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OSCILLATION OF CERTAIN DIFFERENCE EQUATIONS

S. R. Grace, Orman

(Received September 17, 1997)

Abstract. Some new criteria for the oscillation of difference equations of the form

∆2xn − pn∆xn−h + qn|xgn |c sgn xgn = 0

and
∆ixn + pn∆

i−1xn−h + qn|xgn |c sgn xgn = 0, i = 2, 3,

are established.

1. Introduction

In this paper we will discuss the oscillatory property of certain difference equations
of the form

((E1)) ∆2xn − pn∆xn−h + qn|xgn |c sgnxgn = 0

and

((Ei)) ∆ixn + pn∆i−1xn−h + qn|xgn |c sgnxgn = 0, i = 2, 3,

where ∆ is the forward difference operator ∆xn = xn+1 − xn, {pn} and {qn} are
sequences of nonnegative real numbers, {gn} is a sequence of integers, h is an integer
and c is any positive real number, and gn →∞ as n →∞.
The oscillation, nonoscillation and asymptotic behavior of Eq. (E1) when pn = 0

have been considered by many authors, we refer to [4–7, 9, 10, 12] and the references
cited therein.
A real solution {xn}, n � 0 of Eq. (E1) (or Eq. (Ei), i = 2, 3) is said to be

nonoscillatory if there exists N � 0 such that xnxn+1 > 0 for all n � N , and is
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oscillatory otherwise. Eq. (Ei), i = 1, 2 or 3 is said to be almost oscillatory if every
solution {xn} of Eq. (Ei), i = 1, 2 or 3 is oscillatory or {∆xn} is oscillatory for
Eq. (Ei), i = 1 or 2, or {∆2xn} is oscillatory for Eq. (E3).
Eq. (E1) and Eq. (Ei), i = 2, 3 may be viewed as discrete analogues of the func-

tional differential equations

((F1)) x′′(t)− p(t)x′(t− h) + q(t)|x(g(t))|c sgnx(g(t)) = 0

and

((Fi)) x(i)(t) + p(t)x(i−1)(t− h) + q(t)|x(g(t))|c sgnx(g(t)) = 0, i = 2, 3

respectively, where g, p, q : [t0,∞)→ R, t0 � 0 are continuous, g(t)→∞ as t →∞,
p(t) � 0 and q(t) � 0 eventually, c and h are real numbers and c > 0. In fact
the results in this paper are motivated by similar results for Eq. (F1) and Eq. (Fi),
i = 2, 3, see [1–3].
The purpose of this paper is to establish some new criteria for the almost oscillation

of Eq. (Ei), i = 1, 2, 3. In Section 2 we establish two criteria for the almost oscillation
of Eq. (E1) when c > 0 and c > 1. In Section 3 we deal with the oscillatory and
asymptotic behavior of Eq. (E2) and obtain sufficient conditions for any solution
{xn} of Eq. (E2) either to be oscillatory or else approach zero monotonically as
n → ∞. Also, we give sufficient conditions for all solutions of Eq. (E2) to be
almost oscillatory when c = 1. The final section presents two criteria for the almost
oscillation of Eq. (E3) when c > 0 and c = 1.

2. Almost oscillation of Eq. (E1)

The following result is concerned with the oscillation of Eq. (E1) for any c > 0.

Theorem 1. Let h be any nonnegative integer and ∆pn � 0 for n � n0 � 0. If

(1)
∞∑

i=n0

qi =∞

and

(2)
∞∑

j=n0

aj+1

j−1∑

i=n0

qi =∞,

where

aj+1 =
j∏

i=n0

(1 + pi)−1, j � 1,

then Eq. (E1) is almost oscillatory.
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�����. Assume for the sake of contradiction that Eq. (E1) has a nonoscillatory
solution {xn}, which we may and will assume to be eventually positive. There exists
a positive integer n1 � n0 such that xgn > 0 for n � n1.
Next, we consider the following two cases:
(A) ∆xn < 0 eventually, (B) ∆xn > 0 eventually.

(A) Assume ∆xn < 0 eventually. From Eq. (E1), we observe that ∆2xn � 0
eventually and hence one can easily see that xn → −∞ as n →∞, a contradiction.
(B) Assume ∆xn > 0 eventually. There exist N � n2 and a constant c1 > 0 such

that

(3) xgn � c1 for n � N.

Using (3) in Eq. (E1) we have

(4) ∆2xn − pn∆xn−h + bqn � 0 for n � N,

where b = cc
1. Summing both sides of (4) from N to n− 1 � N , we get

∆xn −∆xN −
n−1∑

i=N

pi∆xi−h + b

n−1∑

i=N

qi � 0,

or, using summation by part,

∆xn −∆xN − pnxn−h + pNxN−h +
n−1∑

i=N

xn−h+1∆pi + b

n−1∑

i=N

qi � 0.

Using the fact that ∆pn � 0 and xn > 0 for n � n2, we have

∆xn −∆xN − pnxn + b

n−1∑

i=N

qi � 0, n � N + 1.

From (1), there exists N1 � N + 1 such that

∆xN � 1
2
b

n−1∑

i=N

qi for n � N1 + 1.

Thus,

(5) ∆xn − pnxn +
1
2
b

n−1∑

i=N

qi � 0 for n � N1 + 1.
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Define a sequence {rn} by the recurrence relation

rn+1 =
1

1 + pn
, n � n0 � 0 and rn0 > 0.

Next, we multiply (5) by rn+1, obtaining

(6) ∆(rnxn) +
1
2
brn+1

n−1∑

i=N

qi � 0 for n � N1 + 1.

Summing both sides of (6) from N1 + 1 to k � N1 + 1, we have

0 < rk+1xk+1 � rN1+1xN1+1 −
1
2
b

k∑

n=N1+1

rn+1

n−1∑

i=N

qi → −∞ as k →∞,

a contradiction. This completes the proof. �

The following theorem deals with the almost oscillation of Eq. (E1) when gn �
n+ 2, n � n0 � 0 and c > 1.

Theorem 2. Let h be a nonnegative integer, c > 1, gn � n + 2 for n � n0 � 0,
and assume that there exists a real sequence {zn}, n � n0 such that

(7) zn > 0, ∆zn � 0, ∆2zn � 0 and ∆(znpn) � 0 for n � n0.

If

(8)
∞∑

n=n0

znqn =∞,

then Eq. (E1) is almost oscillatory.

�����. Let {xn} be an eventually positive solution of Eq. (E1), say xn > 0 and
xgn > 0 for n � n1 � n0 � 0. As in the proof of Theorem 1, we consider the cases
(A) and (B) and observe that case (A) is impossible. Next, we consider the case (B):
(B) Assume ∆xn > 0 for n � N � n1 + h. Set

wn = zn∆xn/xc
n+1 for n � N.

Then

(9) ∆wn = zn+1(∆xn+1/xc
n+2)− zn(∆xn/xc

n+1)

= − znqn(xgn/xn+2)c + znpn(∆xn−h/xc
n+2) + zn∆xn+1(x

−c
n+2 − x−c

n+1)

+ ∆zn(∆xn+1/xc
n+2), and hence we see that

∆wn � − znqn + znpn(∆xn−h/xc
n+2) + zn(∆xn+1/xc

n+2), n � N.
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Summing both sides of (9) from N to k − 1 � N , using (7) and the fact that
xn+2 � xn−h+1, n � N , we obtain

wk − wN � −
k−1∑

n=N

znqn + zNpN

k−1∑

n=N

∆xn−h/xc
n−h+1 +∆zN

k−1∑

n=N

∆xn+1/xc
n+2.

As in the proof of Theorem 4.1 in [7], we have

∞∑
∆xi/xc

i+1 < ∞,

and hence by (8), it follows that

0 < wk � C −
k−1∑

n=N

znqn → −∞ as k →∞,

where C is a constant, a contradiction. This completes the proof. �

Remark 1. One can easily observe that Theorems 1 and 2 are applicable to
equations of type (E1) when h = 0 or pn = 0 for n � 0.

3. Oscillation and asymptotic behavior of Eq. (E2)

Theorem 3. Let h be any positive integer,

(10) lim inf
n→∞

n−1∑

k=n−h

pk >
( h

1 + h

)1+h

,

and assume that there exists a real sequence {zn} such that

(11) zn > 0,∆zn � 0 and ∆(znpn) � 0 for n � n0 � 0.

If condition (8) holds and

(12)
∞∑

i=n0

1/zn =∞,

then every solution {xn} of Eq. (E2) is oscillatory or {∆xn} is oscillatory or else
xn → 0 monotonically as n →∞.
�����. Let {xn} be an eventually positive solution of Eq. (E2). There exists

n1 � n0 � 0 such that xgn > 0 for n � n1. Next, we consider the following two
cases:
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(A∗) ∆xn > 0 eventually, (B∗) ∆xn < 0 eventually.

(A∗) Suppose ∆xn > 0 eventually. From Eq. (E2) we see that

∆2xn + pn∆xn−h = −qnxc
gn

� 0 eventually.

Set yn = ∆xn > 0 eventually. Then

(13) ∆yn + pnyn−h � 0 eventually.

In view of Theorem 3 in [11] and condition (10), inequality (13) has no eventually
positive solution, which is a contradiction.
(B∗) Suppose ∆xn < 0 for n � N � n2. So, we have

xn → c1 � 0 as n →∞.

Suppose that c1 > 0 and consider the sequence {wn} defined by

wn = zn−1∆xn for n � N.

Then

∆wn = ∆(zn−1∆xn) = zn∆2xn +∆zn−1∆xn

� −bznqn − znpn∆xn−h +∆zn−1∆xn

� −bznqn − znpn∆xn−h, n � N,

where b = cc
1. Summing both sides of the above inequality from N to k− 1 � N , we

obtain

wk − wN � −b

k−1∑

n=N

znqn −
k−1∑

n=N

znpn∆xn−h.

Using (11), we have

wk � −b
k−1∑

n=N

znqn + zNpN(xN−h − xk−h) � C − b
k−1∑

n=N

znqn,

where C = zNpNxN−h. By condition (8), there exist N∗ � N and a constant c∗ > 0
such that

wk = zk−1∆xk � −c∗

or
∆xk � −c∗/zk−1 for n � N∗.

Summing both sides of the above inequality from N∗ to m � N∗+1, letting m →∞
and using (12), we obtain a contradiction to the fact that xn > 0 eventually. This
complete the proof. �
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Theorem 4. Let h be any integer and ∆pn � 0, n � n0 � 0. If condition (1)
holds, then the conclusion of Theorem 3 holds.

�����. Let {xn} be an eventually positive solution of Eq. (E2). As in the proof
of Theorem 3, we see that xgn > 0 for n � n1. Next, we consider the following two
cases:
(A∗) ∆xn > 0 eventually, (B∗) ∆xn < 0 eventually.

(A∗) Suppose ∆xn > 0 for n � n2 � n1. There exist constants c1 > 0 and N � n2
such that (3) holds for n � N . Now, from Eq. (E2) we have

∆2xn + bqn � 0 for n � N, where b = cc
1.

Summing both sides of the above inequality from N to m � N + 1, letting m →∞
and using (1), we obtain a contradiction to the fact that ∆xn > 0 for n � n2.
(B∗) Suppose ∆xn < 0 eventually. The proof of this case is similar to the proof

of Theorem 3 (B∗) with zn = 1, and hence is omitted.
The following result is concerned with the almost oscillation of Eq. (E2). �

Theorem 5. Let h be a nonpositive integer, c = 1 and ∆pn � 0 for n � n0 � 0,
and let condition (1) hold. Moreover, assume that there exists a sequence {kn} of
positive integers such that gn � n− kn, n � n0, {n− kn}, n � 0 is increasing. If

(14) lim inf
n→∞

n−1∑

j=n−kn

Qj > lim sup
n→∞

( kn

(1 + kn)

)1+kn

,

where

(15) Qj =
j−1∑

i=j−kj

qi − pj−kj > 0, n− 1 � j � n− kn,

then Eq. (E2) is almost oscillatory.

�����. Let xn be an eventually positive solution of Eq. (E2). As in the proof
of Theorem 3, we observe that xgn > 0 for n � n1. Next, we consider the following
two cases:
(A∗) ∆xn > 0 eventually, (B∗) ∆xn < 0 eventually.

(A∗) Suppose ∆xn > 0 eventually. The proof of this case is similar to the proof
of Theorem 4 (A∗) and hence is omitted.
(B∗) Suppose ∆xn < 0 for n � N � n2. From Eq. (E2) and the fact that

gn � n− kn, n � N , we have

(16) ∆2xn + pn∆xn−h + qnxn−kn � 0 for n � N.
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Summing both sides of (16) from n− kn to n− 1 � n− kn, n � N , we have

∆xn −∆xn−kn +
n−1∑

j=n−kn

pj∆xj−h +
n−1∑

j=n−kn

qjxj−kj � 0

or, using summation by parts,

∆xn +
[
pnxn−h − pn−knxn−kn −

n−1∑

j=n−kn

xn−h+1∆pj

]
+

n−1∑

j=n−kn

qjxj−kj � 0, n � N.

Using the fact that ∆pn � 0 and h < 0, we obtain

∆xn − pn−knxn−kn + xn−kn

n−1∑

j=n−kn

qj � 0

or

(17) ∆xn +Qnxn−kn � 0 for n � N,

where Qn is defined as in (15). But Theorem 3 in [11] and condition (14) imply that
inequality (17) has no eventually solution, which is a contradiction. This completes
the proof. �
Next, we consider the special case of Eq. (E2), namely the equation

((L2)) ∆2xn + p∆xn−h + qxn−k = 0,

where p and q are positive constants, h is a nonnegative integer and k is any positive
integer.
The following corollary is a consequence of Theorem 5.

Corollary 1. If

(18) kq − p >
kk+1

(1 + k)1+k
,

then Eq. (L2) is almost oscillatory.

Remark 2. (i) If we set pn = 0, n � 0 in Theorems 3 and 4, we can easily check
that Theorem 3 with c > 1 (or 0 < c < 1) and Theorem 2.3 (or Theorem 2.4) in
[4] are similar and Theorem 4 and Theorem 2.5 in [4] are the same and hence, we
conclude that Eq. (E2) with c as given above is oscillatory.
We note that the presence of the term—pn∆xn−h makes the coexistence of os-

cillatory and monotonically decreasing positive (increasing negative) solutions for
Eq. (E2) possible.
(ii) We note that Theorem 5 is applicable to Eq. (E2) when pn = 0. Only condition

(14) is disregarded.
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4. Almost oscillation of Eq. (E3)

Theorem 6. Let h be a positive integer, ∆pn � 0 for n � n0 � 0 and let
conditions (1) and (10) hold. Then Eq. (E3) is almost oscillatory.

�����. Let {xn} be an eventually positive solution of Eq. (E3), say xn > 0 and
xgn > 0 for n � n1 � n0 � 0. Next, we consider the following two cases:
(A) ∆2xn > 0 eventually, (B) ∆2xn < 0 eventually.

(A) Suppose ∆2xn > 0 eventually. From Eq. (E3) we have

∆3xn + pn∆2xn−h = −qnxc
gn

� 0 eventually.

Set yn = ∆2xn > 0 eventually. Then

∆yn + pnyn−h � 0 eventually.

The rest of the proof is similar to that of Theorem 3 (A∗) and hence is omitted.
(B) Suppose ∆2xn < 0 for n � n2 � n1 + h. It is easy to check that ∆xn > 0 for

n � n1 and there exist N � n2 and a constant c1 > 0 such that (3) holds for n � N .
From Eq. (E3) it follows that

(19) ∆3xn + pn∆
2xn−h + bqn � 0,

where b = cc
1. Summing both sides of (19) from N to m− 1 � N , we have

∆2xm −∆2xN +
m−1∑

n=N

pn∆2xn−h + b

m−1∑

n=N

qn � 0,

or

∆2xm +

[
pm∆xm−h − pN∆xN−h −

m−1∑

n=N

∆pn∆xn−h+1

]
+ b

m−1∑

n=N

qn � 0.

Using ∆pn � 0 for n � n0, we have

∆2xm − pN∆xN−n + b

m−1∑

n=N

qn � 0 for m− 1 � n � N.

From (1) it follows that there exist N∗ � N + 1 and c∗ > 0 such that

∆2xm � −c∗ for m � N∗,

and consequently
0 < ∆xj → −∞ as j →∞,

a contradiction. This completes the proof. �
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Theorem 7. Let h be a nonpositive integer, c = 1, ∆pn � 0 and gn = n − k,
n � n0 � 0 where k is a positive integer, and let condition (1) hold. If every bounded
solution of

(20) ∆3yn + qnyn−k = 0

is oscillatory and

(21) lim inf
n→∞

(n− k

2

)[ n−1∑

j=n−k

qj − pn−k

]
>

( k

1 + k

)1+k

,

then Eq. (E3) is almost oscillatory.

�����. Let {xn} be an eventually positive solution of Eq. (E3), say xn > 0
and xn−k > 0 for n � n1 � n0 � 0. As in the proof of Theorem 6, we consider the
following two cases:
(A) ∆2xn > 0 eventually, (B) ∆2xn < 0 eventually.

(A) Suppose ∆2xn > 0 eventually. Then there are two possibilities:
(A1) ∆2xn > 0 and ∆xn > 0 eventually, (A2) ∆2xn > 0 and ∆xn < 0 eventually.
(A1) Suppose ∆2xn > 0 and ∆xn > 0 for n � n2 � n1 + h. There exist constants

c1 > 0 and N � n2 such that (3) holds for n � N . From Eq. (E3) and (3) we have

(22) ∆3xn + c1qn � 0 for n � N.

Summing both sides of (22) from N to m− 1 � N , we have

0 < ∆2xm � ∆2xN − c1

m−1∑

n=N

qn → −∞ as m →∞,

a contradiction.
(A2) Suppose ∆2xn > 0 and ∆xn < 0 eventually. From Eq. (E3) we have

(23) ∆3xm + qnxn−k � 0 eventually.

But, by Theorem 1′ in [8], if (23) has an eventually positive solution, then (20) has
an eventually positive solution as well, a contradiction.

(B) Suppose ∆2xn < 0 for n � n2 � n1 + h. Then ∆xn > 0 for n � n2, and by
Lemma 4.1 (d) in [7] there exists N sufficiently large, N � 2n2 + k such that

(24) xn−k �
(n− k

2

)
∆xn−k for n � N.
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Using (24) in Eq. (E3) and setting yn = ∆xn > 0 for n � N , we have

∆2yn + pn∆yn−h +
(n− k

2

)
qnyn−k � 0 for n � N.

The rest of the proof is similar to the proof of Theorem 5 (B) and hence is omitted.
This completes the proof. �

Next, we consider a special case of Eq. (E3), namely the equations

((L3)) ∆3xn + p∆2xn−hqxn−k = 0

and

((L∗3)) ∆3xn + qxn−k = 0,

where p and q are positive constants, h and k are nonnegative integers.
From Corollary 2 in [8] we obtain the following results:

Corollary 2. All bounded solutions of Eq. (L∗3) are oscillatory if one of the
following conditions holds:
(i) k = 0 and q � 1;
(ii) k � 1 and q > 27kk

(3+k)3+k .
Now, from Theorem 6 and 7 and Corollary 2, we obtain the following result:

Corollary 3. Eq. (L3) is almost oscillatory if one of the following conditions
holds:
(I) h > 0 is odd and p > hh

(1+h)1+h ;

(II) h � 0 is odd and q > 27kk

(3+k)3+k .

Remark 3. (i) If we set pn = 0 in Theorem 6, we see that condition (1) is not
sufficient to allow every solution of Eq. (E3) with pn = 0 to oscillate. This can be
shown by consider the equation

∆3xn +
(
1− 1

e

)3
xn = 0,

which has a nonoscillatory solution xn = e−n.
Therefore, we conclude that the presence of pn in Eq. (E3) generates oscillations.
(ii) We note that Theorem 7 is applicable to Eq. (E3) when pn = 0. Only condition

(21) is disregarded.
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