ORDERED GROUPS

Michael R. Darnel, South Bend

(Received January 22, 1996)

Abstract. In [1], Jakubík showed that the class of σ-interpolation lattice-ordered groups
forms a radical class, but left open the question of whether the class forms a torsion class.
In this paper, we show that this class does indeed form a torsion class.

A radical class of lattice-ordered groups is a class C closed under two operations:
(i) If G ∈ C and A is a convex �-subgroup of G, then A ∈ C; and
(ii) If {Aλ}Λ is a set of convex �-subgroups of an �-group G such that for all λ ∈ Λ,

Aλ ∈ C, then
∨
Λ

Aλ ∈ C.

A torsion class of lattice-ordered groups is a radical class that is also closed with

respect to �-homomorphic images.

A lattice-ordered group G has the σ-interpolation property if for any countable

subsets A = {an} and B = {bn} ⊆ G such that for any am ∈ A and any bn ∈ B,
am � bn, then there exists h ∈ G such that for all positive integers n, an � h � bn.

In [J] Jakubík proved that the class of all σ-interpolation lattice-ordered group forms
a radical class.

Theorem. The class of σ-interpolation lattice-ordered groups forms a torsion

class.

�����. Let K be an �-ideal of an �-group G such that G has the σ-interpolation
property. Let {am}, {bn} ⊂ G/K be sequences such that for every am and every

bn, am � bn. For each K-coset [g] in {am} ∪ {bn}, choose a representative d. Since
{am} ∪ {bn} is countable, we can enumerate its elements as {Kd1, Kd2, . . .}.
Let d′1 = d1.
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Now let n be a positive integer such that for all 1 � i � n, d′i has been chosen

such that whenever 1 � i, j � n and Kdi ∈ {am} and Kdj ∈ {bn}, d′i � d′j . Let
A′

n = {i : 1 � i � n and Kd′i ∈ {am}}; define B′
n similarly.

Now if Kdn+1 ∈ {am}, then for all j ∈ Bn, there exists kj ∈ K such that

kjdn+1 � d′j . In this case, let d′n+1 =
( ∧

j∈Bn

kj

)
dn+1. Then Kd′n+1 = Kdn+1 and

d′n+1 � d′j for all j ∈ Bn. If Kdn+1 ∈ {bn}, we similarly find, for all i ∈ An, ki such

that d′i � kidn+1, and let d′n+1 =
( ∨

i∈An

ki

)
dn+1.

Continue in this way until we exhaust {am} ∪ {bn}. Let A′ = {d′n : Kd′n ∈ {am}}
and B′ = {d′n : Kd′n ∈ {bn}}, and enumerate both by the induced enumeration from
{am} ∪ {bn} : Ka′i = ai for all i, and Kb′j = bj for all j. We obtain that {a′m}
and {b′n} are sequences of G such that for any a′m and any b′n, a′n � b′n. By the

σ-interpolation property, there exists h ∈ G such that a′n � h � b′n.
But then Kan � Kh � Kbn. So �-homomorphic images also have the σ-

interpolation property. �
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