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In this note we generalize certain results on when the space K(X, Y ) of compact

operators contains an isomorphic copy of the sequence space c0, a fact strictly con-
nected to the nonexistence of a projection from the space L(X, Y ) onto the subspace

K(X, Y ) as showed in the papers [3], [6]. One of the first results in this direction
was obtained by Kalton in [7] who proved that if there is a non compact operator

with a domain space X possessing an unconditional finite dimensional expansion
of the identity and taking values in an arbitrary Banach space Y then c0 embeds

into K(X, Y ). Diestel and Morrison [1] have proved the same statement under the
assumption that Y has an unconditional basis. Other results of the same nature ob-

tained by Feder in [5], have been generalized by the authors in the recent paper [4];
in particular, it was there shown that if Lw∗(X∗, Y ) contains a noncompact operator,
if the space Y has the compact approximation property and if Y ⊂ Y1 where the

space Y1 has an unconditional expansion of the identity, then again c0 ⊂ Kw∗(X∗, Y )
(here Lw∗(X∗, Y ) denotes the space of w∗-w continuous operators). Another similar

result is contained in [2] where the first author proved that if there is a non compact
operator factorizing through a reflexive Banach space with an unconditional basis

then again c0 embeds into K(X, Y ).

*The work of the first-named author was supported by M.U.R.S.T. of Italy (40%,
1994), the work of the second-named author was supported by the grants of AV ČR
No. A1019504 and of GA ČR No. 201/94/0069.
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In this note we show that all these results, as well as other facts from [5], actually

are consequence of our Proposition 1. It describes a quite general procedure useful
to construct copies of c0 inside K(X, Y ) when starting from the existence of non
compact operators.

We observe that the proof of our Proposition 1 below actually is a refinement of
the techniques used in the previous papers; but even if not original at all, it allows

us to cover (in the separable case) the old quoted results and to furnish some new
facts; among them Theorem 1 is, in our opinion, the main new application.

Before finishing this Introduction we remark that in [2] and [6] it was independently
shown that if a noncompact operator T ∈ L(X, Y ) factorizes through a Banach space

which has an unconditional basis then c0 ⊂ K(X, Y ); this seems to be the only old
result not covered by the present ones.

Before presenting the main result we need a definition.

Definition. We shall say that {Kn} ⊂ K(X) is an unconditional compact ap-
proximating sequence if ‖Anx − x‖ −→ 0 and the sum

∑
n

(An+1 − An)x is weakly

unconditionally Cauchy for all x ∈ X . Moreover, we shall say that such a sequence

is shrinking if {K∗
n} is an (unconditional) compact approximating sequence for X∗.

A Banach space X is said to have the (shrinking) unconditional compact approxima-

tion property if there is a (shrinking) unconditional compact approximating sequence
for X .

In fact the above definition is possible for nets also, but in this section sequences
are substantial.

We shall use also the following refinement of a fact due to Kalton [7]:

Fact (K). Let X̂ ⊂ X∗ be total on X , let Ŷ ⊂ Y ∗ be a norming subspace and

suppose that the sequence {Tn} ⊂ K(X, Y ) has the property that ŷ(Tnx)
n−→ 0 for

all x ∈ X and all ŷ ∈ Ŷ . Suppose further that the unit ball BX of X is w(X, X̂)

compact, the unit ball BŶ of Ŷ is w(Ŷ , Y ) compact and that the Tn’s are w(X, X̂)-
w(Y, Ŷ ) continuous. Then Tn −→ 0 in the weak topology of the space L(X, Y ).

�����. Suppose T ∈ K(X, Y ) is w(X, X̂)-w(Y, Ŷ ) continuous. Then consider

the compact topological space K = BX ×BŶ where on BX we consider the w(X, X̂)
topology and on BŶ the w(Ŷ , Y )-topology. Let f(x, ŷ) = ŷT (x) define a real function

on K. Using the fact that on T (BX) the norm topology and the Hausdorff topology
w(Y, Ŷ ) coincide, it is not difficult to prove that f is continuous. So we may consider

Tn as continuous functions on the compact Hausdorff space K equipped with the
described topology. Then our convergence assumption and the Lebesgue theorem

imply that Tn −→ 0 in the weak topology of the normed space C(K) and thus also
in the weak topology of the Banach space K(X, Y ). �
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We are now ready to give our

Proposition 1. Let T ∈ L(X, Y ) be an operator and let T = BA be a factoriza-

tion of T through a Banach space E. Suppose that E is isomorphic to a subspace of

a Banach space E1 by an isomorphism J . Suppose also that X̂ is a total subspace

of X∗. Finally, let the following conditions (i)–(vi) be satisfied:
(i) there are a Banach space Y1 containing isomorphically Y by an isomorphism I

and a bounded linear operator B̃ : E1 → Y1, that is an extension of the operator

B : E → Y in the sense that B̃J(e) = IB(e) for all e ∈ E,

(ii) there are a norming subspace Ŷ1 of Y ∗
1 and continuous operators Bn ∈ K(E1)

for all n ∈ N , such that

ŷ1

( n∑

i=1

B̃BiJA(x)

)
n−→ ŷ1(B̃JA(x)) for all x ∈ Xand all ŷ1 ∈ Ŷ1

and such that
∑

Bn is a weakly unconditionally Cauchy (WUC) series in the

space L(E1),

(iii) there is a sequence {An} ⊂ K(E) of continuous operators such that, for all
x ∈ X , IBAnA(x) −→ IBA(x) in the w(Y1, Ŷ1)-topology,

(iv) IBAiA : X → Y1 is w(X, X̂)-w(Y1, Ŷ1) continuous,
(v) B̃BiJA : X → Y1 is w(X, X̂)-w(Y1, Ŷ1) continuous,

(vi) the unit balls of the spaces X and Ŷ1 are compact in the w(X, X̂) and w(Ŷ1, Y1)
topologies, respectively.

Then certain convex blocks of {IBAiA} are (WUC) and, in each point x ∈ X ,

they converge to IT (x) in the w(Y1, Ŷ1) topology.

Moreover, if the operator T is not compact then the sequence space c0 is isomor-

phically contained in span{BAiA} ⊂ K(X, Y ).

�����. The conditions (ii) and (iii) give that for all x ∈ X and all ŷ1 ∈ Ŷ1 we

have

(1) ŷ1(IBAnA(x))
n−→ ŷ1(IBA(x))

and

ŷ1

( n∑

i=1

B̃BiJA(x)

)
n−→ ŷ1(B̃JA(x)).

Thus, since B̃ extends B in the sense quoted in the assumption (ii), we get easily

(2) ŷ1(IBAnA(x)) − ŷ1

( n∑

i=1

B̃BiJA(x)

)
n−→ 0.
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Now from (iv)–(v) we see that the operators

IBAnA−
n∑

i=1

B̃BiJA : X → Y1

are w(X, X̂)-w(Y1, Ŷ1) continuous; so we may deduce from (vi), (2) and Fact (K)
that

Un = IBAnA−
n∑

i=1

B̃BiJA
n−→ 0

in the weak topology of the space K(X, Y1).
Now we proceed as in [9, p. 32]. Since Un

w−→ 0, we can find disjoint convex

combinations (blocks) U ′
j of {Un}, such that

∞∑
j=1

‖U ′
j‖ < ∞. Let Y ′

j be the blocks

of {Yn} = {BAnA} built with the same coefficients and let us put Zj = Y ′
j+1 − Y ′

j .

Computing, we get that
IZj = U ′

j+1 − U ′
j + C′

j ,

where C′
j ’s are disjoint blocks of {Cn} = {B̃BnJA} with coefficients between 0 and 1.

Now we claim that
∞∑

j=1
IZj is a weakly unconditionally Cauchy (WUC) series. To

see this let Z∗ ∈ K(X, Y1)∗. Then we have

∞∑

j=1

|Z∗(IZj)| � 2‖Z∗‖ ·
∞∑

j=1

‖U ′
j‖+

∞∑

n=1

|Z∗(Cn)| < ∞

using the fact that
∞∑

j=1
Cn is a WUC series thanks to (ii). Indeed, (ii) means that

‖
m∑

n=1
±Bn‖ � K for all m and all ± and thus {‖

m∑
n=1

±Cn‖; m ∈ N} is also bounded,

meaning that
∑

Cn is WUC. But I is an isomorphism; so we conclude that also
∞∑

j=1
Zj is a WUC series. Further we observe that

∞∑
j=1

Zj is not norm convergent.

Indeed, (1) may be rewritten

ŷ1(IYn(x))
n−→ ŷ1(IT (x)) for ŷ1 ∈ Ŷ1, x ∈ X

which implies that also for convex blocks Y ′
j we have

(3) ŷ1(IY ′
n(x))

n−→ ŷ1(IT (x)).

Now assume that T is not compact; it easily follows that the sequence {Y ′
n} ⊂

K(X, Y ) does not converge in the norm topology since otherwise, by (3), {IY ′
n}

would converge (in the norm) to the non compact operator IT . The famous Bessaga-

Pe�lczyński Theorem (see [8]) now ensures that a subsequence of {Zj} is equivalent
to the unit vector basis of c0, which finishes the proof. �
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As a special case we might formulate

Proposition 1a. Let T ∈ L(X, Y ) be an operator and let T = BA be a factor-

ization of T through a Banach space E. Suppose that E is isomorphic to a subspace

of a Banach space E1 by an isomorphism J and that, further, Ê ⊂ E∗ and Ê1 ⊂ E∗
1

are subspaces such that J is w(E, Ê)-w(E1, Ê1) continuous. Suppose also that Ŷ

is a subspace of Y ∗, X̂ a total subspace of X∗. Finally, let the following conditions

(i)–(vi) be satisfied:

(i) there are a Banach space Y1 containing isomorphically Y by an isomorphism I,

a norming subspace Ŷ1 of Y ∗
1 such that I is w(Y, Ŷ )-w(Y1, Ŷ1) continuous and

a w(E1, Ê1)-w(Y1, Ŷ1) continuous bounded linear operator B̃ : E1 → Y1, that is

an extension of the operator B : E → Y in the sense that B̃J(e) = IB(e) for
all e ∈ E,

(ii) there are w(E1, Ê1)-continuous operators Bn ∈ K(E1) for all n ∈ N , such that
∞∑

n=1
ẑ1(Bn(z1)) = ẑ1(z1) for all z1 ∈ E1 and all ẑ1 ∈ Ê1 and such that

∑
Bn is

a weakly unconditionally Cauchy (WUC) series in the space L(E1),

(iii) there is a sequence {An} ⊂ K(E) of w(E, Ê)-continuous operators such that,
for all z ∈ E, An(z) −→ z in the w(E, Ê)-topology,

(iv) A : X → E is w(X, X̂)-w(E, Ê) continuous and bounded,

(v) B : E → Y is w(E, Ê)-w(Y, Ŷ ) continuous and bounded,

(vi) the unit balls of the spaces X and Ŷ1 are compact in the w(X, X̂) and w(Ŷ1, Y1)
topologies, respectively.

Then certain convex blocks of {IBAiA} are (WUC) and, in each point x ∈ X ,

they converge to IT (x) in the w(Y1, Ŷ1) topology.

Moreover, if the operator T is not compact then the sequence space c0 is isomor-

phically contained in span{BAiA} ⊂ K(X, Y ).

Remark 1. As we shall see below the condition (i) is usually automatically
verified by considering Y embedded into an injective superspace Y1. A version of the

Proposition where X is a quotient of an l1(Γ) is also possible.

Remark 2. Note that the following condition (ii)′ implies the conditions (ii) in
the Propositions 1 and 1a.

(ii)′ There are w(E1, Ê1)-continuous operators Bn ∈ K(E1) for all n ∈ N , such

that
∞∑

n=1
Bn(e1) = e1 where the countable sum converges unconditionally in the

norm for all e1 ∈ E1.

Moreover, if
∑
n

Bn(e1) converges unconditionally to e1 for all e1 ∈ E1 then (ii)′

together with the other assumptions of the Propositions also imply that certain
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convex blocks of {BAiA} are, for each point x ∈ X , unconditionally converging to

T (x). This applies also in the Corollaries 1–4 and in the Theorem 1. Indeed, the

set {
m∑

n=1
±Bn(e1); m ∈ N} is bounded for all e1 ∈ E1. The uniform boundedness

principle then yields that the set {‖
m∑

n=1
±Bn‖; m ∈ N} is bounded again.

Corollary 1([4]). Let T ∈ Lw∗(X∗, Y ) be a noncompact operator. Suppose that

Y has the compact approximation property and that Y is a subspace of a separable

Banach space Y1 such that Y1 has the unconditional compact approximation property.

Then c0 ⊂ Kw∗(X∗, Y ).

�����. It is enough to choose E = Y and B = IdY in the Proposition. �

Similarly we get the more general and new

Corollary 2. Let T = BA : X∗ → Y be a factorization of a noncompact operator

T through a Banach space E such that A : X∗ → E is w∗-w continuous and B ∈
L(E, Y ). Suppose that E has the compact approximation property and that E is a

subspace of a separable Banach space E1 such that E1 has an unconditional compact

approximation property. Then c0 ⊂ K(X, Y ).

�����. We choose in the Proposition for Y1 any injective Banach space con-

taining Y , e.g. l∞(BY ∗) , Ŷ1 = Y ∗
1 and Ŷ = Y ∗. �

Similar statement may be given e.g. for the case when A is w∗-w∗ continuous and
B is w∗-w continuous.

Corollary 3. Let T = BA : X∗ → Y be a factorization of a noncompact operator

T through a Banach space E∗ such that A : X∗ → E∗ is w∗-w∗ continuous and

B ∈ L(E∗, Y ) is w∗-w continuous. Suppose that E has the compact approximation

property and that E is a quotientspace of a separable Banach space E1 such that the

imbedding J : E∗ → E∗
1 is w∗-w∗ continuous and such that E1 has an unconditional

compact approximation property. Suppose further that I is an imbedding of the

space Y into the Banach space Y1 such that the operator B has an extension to

a w∗-w continuos operator B̃1 : E∗
1 → Y1 in the sense that B̃J(e) = IB(e) for all

e ∈ E∗. Then c0 ⊂ K(X, Y ).

The next theorem is in fact a consequence of our Proposition 1. Because it has a

less technical formulation, we prefer to state it separately.

Theorem 1. Let T ∈ L(X, Y ) be a noncompact operator and let T = BA be a

factorization of T through a Banach space E. Suppose that
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either

(1) E is isomorphic to a quotient space of a Banach space E1, the space E∗ has the

compact approximation property and the space E1 has the shrinking uncondi-

tional compact approximation property

or

(2) E is isomorphic to a subspace of a Banach space E1, the space E∗∗ has the

compact approximation property and the space E∗
1 has the shrinking uncondi-

tional compact approximation property.

Then the sequence space c0 is isomorphically contained in K(X, Y ).

�����. Case 1. We shall apply the Proposition to the noncompact operator

T ∗ = A∗B∗ : Y ∗ → X∗. Let Q : E1 → E be the surjection operator. It is well
known that we may choose a linear surjection q : l1(Γ) → X . The lifting property

of l1(Γ) yields an operator S : l1(Γ) → E1 such that Aq = QS. In the Proposition
we may now substitute for the space Y the space X∗, for the isomorphic embedding

J : E → E1 the w∗-w∗ continuous embedding Q∗ : E∗ → E∗
1 , for the isomorphic

embedding I : Y → Y1 the w∗-w∗ continuous embedding q∗ : X∗ → l∞(Γ), for B̃

the mapping S∗. Further we substitute l1(Γ)∗∗ for Ê1, X for Ŷ and Y for X̂. Then
(i)–(iv) are easily seen to be satisfied. The condition (vi) means in our case that

the closed unit balls BY ∗ and BX∗∗ are w∗-compact. To check (iv) it is sufficient
to observe that the operators q∗A∗A∗

i B
∗ are w∗-w continuous. But this follows

immediately because these operators are w∗-w∗ continuous and compact. Similarly
we observe that (v) holds. Proposition 1 now gives that c0 ⊂ span{A∗A∗

i B
∗} which

means that c0 ⊂ span{BAiA}.
Case 2. In this case E∗ is isomorphic to a quotient of the space E∗

1 and we may
apply the case (1) to the noncompact operator T ∗ = A∗B∗ : Y ∗ → X∗. �

Remark 4. The case (2) in the above Theorem may also be obtained by applying

the Proposition directly to the factorization of T ∗∗ : X∗∗ → Y ∗∗ through the space
E∗∗ where E∗∗ ⊂ E∗∗

1 . We also embed Y into an injective Banach space.

Remark 5. If in the Theorem 1 the operator A : X → E is weakly compact or if
l1 �⊆ E∗ then the assumption concerning E in (1) may be that only E has the compact

approximation property and in (2) that only E∗ has the compact approximation
property. Indeed, first we notice that we may assume that A∗ is unconditionally

convergent (otherwise A∗ would fix a copy of c0 and thus c0 ⊂ X∗ and this in turn
would imply that c0 ⊂ K(X, Y )). If now l1 �⊆ E∗ then by Pe�lczyński (see [10]) E∗

has the property (V) and thus A∗ is weakly compact.

The last consequence of the previous results is a slight generalization of a result
due to Feder
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Corollary 4 ([5]). Let X be isomorphic to a factor space of a Banach space

X1, X1 having the shrinking unconditional compact approximation property. Let

the space X∗ have the compact approximation property and let L(X, Y ) contain a
noncompact operator M . Then c0 ⊂ K(X, Y ) isomorphically.

�����. We apply Theorem 1 (1) (after taking X = E, X1 = E1) to the operator

T = M IdX ; it then yields a copy of c0 inside span{MAi} ⊂ K(Z, Y ). �
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