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Abstract. The paper describes the general form of an ordinary differential equation of
the second order which allows a nontrivial global transformation consisting of the change
of the independent variable and of a nonvanishing factor. A result given by J. Aczél is
generalized. A functional equation of the form

f(t, vy,wy + uvz) = f(x, y, z)u2v + g(t, x, u, v, w)vz + h(t, x, u, v, w)y + 2uwz

is solved on � for y �= 0, v �= 0.

Keywords: ordinary differential equations, linear differential equations, global transfor-
mations, functional equations

MSC 2000 : primary 34-02, 39-02; secondary 34A30, 34A34, 34C20, 39B40

1. Introduction

Pointwise transformations and canonical forms of ordinary linear differential equa-

tions have been studied by many authors. The theory of global transformations, con-
verting any homogeneous linear differential equation of the n-th order into another

equation of the same kind and order on the whole interval of their definition, was
developed in the monograph of F. Neuman [6] (see historical remarks, definitions,

results and applications).

This research has been conducted at the Department of Mathematics as part of the
research project “Qualitative Behaviour of Solutions of Functional Differential Equations
Describing Mathematical Models of Technical Phenomena” and has been supported by
CTU grant no. 460078.
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The most general form of such global transformations for ordinary homogeneous

linear differential equations of the n-th order (n � 2) is

(1) z(t) = L(t)y(ϕ(t))

where ϕ is a bijection of an interval J onto an interval I (J ⊆ �, I ⊆ �) and L(t)

is a nonvanishing function on J , i.e. this global transformation consists of a change
of the independent variables and of a nonvanishing factor L. The most general form

of the pointwise transformation of the class Cn was derived by P. Stäckel [8]. If
we suppose that (1), with continuous functions L and ϕ, transforms the set of all

solutions of a linear homogeneous differential equation of the n-th order onto the
set of all solutions of an equation of the same type then differentiability of the n-th

order of the functions L and ϕ follows (see [7]). An interesting problem is solved by
J. Aczél [1] by means of functional equations, eliminating regularity conditions from

[5]. In [1] the ordinary differential equation of the second order in the explicit form

(2) y′′(x) = f(x, y(x), y′(x))

is considered together with solutions y(x) and y(h(x)) of the equation (2), where h

satisfies a differential equation

h′′(x) = g(x, h(x), h′(x)).

We can also formulate Aczél’s problem by using transformation (1) with the factor

L ≡ 1 under the conditions ϕ(I) = I, ϕ′′(x) = g(x, ϕ(x), ϕ′(x)), x ∈ I, such that
(1) converts any equation y′′(x) = f(x, y(x), y′(x)), x ∈ I, into itself, i.e. by using

a nontrivial stationary transformation.
In this paper we derive, similarly to [1], the most general form of the ordinary

differential equation (2) which allows (1) and we generalize Aczél’s result. We prove
that the most general differential equation of the second order with the above prop-

erty, defined for y ∈ �, is the linear differential equation.

2. Notation, basic definitions

Denote by (f) and (f∗) the ordinary differential equations of the second order

y′′(x) = f(x, y(x), y′(x)) and z′′(t) = f∗(t, z(t), z′(t)), defined on I and J , respec-
tively.

Definition. We say that (f) is globally transformable into (f∗) if there exist
two functions ϕ, L such that
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– the function L is of the class C2(J) and is nonvanishing on J ,

– the function ϕ is a C2 diffeomorphism of the interval J onto the interval I,

and the function

(3) z(t) = L(t)y(ϕ(t)), t ∈ J

is a solution of the equation (f) whenever y is a solution of the equation (f∗).

We say that (3) is a stationary transformation if it globally transforms an equation

(f) into itself on I, i.e. if L ∈ C2(I), L(x) �= 0 on I, ϕ is a C2 diffeomorphism of
I onto I = ϕ(I) and the function z(x) = L(x)y(ϕ(x)) is a solution of z′′(x) =

f(x, z(x), z′(x)) whenever y is a solution of y′′(x) = f(x, y(x), y′(x)), x ∈ I. Hence,
if (3) is a stationary transformation of the equation (f) with a solution y(x) then

L(x)y(ϕ(x)) is also a solution of the same differential equation.

Observation 1. Every homogeneous linear differential equation of the second
order is a particular case of the equation (f) and for two globally transformable
linear differential equations y′′(x) = p(x)y′(x) + q(x)y(x), x ∈ I; z′′(t) = P (t)z′(t) +

Q(t)z(t), t ∈ J there always exist relations

ϕ′′(t) = P (t)ϕ′(t)− p(ϕ(t))ϕ′(t)2 − 2L
′(t)

L(t)
= g(t, ϕ(t), ϕ′(t), L(t), L′(t)),

L′′(t) = P (t)L′(t) + (Q(t)− q(ϕ(t))ϕ′(t)2)L(t) = h(t, ϕ(t), ϕ′(t), L(t), L′(t))

between the functions ϕ, L and the coefficients of the differential equations.

Assumption. We suppose that there exist two differential equations such that
ϕ, L are related by

ϕ′′(t) = g(t, ϕ(t), ϕ′(t), L(t), L′(t)), L′′(t) = h(t, ϕ(t), ϕ′(t), L(t), L′(t)), t ∈ J.

3. Global transformations

Lemma 1. The transformation (3) is a stationary transformation of the equation
(f) if and only if I = ϕ(I) and the real functions f , g, h satisfy the functional

equation in several variables

(4) f(t, vy, wy + uvz) = f(x, y, z)u2v + g(t, x, u, v, w)vz + h(t, x, u, v, w)y + 2uwz

for all t, x ∈ I ⊆ � and u, v, w, z ∈ �; y �= 0, v �= 0.
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�����. The transformation (3) is a stationary transformation of the equation

(f) if and only if y′′(x) = f(x, y(x), y′(x)) is globally transformable into the equation
z′′(t) = f(t, z(t), z′(t)) by means of

z(t) = L(t)y(ϕ(t)), t ∈ I = ϕ(I).

Then

z′(t) = L′(t)y(ϕ(t)) + L(t)ẏ(ϕ(t))ϕ′(t) (˙= d/dϕ),

z′′ = L′′y(ϕ) + 2L′ẏ(ϕ)ϕ′ + Lÿ(ϕ)ϕ′2 + Lẏ(ϕ)ϕ′′

are true, where ϕ′′ = g(t, ϕ, ϕ′, L, L′), L′′ = h(t, ϕ, ϕ′, L, L′) on I, according to
Assumption.

The functions z(t), y(ϕ(t)) satisfy simultaneously the differential equations

z′′ = f(t, z, z′), ÿ(ϕ) = f(ϕ, y(ϕ), ẏ(ϕ)),

because (3) is a stationary transformation.

Using the above relations we obtain

(5) (z′′ =) h(t, ϕ, ϕ′, L, L′)y(ϕ) + 2L′ẏ(ϕ)ϕ′ + f(ϕ, y(ϕ), ẏ(ϕ))Lϕ′2

+ g(t, ϕ, ϕ′, L, L′)Lẏ(ϕ) = f(t, Ly(ϕ), L′y(ϕ) + Lẏ(ϕ)ϕ′) (= f(t, z, z′)),

which is for x = ϕ(t), u = ϕ′(t), v = L(t), w = L′(t), y = y(ϕ(t)), z = ẏ(ϕ(t))

equivalent to the functional equation (4). Here t, x ∈ I ⊆ �; u, v, w, z ∈ �; v �= 0, in
accordance with the definition of the global transformation.

Of course, if (4) is satisfied, then (5) holds for x = ϕ(t), u = ϕ′(t), v = L(t),
w = L′(t), y = y(ϕ(t)), z = ẏ(ϕ(t)), where t ∈ I ⊆ � and ϕ(I) = I. �

Theorem 1. The general continuous solution of the functional equation (4) is
given by

(6)

f(x, y, z) = k
z2

y
+ p(x)z + q(x)y,

g(t, x, u, v, w) = 2(k − 1)uw

v
+ p(t)u− p(x)u2,

h(t, x, u, v, w) = k
w2

v
+ p(t)w + (q(t)− q(x)u2)v

where p, q are arbitrary functions and k is a real constant.
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�����. Inserting into (4) w = 0, v = 1, x = x0 ∈ I (arbitrary fixed), we obtain

(7) f(t, y, uz) = f(x0, y, z)u2 + g̃(t, u)z + h̃(t, u)y

where g̃(t, u) = g(t, x0, u, 1, 0), h̃(t, u) = h(t, x0, u, 1, 0).

Together with z = 1 we have

(8) f(t, y, u) = δ(y)u2 + g̃(t, u) + h̃(t, u)y.

But u = 1, z = U, D(y, U) = f(x0, y, U), p(t) = g̃(t, 1), Q(t) = h̃(t, 1) in (7) give

(9) f(t, y, U) = D(y, U) + p(t)U +Q(t)y = δ(y)U2 + g̃(t, U) + h̃(t, U)y.

Comparison of the terms depending on y gives

(10) D(y, U) = (h̃(t, U)−Q(t))y + δ(y)U2

and further on

(11) g̃(t, u) = p(t)u.

According to (10), h̃(t, u)−Q(t) = C(u) is independent of t, hence

(12) h̃(t, u) = Q(t) + C(u).

So (10) gives D(y, u) = C(u)y + δ(y)u2. Substituting this expression into (9) we

obtain

(13) f(t, y, u) = δ(y)u2 + p(t)u+ (C(u) +Q(t))y

i.e.

(14) f(x0, y, z) = δ(y)z2 + p(x0)z + (C(z) +Q(x0))y.

We substitute (11), (12), (14) into (7)

δ(y)u2z2 + p(t)uz + (C(uz) +Q(t))y

= δ(y)u2z2 + p(x0)u2z + (C(z) +Q(x0))u2y + p(t)uz + C(u)y +Q(t)y

and compare the terms containing y

C(uz) = (C(z) +Q(x0))u2 + C(u) = (C(u) +Q(x0))z2 + C(z) = C(zu).
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Thus

C(u)(z2 − 1) = C(z)(u2 − 1) +Q(x0)(u
2 − z2), z �∈ {−1, 1}

or, with z = z0 �∈ {−1, 1} constant,

(15) C(u) = cu2 + d.

So (13) becomes

(16) f(t, y, u) = (δ(y) + cy)u2 + p(t)u+ (Q(t) + d)y = a(y)u2 + p(t)u + q(t)y.

To find the function h(t, x, u, v, w) we put z = 0, y = 1 in (4). Then

(17) f(t, v, w) = f(x, 1, 0)u2v + h(t, x, u, v, w)

and (17) combined with (16) gives

h(t, x, u, v, w) = f(t, v, w) − f(x, 1, 0)u2v

= a(v)w2 + p(t)w + q(t)v − (a(1) · 0 + p(x) · 0 + q(x))u2v,

i.e.

(18) h(t, x, u, v, w) = a(v)w2 + p(t)w + (q(t) − q(x)u2)v.

In order to determine the function g(t, x, u, v, w) we put y = 1, z = 1 in (4). We

obtain

f(t, v, w + uv) = f(x, 1, 1)u2v + g(t, x, u, v, w)v + h(t, x, u, v, w) + 2uw

and

g(t, x, u, v, w)v = f(t, v, w + uv)− f(x, 1, 1)u2v − h(t, x, u, v, w)− 2uw

= a(v)(2w + uv)uv + p(t)uv − p(x)u2v − 2uw − a(1)u2v

using (16), (18). So we have

(19) g(t, x, u, v, w) = a(v)(2w + uv)u+ p(t)u− p(x)u2 − a(1)u2 − 2uw

v

because of v �= 0.
Finally, the equation (4) with the functions (16), (18) and (19) implies that

(20) a(vy)(wy + uvz)2 = a(v)(2w + uv)uvz + a(v)w2y + a(y)u2vz2 − a(1)u2vz.

Consider (20) and v = w = 1. Then (20) becomes a(y)y2 = a(1)y. Thus a(y) =
k
y , k = a(1) and from (16), (18), (19) we obtain the assertion of Theorem 1. �
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Theorem 2. The transformation (3) is a stationary transformation of the equa-
tion (f) if and only if the following equation holds:

(21) f(x, y, y′) = k
y′2

y
+ p(x)y′ + q(x)y, y = y(x)

and

(22) ϕ′′ = 2(k − 1)L
′

L
ϕ′ + p(t)ϕ′ − p(ϕ)ϕ′2,

(L′

L

)′
= (k − 1)

(L′

L

)2
+ p(t)

L′

L
+ q(t)− q(ϕ)ϕ′2,

ϕ = ϕ(t), L = L(t), t ∈ I, ϕ(I) = I

are satisfied, where p, q are arbitrary functions and k is a real constant.

�����. The assertion of Theorem 2 follows immediately from Lemma 1 and

Theorem 1 using x = ϕ(t), u = ϕ′(t), v = L(t), w = L′(t), y = y(ϕ(t)), z = ẏ(ϕ(t)),
t ∈ I. �

Remark 1. If the conditions of Theorem 2 hold but y vanishes at some point of
I, then k y′2

y exists only if k = 0. Hence (f) is a linear differential equation.

Theorem 3. The transformation z(t) = L(t)y(ϕ(t)) is the most general transfor-

mation converting any equation

(23) y′′ = k
y′2

y
+ p(x)y′ + q(x)y, y = y(x), x ∈ I,

into an equation

(24) z′′ = k
z′2

z
+ P (t)z′ +Q(t)z, z = z(t), t ∈ J ; k ∈ �.

Moreover, the functions L, ϕ satisfy the conditions

(25)
P (t) =

ϕ′′

ϕ′ + p(ϕ)ϕ′ + 2(1− k)
L′

L
,

Q(t) =
L′′

L
+ q(ϕ)ϕ′2 − P (t)

L′

L
− k

(L′

L

)2
,

ϕ = ϕ(t), L = L(t) on J.
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�����. We prove that the transformation z(t) = L(t)y(ϕ(t)) converts any

equation (23) into an equation (24). We have

y(x) = y(ϕ(t)) =
z(t)
L(t)

,

y′ =
1

Lϕ′ (z
′ − z

L′

L
),

y′′ =
1

Lϕ′2

(
z′′ − z′(2

L′

L
+

ϕ′′

ϕ′ )− z
(L′′

L
− 2

(L′

L

)2
− ϕ′′

ϕ′
L′

L

))

and the equation (23) becomes (24), where

P (t) =
ϕ′′

ϕ′ + p(ϕ)ϕ′ + 2(1− k)
L′

L
,

Q(t) =
L′′

L
+ q(ϕ)ϕ′2 − L′

L

(ϕ′′

ϕ′ + 2
L′

L
+ p(ϕ)ϕ′ − k

L′

L

)

=
L′′

L
+ q(ϕ)ϕ′2 − P (t)

L′

L
− k

(L′

L

)2

and (25) is satisfied on J.

According to Remark 1, every linear differential equation is a particular case of the
equation (f). The most general pointwise transformation for the linear differential

equation (see Stäckel [8], Wilczynski [9], Čadek [3] and [4], Neuman [6]) is of the form
z(t) = L(t)y(ϕ(t)). This fact implies that (3) is the most general transformation for

the equation (23). �

Remark 2. In the case when L(t) ≡ 1 (= v) we get L′(t) ≡ 0(= w), L′′ ≡ 0
(= h(t, ϕ, ϕ′, 1, 0)) and the functional equation (4) is of the form

f(t, y, uz) = f(x, y, z)u2 + g(t, x, u)z

with the general solution

f(x, y, z) = a(y)z2 + p(x)z, g(t, x, u) = p(t)u − p(x)u2,

where a, p are arbitrary functions (see Aczél [1]). Similarly to Theorem 2 we can
prove the following:

The transformation z(t) = y(ϕ(t)) is a stationary transformation of the equation
(f) if and only if the relations

f(x, y, y′) = a(y)y′2 + p(x)y′ + q(x)y, y = y(x)
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and

ϕ′′ = p(t)ϕ′ − p(ϕ)ϕ′2, ϕ = ϕ(t), t ∈ I, ϕ(I) = I

hold, where a, p are arbitrary functions and the function q satisfies the condition
q(t)− q(ϕ)ϕ′2 = 0.

This result is not a special case of Theorem 2 because there L can be arbitrary
and accordingly a(y) = k

y , while here L(t) ≡ 1 and a is an arbitrary function.

Example. We investigate stationary transformations of the equation

y′′(x) =
y′(x)2

y(x)
+
1
x

y′(x) − (x sinx)y(x), x ∈ I = (0,∞).

Using the conditions of Theorem 2 we have

ϕ′′(x) = 2(k − 1)L
′(x)

L(x)
ϕ′(x) +

1
x

ϕ′(x)− 1
ϕ(x)

ϕ′(x)2 = (
1
x
− ϕ′(x)

ϕ(x)
)ϕ′(x),

i.e. ϕ(x)2 = a1x
2 + b and ϕ(0) = 0 for I = ϕ(I), thus

ϕ(x) = ax, a ∈ � − {0}.

Then

(
L′(x)
L(x)

)′
= (k − 1)

(
L′(x)
L(x)

)2
+ p(x)

L′(x)
L(x)

+ q(x)− q(ϕ(x))ϕ′(x)2

=
1
x

L′(x)
L(x)

− x sin x+ a3x sin ax

and solving this differential equation we obtain

L(x) = b
exp{x sinx+ cosx}
exp{ax sinax+ cos ax} exp{dx2}; b, d ∈ �, b �= 0.

The general solution of the given equation is of the form

y(x) = K exp{Cx2} exp{x sinx+ cosx}; K, C ∈ �, K �= 0.

Moreover,

L(x)y(ϕ(x)) = bK exp{(d+ Ca2)x2} exp{x sinx+ cosx}
= K1 exp{C1x2} exp{x sinx+ cosx};

K1, C1 ∈ �, K1 �= 0 and L(x)y(ϕ(x)) is a solution whenever y(x) is a solution.
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My thanks are due to Professor J. Aczél for valuable remarks improving this paper

and for short cuts of proofs.
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