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THE IMPACT OF UNBOUNDED SWINGS OF THE FORCING TERM

ON THE ASYMPTOTIC BEHAVIOR OF FUNCTIONAL EQUATIONS

Bhagat Singh, Manitowoc

(Received May 17, 1996)

Abstract. Necessary and sufficient conditions have been found to force all solutions of
the equation

(r(t)y′(t))(n−1) + a(t)h(y(g(t))) = f(t),

to behave in peculiar ways. These results are then extended to the elliptic equation

|x|p−1∆y(|x|) + a(|x|)h(y(g(|x|))) = f(|x|)

where ∆ is the Laplace operator and p � 3 is an integer.
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1. Introduction

Recently this author [14] studied the functional equation

(1) (r(t)y′(t))(n−1) + a(t)h(y(g(t))) = f(t),

for some integer n > 0. In this work, we had found conditions subject to which
all oscillatory solutions of equation (1) approach zero as t → ∞. Some of these
conditions were somewhat weakened to achieve necessity and sufficiency, especially
when a(t) > 0. Our work in [14] had improved upon our earlier work in [9, 13]. In

fact, in our work in [9, 13], we had showed that subject to
∫ ∞

tn−2|a(t)| dt < ∞,(2)
∫ ∞

tn−2|f(t)| dt < ∞,(3)
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and

(4)
tn−k

r(t)
� Q,

where Q > 0, 0 � k < 1, for t ∈ [T,∞), T > 0, all oscillatory solutions of equation (1)

tend to zero as t →∞. We pursued this study further, and in [16], we strengthened
conditions (2) and (3) to require

∫ ∞
|a(t)| dt < ∞,(5)

∫ ∞
|f(t)| dt < ∞,(6)

and (4). It was observed, via an example in [16] that the condition on the constant

k, namely

(7) 0 � k < 1

could not be weakened. In other words, subject to (5) and (6), it was not possible

to have k � 1 in order to achieve the same results.
Our main goal in this work is twofold:

First we build on the condition (7) and obtain results which force all solutions of
equation (1) to be oscillatory and unbounded as t → ∞. Secondly we apply these
results to the oscillatory behavior of the elliptic equation

(8) ∆y(|x|) + 1
|x|p−1 a(|x|)h(y(g(|x|))) =

1
|x|p−1 f(|x|).

In equation (8), ∆ is the Laplace operator

(9) ∆y =
p∑

i=1

δ2y

δx2i

and p � 3, an integer. Elliptic equations such as (8) are natural extensions of certain
forms of ordinary differential equations.

For related results also see Chen [1], Hammett [3], Kusano and Onose [4, 5], and
this author [10–13]. For oscillation theorems related to integral equations see this

author [15]. Our work here complements the work of these authors.
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2. Definitions and assumptions

Unless otherwise stated, the following assumptions and definitions apply through-

out this work:

(i) g(t), r(t), a(t), f(t), and h(t) are � → � and continuous, � being the real line;

(ii) r(t) > 0 on �+ where �+ is the positive half real line for t � N > 0. The
constant N is now fixed for the rest of this work;

(iii) th(t) > 0, and there exists an m > 0 such that

(10)
h(t)

t
� m, t � N ;

(iv) 0 < g(t) � t, g(t)→∞ as t →∞.
A function continuous on � is said to be oscillatory on �+ if it has arbitrarily

large zeros on �+ . Otherwise it is called nonoscillatory.

The preceding conditions guarantee that all solutions of equation (1) can be con-
tinuously extended to all of �+ . This fact was observed in Theorem 2.1 of [14]. From

this point on, the term “solution” only applies to a solution which is continuously
extendable for all t � N .

3. Main results

The following Lemma 1 is Theorem 3.1 in [16].

Lemma 1. In addition to (i) through (iv), suppose

∫ ∞
|a(t)| dt < ∞,(11)

∫ ∞
|f(t)| dt < ∞(12)

and there exists a constant Q > 0 such that

(13)
1

r(t)
� Q

tn−k
, 0 � k < 1

for t � N . Then all oscillatory solutions of equation (1) approach zero as t →∞.

�����. Follows from Theorem 3.1 of [16]. �
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Theorem 1. Suppose assumptions (i) through (iv) and conditions (11) and (13)
of Lemma 1 hold. Further suppose that

(14) lim sup
t→∞

∫ t 1
r(s)

∫ s (s− x)n−2

(n− 2)! f(x) dxds =∞

and

(15) lim inf
t→∞

∫ t 1
r(s)

∫ s (s− x)n−2

(n− 2)! f(x) dxds = −∞.

Let y(t) be any solution of equation (1). Then

(16) lim sup
t→∞

|y(t)| =∞.

�����. Let t0 > N and fixed. Suppose S0 > t0 is sufficiently large so that
g(t) � t0 for t � S0. On repeated integration from equation (1), we obtain

r(t)y′(t) =
n−1∑

i=1

Ci(t− t0)i−1(17)

−
∫ t

t0

(t− x)n−2

(n− 2)! a(x)h(y(g(x))) dx

+
∫ t

t0

(t− x)n−2

(n− 2)! f(x) dx

where

Ci =
(r(t0)y′(t0))(i−1)

(i− 1)! , i = 1, 2, . . . , n− 1.

Equation (17) yields

y(g(t)) = y(g(t0)) +
n−1∑

i=1

Ci

∫ g(t)

t0

(s− t0)i−1

r(s)
ds(18)

−
∫ g(t)

t0

1
r(s)

∫ s

t0

(s− x)n−2a(x)h(y(g(x)))
(n− 2)! dxds

+
∫ g(t)

t0

1
r(s)

∫ s

t0

(s− x)n−2f(x)
(n− 2)! dxds.

Suppose to the contrary that y(t) is bounded as t → ∞. Since condition (13) of
Lemma 1 holds, the first two terms on the right side of (18) are finite as t →∞. As
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for the third term, we notice that

∣∣∣∣
∫ g(t)

t0

1
r(s)

∫ s

t0

(s− x)n−2a(x)h(y(g(x)))
(n− 2)! dxds

∣∣∣∣(19)

� Qm

∫ s

t0

∫ t

t0

(s− x)n−2|a(x)||y(g(x))|
(n− 2)!sn−k

dxds.

Changing the order of integration in the right side of (19) and using the fact that

y(t) is bounded we get

∣∣∣∣
∫ g(t)

t0

1
r(s)

∫ s

t0

(s− x)n−2a(x)h(y(g(x)))
(n− 2)! dxds

∣∣∣∣

� M0

∫ t

t0

(∫ t

x

1
s2−k

ds

)
|a(x)| dx < ∞, since 0 � k < 1;

where

M0 = Qmd, |y(t)| � d for t � t0

for some d > 0. Thus the third term on the right side of (18) remains finite as
t → ∞. Since the last integral on the right side of (18) swings between −∞ and ∞
and the left side of (18) remains finite as t → ∞, we run into a contradiction. This
completes the prof of Theorem 1.

Remark 1. Since 0 � k < 1 in condition (13), which in accordance with our work
in [16] cannot be weakened, it is not clear from the preceding proof if conditions (14)

and (15) could be simply replaced by requiring

(20)
∫ ∞

|f(t)| dt =∞.

A partial answer to this query is provided by Theorem 3 later. Our next theorem
gives sufficient conditions for equation (1) to be oscillatory, that is, all solutions of
equation (1) are oscillatory. �

Theorem 2. Suppose assumptions (i) through (iv) and condition (13) of Lemma 1
hold. Further suppose that a(t) � 0 for t � 0, (14), (15) hold, and

(21)
∫ ∞

a(t) dt < ∞.

Then all solutions of equation (1) are oscillatory and unbounded.

�����. Suppose to the contrary that y(t) is a nonoscillatory solution of equa-
tion (1). Let t0 > N be fixed. Suppose S0 > t0 is sufficiently large so that g(t) � t0
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for t � S0. Without any loss of generality suppose y(t) � 0 and y(g(t)) � 0 for
t � S0. Following the proof of Theorem 1, we arrive at (18).
Rewriting (18) we have

y(g(t))− y(g(t0))−
n−1∑

i=1

Ci

∫ g(t)

t0

(s− t0)i−1

r(s)
ds(22)

+
∫ g(t)

t0

1
r(s)

∫ s

t0

(s− x)n−2a(x)h(y(g(x)))
(n− 2)! dxds

=
∫ g(t)

t0

1
r(s)

∫ s

t0

(s− x)n−2f(x)
(n− 2)! dxds.

Now the second and third term on the left side of (22) are finite due to condition
(13). The fourth term is not only finite as shown before but also positive. Thus all

terms on the left side of (22) are either bounded or nonnegative. Since the right side
of (22) swings between −∞ and ∞ as t →∞, a contradiction is reached. The proof
is essentially complete since the unboundedness of y(t) follows from Theorem 1. �

Example 1. The equation

(23) (t2y′)′ +
1
t3

y(t− �) = 4t2 cos t+ (2t− t3) sin t− t− �

t3
sin(t), t � �

satisfies the conditions and conclusion of Theorem 1 and 2. It has y = t sin t as a

solution.

Remark 2. The concern raised in Remark 1 about condition (20) is partially
answered by our next theorem. In this regard Lemma 1 is useful below.

Theorem 3. Suppose assumption (i) through (iv) and conditions (11) and (13)
of Lemma 1 hold. Further suppose that whenever the condition (20) holds, then it
also implies that conditions (14) and (15) of Theorem 1 hold. Then a necessary and

sufficient condition for all oscillatory solutions of equation (1) to not approach zero
is that condition (20), namely

(20)
∫ ∞

|f(t)| dt =∞.

is satisfied.

�����. Necessity follows by Lemma 1.

Sufficiency. Since (20) holds, conditions (14) and (15) of Theorem 1 are implied.
Let y(t) be an oscillatory solution of equation (1) such that y(t) → 0 as t → ∞.
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We follow the proof of Theorem 1 and arrive at conclusion (18). Now, under the

conditions of this theorem, the first three terms on the right side of (18) have been
shown to be finite in the proof of Theorem 1. Since the last term on the right side of
(18) swings between −∞ and ∞; and the left side of (18) approaches zero, we reach
a contradiction which completes the proof of this theorem. �

Remark 3. Theorem 3 essentially states that when f(x) is sufficiently large so

that conditions (20), (14), and (15) hold, only then would it imply that an oscillatory
solution of equation (1) would not converge to zero asymptotically. The equation

(23) of Example 1 also satisfies the conclusion of Theorem 3. It can easily be verified
that all conditions of this theorem are satisfied.

4. Impact on an elliptic equation

We now turn our attention to the application of the preceding three theorems to
the elliptic equation (8), namely

(8) ∆y(|x|) + 1
|x|p−1 a(|x|)h(y(g(|x|))) =

1
|x|p−1 f(|x|)

for an integer p � 3. We study the asymptotic behavior of any solution y(|x|) of (8)
which exists in the domain Ω where

(24) x ∈ Ω = {x : |x| > N0} ⊂ �
p , N0 > 0, an integer,

and |x| is the Euclidean distance defined by

(25) |x| =

√√√√
p∑

i=1

x2i .

∆ as noted before is the Laplace operator.

Lemma 2. A radially symmetric function y(|x|) is a solution of the elliptic equa-
tion (8) if and only if y(t) is a solution of the differential equation

(26) (tp−1y′(t))′ + a(t)h(y(g(t))) = f(t)

where t = |x|.
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�����. Suppose first that y(|x|) is a solution of equation (8). Then

δ2y

δx21
=

δ

δx1

( δy

δx1

)

=
δ

δx1

(
y′(t) · x1

t

)

=
(
y′′(t) · x1

t
− y′(t)

x1
t2

)x1
t
+

y′(t)
t

.

Therefore

(27) ∆y =
p∑

i=i

δ2y

δx2i
= y′′(t)− y′(t)

t
+

py′(t)
t

.

(27) now yields

(28) tp−1∆y = tp−1y′′(t)− tp−2y′(t) + ptp−2y′(t) = (tp−1y′(t))′

from which we get

(29) tp−1∆y + a(t)h(y(g(t))) = (tp−1y′(t))′ + a(t)h(y(g(t))) = f(t).

Similarly if y(t) satisfies equation (26), then it readily follows that y(|x|) satisfies
equation (8). This completes the proof of Lemma 2.
The following theorem is an analogue of Theorem 1 as applied to the elliptic

equation (8). �

Theorem 4. Suppose assumptions (i) through (iv) and condition (11) of Lemma 1
hold. Further suppose that

(30) lim sup
t→∞

∫ t 1
sp−1

∫ s

f(x) dxds =∞

and

(31) lim inf
t→−∞

∫ t 1
sp−1

∫ s

f(x) dxds = −∞.

Let y(|x|) be any solution of equation (8) which exists in the domain Ω = {x : |x| >
N0}, N0 > 0 for some integer N0. Then y(|x|) is unbounded.

�����. We notice that p � 3. Therefore,

r(t) =
1

tp−1
� 1

t2−k
,
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0 � k < 1. Thus condition (13) of Lemma 1 holds. Since all conditions of Theorem 1

for n = 2 are now satisfied, all solutions of the equation

(tp−1y′(t))′ + a(t)h(y(g(t))) = f(t)

are unbounded. The conclusion now applies to its companion elliptic equation (8).

This completes the proof. �

Example 2. Consider the equation

(32) |x|3∆y(|x|) + 1
|x|2 y(|x|) = (3|x|

2 − |x|4) sin(|x|) + 5|x|3 cos(|x|) + sin(|x|)|x|

for p = 4. Equation (32) satisfies the conditions of Theorem 4. Thus all solutions of
(32) defined in the exterior domain Ω = {x : |x| > N0} where N0 > 0 some integer,

are unbounded. In fact,
y(|x|) = |x| sin(|x|)

is one such solution. Its companion equation

(33) (t3y′(t))′ +
1
t2

y(t) = (3t2 − t4) sin t+ 5t3 cos t+
sin t

t
, t > 0

has the solution y(t) = t sin t.

The following is the analogue of Theorem 2 in relation to equation (8).

Theorem 5. Suppose assumptions (i) through (iv), (30) and (31) hold. Further
suppose that a(t) � 0 for t � 0 and

∫∞
a(t) dt < ∞. Then all solutions of equation

(8) existing in the exterior domain Ω = {x : |x| > N0} for some integer N0 > 0 are
oscillatory and unbounded.

�����. Follows in a manner similar to the proof of Theorem 4. �

Remark 4. The equation (32) of Example 2 also satisfies the conditions and the
conclusion of Theorem 5.

Finally, we have Theorem 6 as an analogue of Theorem 3 as applied to equation

(8).

Theorem 6. Suppose assumptions (i) through (iv) and condition (11) of Lemma 1
hold. Further suppose that whenever

∫ ∞
|f(t)| dt =∞
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it implies that conditions (30) and (31) of Theorem 4 also hold. Then a necessary and

sufficient condition for all oscillatory solutions of the elliptic equation (8), existing
in the exterior domain Ω = {x : |x| > N0} for some integer N0 > 0, to not approach
zero is that ∫ ∞

|f(t)| dt =∞.
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