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Abstract. We study the quasilinear elliptic problem with multivalued terms.We consider
the Dirichlet problem with a multivalued term appearing in the equation and a problem of
Neumann type with a multivalued term appearing in the boundary condition. Our approach
is based on Szulkin’s critical point theory for lower semicontinuous energy functionals.
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1. Introduction

In this paper we consider quasilinear Dirichlet and Neumann problems with mul-
tivalued terms. Our approach is variational and uses the critical point theory and
the related minimax principles for lower semicontinuous functions, as these were
developed by Szulkin [22]. In the past quasilinear problems were studied by Del
Pino-Elgueta-Manasevich [10], Guo [12], De Coster [9] for one dimensional prob-
lems (i.e. N = 1) and by Boccardo-Drábek-Giachetti-Kučera [6], Anane-Gossez [4],
Arcoya-Calahorrano [5], Hachimi-Gossez [13] and Costa-Magalhaes [8] for multidi-
mensional problems (i.e. N > 1). All these papers deal with problems that involve
no multivalued terms and assume Dirichlet boundary conditions.

Here we allow for the presence of multivalued terms (either in the equation or
in the boundary conditions). So the classical “smooth” critical point theory is not
applicable here and we need to employ some suitable version of the nonsmooth critical
point theory. For the problems that we study here the appropriate nonsmooth critical
point theory, is that developed by Szulkin [22] which concerns energy functionals of
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the form Φ+ ψ with Φ being C1 and ψ being an �-valued proper, convex and lower
semicontinuous functional. In the next section for the convenience of the reader we
recall the basic aspects of Szulkin’s theory, which we will need in the sequel. Full
details can be found in the well-written paper of Szulkin [22].

2. Preliminaries

Let X be a Banach space. We will deal with � = �∪{+∞}-valued functions. For
such a function ψ(·), the effective domain of ψ is the set domψ = {x ∈ X : ψ(x) <
+∞}. By Γ0(X) we denote the set of proper (i.e. domψ �= ∅), convex and lower
semicontinuous functions. The subdifferential of ψ ∈ Γ0(X) at x ∈ X , is the set
∂ψ(x) = {x∗ ∈ X∗ : (x∗, y− x) � ψ(y)−ψ(x) for all y ∈ domψ}. Here (·, ·) denotes
the duality brackets for the pair (X,X∗). The elements x∗ ∈ ∂ψ(x) are called
“subgradients” of f at x. It is immediately clear from the definition that ∂ψ(x) is
always a w∗-closed and convex subset of X∗. It may be empty. The set of those x for
which ∂ψ(x) �= ∅ is called the domain of ∂ψ and is denoted by dom(∂ψ). We have
that dom(∂ψ) ⊆ domψ and intdomψ ⊆ dom(∂ψ). If ψ(·) is contininuous at x0 ∈ X ,
then ∂ψ(x0) �= ∅. If ψ is Gateaux differentiable at x0 ∈ X , then ∂ψ(x0) = {ψ′(x0)}.
The set-valued map ∂ψ : X → 2X∗

is maximal monotone (in fact maximal cyclically
monotone). Also, given ψ1, ψ2 ∈ Γ0(X), then for every x ∈ domψ1∩domψ2 we have

∂ψ1(x) + ∂ψ2(x) ⊆ ∂(ψ1 + ψ2)(x).

If intdomψ1 ∩ domψ2 �= ∅, then for all x ∈ X we have

∂(ψ1 + ψ2)(x) = ∂ψ1(x) + ∂ψ2(x).

We will deal with functionals of the form R = Φ+ ψ with Φ ∈ C1(X), ψ ∈ Γ0(X)
and X being a reflexive Banach space. A point x ∈ domψ is said to be a “critical
point” of R if −Φ′(x) ∈ ∂ψ(x) or equivalently, if x satisfies the inequality

(Φ′(x), y − x) + ψ(y)− ψ(x) � 0 for all y ∈ domψ.

It is easy to see that if x ∈ X is a local minimum of R = Φ+ψ, then it is a critical
point. As in the classical (smooth) case, in order to have minimax principles, we need
some kind of compactness condition known as the “Palais-Smale condition”((PS)-
condition). For functionals R = Φ + ψ, Szulkin formulated the (PS)-condition as
follows:

Definition. We say that R = Φ+ψ satisfies the (PS)-condition, if any sequence
{xn}n�1 ⊆ X such that R(xn) → c ∈ � and (Φ′(xn), y − xn) + ψ(y) − ψ(xn) �
−εn‖y − xn‖ for all y ∈ X with εn ↓ 0 has a strongly convergent subsequence.
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Remark. Szulkin proved that the (PS)-condition can be equivalently reformu-
lated as follows: “every sequence {xn}n�1 ⊆ X such that R(xn) → c ∈ � and
(Φ′(xn), y − xn) + ψ(y) − ψ(xn) � (un, y − xn) for all y ∈ X where un → 0 in X∗

as n→∞, has a strongly convergent subsequence” (see Szulkin [22], Proposition 2,
p. 80).

Szulkin proved the following results on the existence of critical points for func-
tionals R = Φ+ψ, which generalize the well-known “smooth” results of Ambrosetti-
Rabinowitz [3] and Rabinowitz [19], [20]. So in the following three theorems X is a
reflexive Banach space and R = Φ + ψ with Φ ∈ C1(X) and ψ ∈ Γ0(X).

Theorem 1. If R = Φ + ψ is bounded below and satisfies the (PS)-condition,
then R(·) has a critical point x ∈ X such that R(x) = inf[R(y) : y ∈ X ].

The next theorem extends to the present nonsmooth setting the well-known
“Mountain Pass Theorem” of Ambrosetti-Rabinowitz [3].

Theorem 2. If R = Φ + ψ satisfies the (PS)-condition and (i) R(0) = 0 and
there exist α, � > 0 such that R

∣∣
∂B�

� α where ∂B� = {x ∈ X : ‖x‖ = �}; (ii)
R(e) � 0 for some e /∈ B� = {x ∈ X : ‖x‖ � �}, then R(·) has a critical point x,
with c = R(x) � α and c is characterized by

c = inf
f
sup

t

[
R(f(t)) : f ∈ Γ, t ∈ [0, 1]

]

where Γ =
{
f ∈ C([0, 1], X) : f(0) = 0, f(1) = e

}
.

The third theorem is the nonsmooth analog of the Saddle Point Theorem of Ra-
binowitz [19],[20].

Theorem 3. If R = Φ + ψ satisfies the (PS)-condition, X = X1 ⊕ X2 where

dimX1 < +∞, (i) there exist constants � > 0 and α1 such that R
∣∣
∂B�∩X1

� α1;

(ii) there is a constant α2 > α1 such that R
∣∣
X2

� α2 then R(·) has a critical point
x ∈ X , with c = R(x) � α2 and c is characterized by

c = inf
f
sup

x

[
R(f(x)) : f ∈ Γ, x ∈ D

]

where D = B� ∪X1 and Γ =
{
f ∈ C(D,X) : f

∣∣
∂D
= i

∣∣
∂D
, i = identity map

}
.
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3. Dirichlet problems

In this section we study quasilinear equations with multivalued terms and Dirichlet
boundary conditions. So let Z ⊆ �

N be a bounded domain with a C1-boundary Γ.
We consider the nonlinear elliptic problem

(1)

{
− div

(
‖Dx(z)‖p−2Dx(z)

)
+ β(z, x(z)) � f(z, x(z)) a.e. on Z

x
∣∣
Γ
= 0, 2 � p <∞.

Here β : Z × � → 2� is a multifunction. For economy in the notation let
∆px = div(‖Dx‖p−2Dx)(the p-Laplacian). Consider the first eigenvalue λ1 of
(−∆p,W

1,p
0 (Z)). From Lindqvist [18] we know that λ1 > 0 is isolated and simple,

that is any two solutions u, v of

(2)

{
−∆pu = − div(‖Du‖p−2Du) = λ1|u|p−2u a.e. on Z
u
∣∣
Γ
= 0, 2 � p <∞

}

satisfy u = cv for some c ∈ �. In addition, the λ1-eigenfunctions do not change
sign in Z. Finally, we have the following variational characterization of λ1 (Rayleigh
quotient):

λ1 = inf

[‖Dx‖p
p

‖x‖p
p
: x ∈W 1,p

0 (Z), x �= 0
]
.

For our first existence theorem, we will need the following hypotheses on f and β.

H(f)1: f : Z × � → � is a function such that
(i) for all x ∈ �, z → f(z, x) is measurable;
(ii) for almost all z ∈ Z, x→ f(z, x) is continuous;
(iii) for almost all z ∈ Z and x ∈ � |f(z, x)| � α(z) + c|x|µ−1, 2 � p < µ < p∗ =

Np
N−p , α ∈ Lµ′(Z) ( 1µ +

1
µ′ = 1);

(iv) if F (z, x) =
∫ x

0 f(z, r) dr, then lim sup|x|→∞

pF (z, x)
|x|p � θ(z) � λ1 uniformly for

almost all z ∈ Z with θ ∈ L∞(Z) and the inequality θ(z) � λ1 is strict on a set of
positive Lebesgue measure;
(v) there exist γ1 ∈ L1(Z) and M > 0 such that for almost all z ∈ Z and all

|x| � M , −f(z, x)x � γ1(z).

H(β)1: β(z, x) = ∂j(z, x) (the subdifferrential is taken in the x-variable), where
j : Z × � → �+ = �+ ∪ {+∞} is a normal convex integrand (i.e. j(·, ·) is jointly
measurable and for all z ∈ Z, j(z, ·) ∈ Γ0(�) and for almost all Z ∈ Z, j(z, 0) = 0).

Theorem 4. If hypotheses H(f)1 and H(β1) hold, then problem (1) has a solu-
tion.
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�����. Let Φ, ψ : W 1,p
0 (Z)→ � = � ∪ {+∞} be the functionals defined by

Φ(x) = −
∫

Z

∫ x(z)

0
f(z, r) dr dz = −

∫

Z

F (z, x(z)) dz with F (z, x) =
∫ x

0
f(z, r) dr,

and

ψ(x) =

{
1
p‖Dx‖p

p +
∫

Z
j(z, x(z)) dz if j(·, x(·)) ∈ L1(Z)

+∞ otherwise

It is well-known that Φ ∈ C1(W 1,p
0 (Z)). Also ψ ∈ Γ0(W 1,p

0 (Z)). Indeed, note that
by virtue of hypothesis H(β1), ψ � 0 and ψ �≡ ∞. Clearly ψ(·) is convex. Finally,
in order to prove the lower semicontinuity of ψ(·), we need to show that for every
λ � 0 the sublevel set

Lλ =

{
x ∈W 1,p

0 (Z) :
1
p
‖Dx‖p

p +
∫

Z

j(z, x(z)) dz � λ

}

is closed. So let {xn} ⊆ Lλ and assume that xn → x in W 1,p
0 (Z) as n → ∞. By

passing to a subsequence if necessary, we may assume that xn(z)→ x(z) a.e. on Z.
Using Fatou’s lemma we conclude that

∫

Z

j(z, x(z)) dz �
∫

Z

lim inf j(z, xn(z)) dz � lim inf
∫

Z

j(z, xn(z)) dz

⇒ ψ(x) � λ, i.e. x ∈ Lλ.

So indeed ψ ∈ Γ0(W 1,p
0 (Z)). Set R(x) = Φ(x) + ψ(x) with x ∈W 1,p

0 (Z).

Claim 1. R(·) satisfies the (PS)-condition (in the sense of Szulkin, see Section 2).

To this end let {xn} ⊆W 1,p
0 (Z) be such that R(xn)→ c ∈ � and

〈Φ′(xn), y − xn〉+ ψ(y)− ψ(xn) � −εn‖y − xn‖ for all y ∈ W 1,p
0 (Z)

with εn ↓ 0, 〈·, ·〉 being the duality brackets for the pair
(
W 1,p
0 (Z),W

−1,q(Z)
)
( 1p +

1
q = 1) and ‖ · ‖ denoting the norm of the Sobolev space W

1,p
0 (Z). Take y = 0. We

obtain

〈Φ′(xn), xn〉+ ψ(xn) � εn‖xn‖ (note that ψ(0) = 0).(3)

Also for every n � 1, we have

R(xn) = Φ(xn) + ψ(xn) � c1.(4)
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Adding (3) and (4), we obtain

p+ 1
p

‖Dxn‖p
p + 2

∫

Z

j(z, xn(z)) dz −
∫

Z

F (z, xn(z)) dz + 〈Φ′(xn), xn〉(5)

� c1 + εn‖xn‖.

By virtue of hypothesis H(f)1(iv), given ε > 0 we can find M > 0 such that for
almost all z ∈ Z and all |x| � M we have

F (z, r) � |r|p
p
(θ(z) + ε).

On the other hand, for r ∈ [−M,M ] we have |F (z, x)| � γ(z) a.e. on Z with γ ∈
L1(Z) (see hypothesis H(f)1(iii)). Hence for almost all z ∈ Z and all r ∈ � we have

F (z, r) � |r|p
p
(θ(z) + ε) + γ(z).(6)

Moreover, there exists β > 0 such that V (x) = ‖Dx‖p
p −

∫
Z
θ(z)|x(z)|p dz � β for

all x ∈ W 1,p
0 (Z) with ‖Dx‖p = 1. If not, then we can find {xn} ⊆ W 1,p

0 (Z) with
‖Dxn‖p = 1, n � 1, such that V (xn) ↓ 0 as n→∞ (note that V � 0; see the Rayleigh
quotient in Section 2). Recall that the Lp - norm of the gradient is equivalent to the
W 1,p
0 (Z)-norm and so by passing to a subsequence if necessary, we may assume that

xn
w→ x in W 1,p

0 (Z) and since W
1,p
0 (Z) is embedded compactly in L

p(Z), we also
have that xn → x in Lp(Z) as n → ∞. From the weak lower semicontinuity of the
norm in a Banach space, we have ‖Dx‖p

p � lim inf ‖Dxn‖p
p. Thus

0 = limV (xn) = lim

[
‖Dxn‖p

p −
∫

Z

θ(z)|xn(z)|p dz
]

(7)

� lim inf ‖Dxn‖p
p − lim sup

∫

Z

θ(z)|xn(z)|p dz

� ‖Dx‖p
p −

∫

Z

θ(z)|x(z)|p dz

(since xn → x in Lp(Z) as n→∞).

From the variational characterization of λ1 via the Rayleigh quotient (see Sec-
tion 2) we have

λ1‖x‖p
p � ‖Dx‖p

p

⇒
∫

Z

θ(z)|x(z)|p dz �
∫

Z

‖Dx(z)‖p dz.(8)
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From (7) and (8) we obtain that

∫

Z

‖Dx(z)‖p dz =
∫

Z

θ(z)|x(z)|p dz.(9)

Recall that V (xn) = 1 −
∫

Z
θ(z)|xn(z)|p dz → 0 as n → ∞. So in the limit we

have 0 = 1 −
∫

Z
θ(z)|x(z)|p dz ⇒

∫
Z
θ(z)|x(z)|p dz = 1. Using this in (9), we have

that ‖Dx‖p
p = 1⇒ x �= 0. From this we obtain that

λ1

∫

Z

|x(z)|p dz =
∫

Z

‖Dx(z)‖p dz =
∫

Z

θ(z)|x(z)|p dz < λ1

∫

Z

|x(z)|p dz,

a contradiction. So indeed 0 < β � V (x) for all x ∈W 1,p
0 (Z) with ‖Dx‖p

p = 1.
Returning to (5) and using (6) we obtain

p+ 1
p

‖Dxn‖p
p −
2
p

∫

Z

θ(z)|xn(z)|p dz −
2ε
p

∫

Z

|xn(z)|p dz

− ‖γ‖1 −
∫

Z

f(z, xn(z))xn(z) dz � c1 + εn‖xn‖ (since j � 0)

⇒ (β1 −
2ε
λ1p
)‖Dxn‖p

p − ξ � c1 + σn‖xn‖.(10)

for some ξ > 0 (see hypothesis H(f)(v)) and some β1 > 0.

Choose ε > 0 such that ε < λ1β1p
2 . Then (10) implies that {xn} ⊆ W 1,p

0 (Z) is
bounded.
By passing to a subsequence if necessary, we may assume that xn

w→ x inW 1,p
0 (Z),

xn → x in Lp(Z) (since W 1,p
0 (Z) is embedded compactly in L

p(Z)) xn(z) → x(z)
a.e. on Z as n→∞ and |xn(z)| � k(z) a.e. on Z, k ∈ Lp(Z).
Recall that

〈Φ′(xn), y − xn〉+ ψ(y)− ψ(xn) � −εn‖y − xn‖ for all y ∈W 1,p
0 (Z).

Take y = x. We have

〈Φ′(xn), x− xn〉+ ψ(x) − ψ(xn) � −εn‖x− xn‖

⇒ −
∫

Z

f(z, xn(z))(x− xn)(z) dz +
1
p
(‖Dx‖p

p − ‖Dxn‖p
p)(11)

+
∫

Z

j(z, x(z)) dz −
∫

Z

j(z, xn(z)) dz � −εn‖x− xn‖.

Note that ∫

Z

f(z, xn(z))(x − xn)(z) dz → 0 as n→∞
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and
lim inf

∫

Z

j(z, xn(z)) dz �
∫

Z

j(z, x(z)) dz (by Fatou’s lemma).

Therefore (11) yields that

‖Dx‖p � lim sup ‖Dxn‖p

⇒ ‖Dxn‖p → ‖Dx‖p.

Since xn
w→ x in W 1,p

0 (Z), we have Dxn
w→ Dx in Lp(Z,�N ). Because Lp(Z,�N )

is uniformly convex, we have that xn → x in W 1,p
0 (Z), i.e. R(·) satisfies the (PS)-

condition.

Claim 2. R(·) is bounded below.

For every x ∈W 1,p
0 (Z) we have

R(x) =
1
p
‖Dx‖p

p +
∫

Z

j(z, x(z)) dz −
∫

Z

F (z, x(z)) dz(12)

� 1
p
‖Dx‖p

p −
∫

Z

F (z, x(z)) dz (since j � 0)

� 1
p
‖Dx‖p

p −
1
p

∫

Z

θ(z)|x(z)|p dz − ε

λ1p
‖Dx‖p

p − ‖γ‖1
(using (6) and the Rayleigh quotient)

� 1
p

(
β − ε

λ1

)
‖Dx‖p

p − ‖γ‖1.

Choose ε < λ1β. From (12) we infer that R(·) is coercive, thus bounded from
below.
Apply Theorem 1, to obtain x ∈ W 1,p

0 (Z) such that

−Φ′(x) ∈ ∂ψ(x).

Let A : W 1,p
0 (Z)→W−1,q(Z) be defined by

〈A(x), y〉 =
∫

Z

‖Dx(z)‖p−2(Dx(z), Dy(z))�N dz.

It is easy to see that A(·) is monotone and demicontinuous (thus maximal
monotone).
Also let ψ1 : Lµ(Z)→ � be defined by

ψ1(x) =

{
ψ(x) if x ∈ domψ
∞ otherwise.
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It is easy to check that ψ1 ∈ Γ0(Lµ(Z)). Let A1 : D1 ⊆ Lµ(Z) → Lµ′(Z)
( 1µ +

1
µ′ = 1) be defined by A1(x) = A(x) for all x ∈ D1 = {y ∈ W 1,p

0 (Z) : A(y) ∈
Lµ′(Z)} and let V1 : Lµ(Z) → � be defined by V1(x) =

∫
Z
j(z, x(z)) dz if x ∈

W 1,p
0 (Z), j(·, x(·)) ∈ L1(Z) and +∞ otherwise (note that from the choice of µ we
have that W 1,p

0 (Z) is embedded continuously in L
µ(Z)). From Proposition 5.2,

pp. 194–195 of Showalter [21] we have that x ∈ W 1,p
0 (Z) is a critical point of R(·)

if and only if −f̂(x) ∈ ∂ψ1(x) = A1(x) + ∂V1(x), where f̂(x(·)) = f(·, x(·)). So we
have

∫

Z

f(z, x(z))ϕ(z) dz

=
∫

Z

‖Dx(z)‖p−2(Dx(z), Dϕ(z))�N dz +
∫

Z

u(z)ϕ(z) dz for all ϕ ∈ C∞0 (Z)

with u ∈ ∂V1(x) ⊆ Lµ′(Z). Since f(·, x(·)) − u(·) ∈ Lµ′(Z), the definition of the
distributional derivative yields

− div(‖Dx(z)‖p−2Dx(z)) + u(z) = f(z, x(z)) a.e. on Z, x
∣∣
Γ
= 0.

However u ∈ ∂V1(x) implies that u(z) ∈ ∂j(z, x(z)) = β(z, x(z)) a.e. on Z. So we
have

(13)

{
− div(‖Dx(z)‖p−2Dx(z)) + β(z, x(z)) � f(z, x(z)) a.e. on Z
x
∣∣
Γ
= 0, 2 � p < +∞

}

⇒ x(·) is a solution of (1). �

We can have another existence theorem for problem (1) under a different set of
hypotheses on the data f(z, x) and β(z, x). So the hypotheses are now the following:

H(f)2: f : Z × � → � is a function such that
(i) for all x ∈ �, z → f(z, x) is measurable;
(ii) for almost all z ∈ Z, x→ f(z, x) is continuous;
(iii) for almost all z ∈ Z and all x ∈ �, |f(z, x)| � α(z)+ c|x|µ−1, 2 � p < µ < p∗,

α ∈ L∞(Z);
(iv) there exist θ > p and r0 > 0 such that for almost all z ∈ Z and all |x| � r0,

0 < θF (z, x) � f(z, x)x;

(v) lim
x→0

pF (z, x)
|x|p < λ1 uniformly for almost all z ∈ Z.

Remark. Hypotheses H(f)2(iv), (v) were first introduced by Ambrosetti-
Rabinowitz [3] in the context of semilinear systems (i.e. p = 2) with continuous
f(z, x) and with β = 0.
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H(β)2 : β(z, x) = ∂j(z, x) where j : Z × � → �+ = � ∪ {+∞} is a normal con-
vex integrand, for almost all z ∈ Z, j(z, 0) = 0, for almost all z ∈ Z, all x ∈ �

and all v ∈ ∂j(z, x) we have vx � θj(z, x) and if u1 ∈ W 1,p
0 (Z) is the normal-

ized eigenfunction to the simple first eigenvalue λ1 > 0 of (−∆p,W
1,p
0 (Z)), then

lim sup
ξ→∞

1
ξp

∫
Z j(z, ξu1(z)) dz <∞.

Theorem 5. If hypotheses H(f)2 and H(β)2 hold, then problem (1) has a non-
trivial solution.

�����. As in the proof of theorem 4, we consider the functionals Φ, ψ and
R = Φ + ψ.

Claim #1. R(·) satisfies the (PS)-condition (in the sense of Szulkin, see Sec-
tion 2).

Let {xn} ⊆W 1,p
0 (Z) be such that R(xn)→ c as n→∞ and

〈Φ′(xn), y − xn〉+ ψ(y)− ψ(xn) � −εn‖y − xn‖

for all y ∈ W 1,p
0 (Z) and with εn ↓ 0. Let us divide y = xn + txn, t > 0, by t and

finally pass to the limit as t ↓ 0. We obtain

−
∫

Z

f(z, xn(z))xn(z) dz + ψ
′(xn;xn) � −εn‖xn‖.

where ψ′(xn;xn) is the directional derivative of ψ(·) at xn in the direction xn. Note
that from the choice of the sequence {xn} we have that ∂ψ(xn) �= ∅ (see the remark
in Section 2 from which it follows at once that un − Φ′(xn) ∈ ∂ψ(xn) for all n � 1).
Moreover, if ψ1 : Lµ(Z)→ �+ is as in the proof of Theorem 4, using Lemma 5.2 and
Proposition 5.2, pp. 194–195 of Showalter [21], we have that ∂ψ(xn) = ∂ψ1(xn) ⊆
Lµ′(Z) ( 1µ +

1
µ′ = 1). Since ψ

′(xn; ·) is the support function of ∂ψ(xn), given any

δ > 0 we can find wn ∈ ∂ψ(xn) = ∂ψ1(xn), wn ∈ Lµ′(Z) such that (wn, xn)µ,µ′+δ �
ψ′(xn;xn), where (·, ·)µ,µ′ denotes the duality brackets of (Lµ(Z), Lµ′(Z)). Recall
that ∂ψ1 = A1+∂V1 (see the proof of Theorem 4). So wn = A1(xn)+un = A(xn)+un

with un ∈ ∂V1(xn). So we have

∫

Z

f(z, xn(z))xn(z) dz − ‖Dxn‖p
p − (un, xn)µ,µ′ − δ � εn‖xn‖.(14)

From the choice of the sequence {xn} ⊆W 1,p
0 (Z), we have that

θR(xn) � M1 for some M1 > 0.(15)
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Adding (14) and (15), we obtain

(θ
p
− 1

)
‖Dxn‖p

p +
∫

Z

(f(z, xn(z))xn(z)− θF (z, xn(z))) dz

+
∫

Z

(θj(z, xn(z))− un(z)xn(z)) dz � ‖Dxn‖p +M2

for some M2 > 0 (here we have used the gradient norm on W
1,p
0 (Z)). Since un ∈

∂V1(xn), we have un(z) ∈ ∂j(z, xn(z)) = β(z, xn(z))) a.e. on Z (see for example
Showalter [21], Example 8.B, p. 85). Then using hypotheses H(f)2(iv) and H(β)2
we obtain ∫

Z

(f(z, xn(z))xn(z)− θF (z, xn(z))) dz � 0

and ∫

Z

(θj(z, xn(z))− un(z)xn(z)) dz � 0.

Therefore we can write
(θ
p
− 1

)
‖Dxn‖p

p � ‖Dxn‖p +M2.

Since θ > p, from the above inequality we infer that {Dxn} ⊆ Lp(Z,�N ) is
bounded,hence {xn} ⊆ W 1,p

0 (Z) is bounded (Poincare’s inequality). Then arguing
as in the proof of theorem 4, we can extract a strongly convergent subsequence. So
R(·) satisfies the (PS)-condition.
Next from hypotheses H(f)2(v), given ε > 0 we can find γε > 0 such that for

almost all z ∈ Z and all |x| � γε we have

F (z, x) � λ1 − ε

p
|x|p.

On the other hand from hypothesis H(f)2(iii), we have

|f(z, x)| � α(z) + c|x|µ−1 a.e. on Z for all |x| � γε

⇒ F (z, x) � α(z)|x|+ c5|x|µ a.e. on Z for all |x| � γε with c5 > 0.

Therefore we infer that for almost all z ∈ Z and all x ∈ �

F (z, x) � λ1 − ε

p
|x|p + c6|x|µ.(16)

Using (16), we have

R(x) =
1
p
‖Dx‖p

p +
∫

Z

j(z, x(z)) dz −
∫

Z

F (z, x(z)) dz(17)

� 1
p

(
1− λ1 − ε

λ1

)
‖Dx‖p

p − c7‖Dx‖µ
p for some c7 > 0.
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(in the last inequality we have used the Rayleigh quotient and the fact that W 1,p
0 (Z)

is embedded continuously in Lµ(Z)). Since p < µ from (17) and with ε > 0 small
enough we have that

R(x) � η > 0 for all x ∈ W 1,p
0 (Z) with ‖x‖ = �.

Also from hypothesis H(f)2(iv), for almost all z ∈ Z and all x ∈ � we have

F (z, x) � c8|x|θ − c9 for some c8, c9 > 0(18)

(see Rabinowitz [20], remark 2.13 (ii), p. 9). Then for all ξ > 0 we have

R(ξu1) =
ξp

p
‖Du1‖p

p +
∫

Z

j(z, ξu1(z)) dz −
∫

Z

F (z, ξu1(z)) dz

� ξp

p
‖Du1‖p

p +
∫

Z

j(z, ξu1(z)) dz + c10 − c8ξ
θ‖u1‖θ

θ, c10 = c9|Z| (see (18))

� ξp(c11 − c12ξ
θ−p) +

∫

Z

j(z, ξu1(z)) dz for some c11, c12 > 0.

By virtue of the last part of hypothesis H(β)2, we see that for ξ > � large enough
we will have R(ξu1) � 0. Hence we can apply Theorem 2 to deduce that R(·) has
a critical point x ∈ W 1,p

0 (Z). So −Φ′(x) ∈ ∂ψ(x) and R(x) � η > 0 = R(0), thus
x �= 0. Then as in the proof of Theorem 4 we can verify that x ∈ W 1,p

0 (Z) is a
nontrivial solution of (1). �

Remark. Problem (1) incorporates as a special case problems with monotone
discontinuities. In this direction we should mention the important work of Chang
[7], who studied semilinear problems with discontinuities (not necessarily monotone)
using the subdifferential theory of locally Lipschitz functionals. Equations of the
form (1) arise in physical problems, like in the study of a homogeneous gas flowing
through a homogeneous porous medium (see for example Ames [2]).

4. Neumann problems

In this section we consider a quasilinear Neumann problem with multivalued
boundary condition. More precisely, we study the following problem:

(19)





− div
(
‖Dx(z)‖p−2Dx(z)

)
= f(z, x(z))− h(z) a.e. on Z

∂x

∂np
(z) ∈ β(z, τ(x)(z)) a.e. on Γ, 2 � p <∞



 .
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Here ∂x
∂np
(z) = (‖Dx(z)‖p−2Dx(z), n(z))�N with n(z) denoting the outward nor-

mal at z ∈ Γ and τ is the trace operator on W 1,p(Z). On Γ we consider the (N − 1)-
dimensional Hausdorff measure.
Our hypotheses on f(z, x) and β(z, x) are the following:

H(f)3: f : Z × � → � is a Carathéodory function such that
(i) for almost all z ∈ Z and all x ∈ �, |f(z, x)| � α(z) + c|x|θ−1 with α ∈ L∞(Z),

c > 0, 1 � θ < p;
(ii) uniformly for almost all z ∈ Z we have that

f(z, x)
|x|θ−2x → f+(z) as |x| → +∞

where f+ ∈ L1(Z), f+ � 0 with strict inequality on a set of positive Lebesgue
measure.

H(β)3: β(z, x) = ∂j(z, x) where j : Z × � → �+ is a Caratheodory convex inte-
grand such that for almost all z ∈ Z and all x ∈ �, |β(z, x)| = sup[|u| : u ∈ β(z, x)] �
α1(z) + c1|x|µ, 0 � µ < θ− 1 (θ the same as in H(f)3(i)) with α1 ∈ L∞, c1 > 0 and
j(·, 0) ∈ L∞(Z).

Theorem 6. If hypotheses H(f)3 and H(β)3 hold, then problem (19) has a non-
trivial solution.

�����. Let Φ: W 1,p(Z)→ � and ψ : W 1,p(Z)→ �+ be defined by

Φ(x) = −
∫

Z

F (z, x(z)) dz and ψ(x) =
1
p
‖Dx‖p

p +
∫

Γ
j(z, τ(x)(z)) dσ.

In the definition of Φ(·), F (z, x) =
∫ x

0 f(z, r) dr (the potential of f), τ(·) is the
trace operator on W 1,p(Z) and dσ is the (N − 1)-dimensional Hausdorff measure.
Clearly Φ ∈ C1(W 1,p(Z)), while as before we can check that ψ ∈ Γ0(W 1,p(Z)). Set
R = Φ + ψ.

Claim 1. R(·) satisfies the (PS)-condition (in the sense of Szulkin, see Section 1).

Let {xn} ⊆W 1,p(Z) and assume that R(xn)→ c as n→∞ and

〈Φ′(xn), y − xn〉+ ψ(y)− ψ(xn) � −εn‖y − xn‖

for all y ∈ W 1,p(Z), with εn ↓ 0. Set y = xn − txn, t > 0, divide by t and let t ↓ 0.
As in the proof of Theorem 5, in the limit we obtain

−〈Φ′(xn), xn〉 − ‖Dxn‖p
p −

∫

Γ
wn(z)xn(z) dσ � −εn‖xn‖
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with wn ∈ ∂V1(xn) where V1 : Lp(Γ)→ �+ is defined by V1(x) =
∫
Γ j(z, x(z)) dσ.

Recall that wn(z) ∈ ∂j(z, τ(x)(z)) = β(z, τ(xn)(z)) a.e. on Γ (see Showalter [21],
p. 85). So we have

∫

Z

f(z, xn(z))xn(z) dz − ‖Dxn‖p
p −

∫

Γ
wn(z)τ(xn)(z) dσ � −εn‖xn‖.

Suppose that {xn} ⊆ W 1,p(Z) is unbounded. Then (at least for a subsequence) we
may assume that ‖xn‖ → ∞. Let y = xn

‖xn‖ , n � 1. By passing to a subsequence if
necessary, we may assume that

yn
w→ y in W 1,p(Z), yn → y in Lp(Z), yn(z)→ y(z) a.e. on Z as n→∞

and |yn(z)| � k(z) a.e. on Z with k ∈ Lp(Z).
Recall that from the choice of the sequence {xn} we have |R(xn)| � M1 for

some M1 > 0 and all n � 1, which yields ⇒ 1
p‖Dxn‖p

p +
∫

Z j(z, τ(xn)(z)) dσ −∫
Z
F (z, xn(z)) dz � M1 ⇒ 1

p‖Dxn‖p
p −

∫
Z
F (z, xn(z)) dz � M1 (since j � 0).

Divide by ‖xn‖p. We obtain

1
p
‖Dyn‖p

p −
∫

Z

F (z, xn(z))
‖xn‖p

dz � M1
‖xn‖p

.(20)

We have
∣∣∣∣
∫

Z

F (z, xn(z))
‖xn‖p

dz

∣∣∣∣ � 1
‖xn‖p

∫

Z

∫ |xn(z)|

0
|f(z, r)| dr dz

� 1
‖xn‖p

(
‖α‖∞‖xn‖+

c

θ
‖xn‖θ

)
→ 0 as n→∞.

So by passing to the limit as n→∞ in (20) we obtain

lim
1
p
‖Dyn‖p

p = 0

⇒ ‖Dy‖p = 0 (recall that Dyn
w→ Dy in Lp(Z,�N ) as n→∞)

⇒ y = ξ ∈ �.

Note that yn → ξ in W 1,p
0 (Z) and since ‖yn‖ = 1, n � 1 we infer that ξ �= 0. We

deduce that |xn(z)| → +∞ a.e. on Z as n→∞.
From the choice of the sequence {xn} ⊆W 1,p(Z) we have

∫

Z

f(z, xn(z))xn(z) dz − ‖Dxn‖p
p −

∫

Z

wn(z)τ(xn)(z) dz � −εn‖xn‖(21)

and

‖Dxn‖p
p + p

∫

Γ
j(z, τ(x)(z)) dσ − p

∫

Z

F (z, xn(z)) dz � −pM1.(22)

816



Adding (21) and (22), we obtain

∫

Γ
(pj(z, τ(xn)(z))− wn(z)τ(xn)(z)) dσ+

∫

Z

(f(z, xn(z))xn(z)− pF (z, xn(z))) dz � −pM1 − εn‖xn‖.

Divide this inequality by ‖xn‖θ. We have

∫

Z

f(z, xn(z))
‖xn‖θ−1 yn(z) dz −

∫

Z

pF (z, xn(z))
‖xn‖θ

dz(23)

+
∫

Γ

pj(z, τ(xn)(z)− wn(z)τ(xn)(z)
‖xn‖θ

dσ

� − 1
‖xn‖θ

pM1 −
εn

‖xn‖θ−1 .

Note that

∫

Z

f(z, xn(z))
‖xn‖θ−1 yn(z) dz

=
∫

Z

f(z, xn(z))
|xn(z)|θ−2xn(z)

|yn(z)|θ dz → |ξ|θ
∫

Z

f+(z) dz as n→∞.

Also by virtue of hypothesis H(f)3(ii), given z ∈ Z \N , |N | = 0 (|C| denotes the
Lebesgue measure of a measurable set C ⊆ Z) and ε > 0, we can find Mε > 0 such
that for all |r| � Mε we have |f+(z)− f(z,r)

|r|θ−2r | � ε. Then, if xn(z)→ +∞, we have

1
|xn(z)|θ

F (z, xn(z)) dz � 1
|xn(z)|θ

F (z,Mε) dz(24)

+
1

|xn(z)|θ
∫ xn(z)

Mε

(f+(z)|r|θ−2r − ε|r|θ−2r) dr

=
1

|xn(z)|θ
η(z) +

|xn(z)|θ −Mθ
ε

θ|xn(z)|θ
(f+(z)− ε)

for some η ∈ L1(Z)

⇒ lim inf
n→∞

F (z, xn(z))
|xn(z)|θ

� 1
θ
(f+(z)− ε).

Similarly we obtain that

lim sup
n→∞

F (z, xn(z))
|xn(z)|θ

� 1
θ
(f+(z) + ε).(25)
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From (24) and (25) and since ε > 0 and z ∈ Z \N were arbitrary, we infer that

F (z, xn(z))
|xn(z)|θ

→ 1
θ
f+(z) a.e. on Z as n→∞

⇒
∫

Z

F (z, xn(z))
‖xn‖θ

dz =
∫

Z

F (z, xn(z))
|xn(z)|θ

|xn(z)|θ
‖xn‖θ

dz(26)

=
∫

Z

F (z, xn(z))
|xn(z)|θ

|yn(z)|θ dz → ξθ

∫

Z

1
θ
f+(z) as n→∞.

Note that since j(z, ·) is convex and continuous for almost all z ∈ Z, it is locally
Lipschitz. So by Lebourg’s mean value theorem, for almost all z ∈ Z and all x ∈ �
we can find w ∈ β(z, ηx), 0 < η < 1 such that

|j(z, x)− j(z, 0)| = wx
⇒ |j(z, x)| � |j(z, ·)|+ |w‖x| � β + |w‖x| (since j(·, ·) ∈ L∞(Z)).

However by H(β)3 we have

|w| � a1(z) + c1|x|µ

⇒ |j(z, x)| � a2 + c2|x|µ+1 for some a2, c2 > 0.

So it is easy to see that

∫

Γ

pj(z, τ(xn)(z))− wn(z)τ(xn)(z)
‖xn‖θ

dσ → 0 as n→∞ (recall µ+ 1 < θ).

Thus by passing to the limit in (23), we obtain

(
1− p

θ

)
ξθ

∫

Z

f+(z) � 0,

a contradiction to hypothesis H(f)3(ii) (recall that p > θ). If xn(z) → −∞, by
similar arguments as above we show that

∫

Z

F (z, xn(z))
‖xn‖θ

dz → ξθ

∫

Z

1
θ
f+(z) as n→∞

(note that
∫ xn(z)
0 f(z, r) dr = −

∫ o

xn(z)
f(z, r) dr). Therefore it follows that {xn} ⊆

W 1,p(Z) is bounded. Hence we may assume that xn
w→ x in W 1,p(Z), xn → x

in Lp(Z), xn(z) → x(z) a.e. on Z as n → ∞ and |xn(z)| � k(z) a.e. on Z with
k ∈ Lp(Z). We have

〈Φ′(xn), y − xn〉+ ψ(y)− ψ(xn) � −εn‖y − xn‖ for all y ∈W 1,p(Z).
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Take y = x. We obtain

〈Φ′(xn), x − xn〉+
1
p
(‖Dx‖p

p − ‖Dxn‖p
p)(27)

+
∫

Γ
(j(z, τ(x)(z)) − j(z, τ(xn)(z)) dσ � −εn‖x− xn‖.

Note that

〈Φ′(xn), x− xn〉 → 0 as n→∞.(28)

From the compactness of the trace operator (see Kufner-John-Fučik [17], Theo-
rem 6.10.5, p. 344) we have that τ(xn) → τ(x) in Lp(Γ) as n → ∞ and by passing
to a subsequence if necessary, we may also assume that τ(xn)(z) → τ(x)(z) a.e. on
Γ as n→∞. So by Fatou’s lemma we have

lim sup
n→∞

∫

Γ
−j(z, τ(xn)(z)) dσ �

∫

Γ
−j(z, τ(x)(z)) dσ

and by passing to the limit in (27), we obtain

lim sup ‖Dxn‖p
p � ‖Dx‖p

p.

However from the weak lower semicontinuity of the norm functional we also have
that

lim inf ‖Dxn‖p
p � ‖Dx‖p

p

⇒ ‖Dxn‖p → ‖Dx‖p as n→∞.

Since Dxn
w→ Dx in Lp(Z) and the latter is uniformly convex, we conclude that

xn → x in W 1,p(Z) as n→∞, which proves that R(·) satisfies the (PS)-condition.
Now let W 1,p(Z) = X1 ⊕X2 with X1 = � and X2 = {y ∈W 1,p(Z) :

∫
Z
y(z) dz =

0}. For every ξ ∈ X1 we have

R(ξ) = Φ(ξ) + ψ(ξ) =
∫

Z

j(z, ξ) dσ −
∫

Z

F (z, ξ) dz

� ‖α1‖∞|ξ‖Γ|+
c1
µ
|ξ|µ|Γ| −

∫

Z

F (z, ξ) dz (see hypothesis H(β)3)

⇒ 1
|ξ|µR(ξ) � 1

|ξ|µ−1 ‖α1‖∞|Γ|+
c

µ
|Γ| − 1

|ξ|µ
∫

Z

F (z, ξ) dz.

By virtue of hypothesis H(f)3(ii) we conclude that R(ξ)→ −∞ as |ξ| → ∞. On the
other hand for y ∈ X2, we have

R(y) � 1
p
‖Dy‖p

p −
∫

Z

F (z, y(z)) dz (since j � 0)

� 1
p
‖Dy‖p

p − c2‖y‖p − c3‖y‖θ
p for some c2, c3 > 0 (since θ < p, see H(f)3(i)).
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From the Poincaré-Wirtinger inequality we know that ‖Dy‖p is an equivalent norm
on X2. So we have

R(y) � 1
p
‖Dy‖p

p − c4‖Dy‖p − c5‖Dy‖θ
p for some c4, c5 > 0,

which implies that R(·) is coercive on X2 (recall that θ < p), hence bounded below
on X2.
Apply Theorem 3 to produce x ∈ W 1,p(Z), x �= 0 such that −Φ′(x) ∈ ∂ψ(x). If

ψ1 : Lp(Z)→ � is defined by

ψ1(x) =

{
ψ(x) if x ∈ domψ =W 1,p(Z)

∞ otherwise

then from the Proposition 5.2, pp. 194–195 of Showalter [21] we have that −f̂(x) ∈
∂ψ1(x) with f̂(x)(·) = f(·, x(·)) (see the proof of Theorem 4).
Let V : W 1,p(Z)→ � be the convex integrand functional defined by

V (x) =
∫

Γ
j(z, τ(x)(z)) dσ.

Clearly V ∈ C(W 1,p(Z)) (see H(β)3). Let A : W 1,p(Z)→W 1,p(Z)∗ be defined by

〈A(x), y〉 =
∫

Z

‖Dx(z)‖p−2(Dx(z), Dy(z))�N dz

Recall that A(·) is monotone, demicontinuous, hence maximal monotone. Then
K = A+∂V : W 1,p(Z)→ 2W 1,p(Z)∗ is maximal monotone (see Zeidler [23], Theorem
32.I, p. 888). Let D = {x ∈ W 1,p(Z) : K(x) ∩ Lq(Z) �= ∅} ( 1p + 1

q = 1) and define
K1 : D ⊆ Lq(Z)→ 2Lq(Z) by K1(x) = K(x) ∩ Lq(Z).

Claim 2. K1(·) is maximal monotone.

Let C : Lp(Z) → Lq(Z) be defined by C(x)(·) = |x(·)|p−2x(·). First note that if
v ∈ ∂V (x), then 〈v, η〉 � V (x + η) − V (x) = 0 for all η ∈ C∞0 (Z) and so v = 0 in
the sense of distributions. Hence K1(·) is single valued and K1(x) = A(x) in the
sense of distributions. Now we will show that R(K1 + C) = Lq(Z). Note that C(·)
is continuous monotone, hence K + C is maximal monotone. Moreover, for every
u ∈ K(x), 〈u+ C(x), x〉 � 〈A(x), x〉 + 〈C(x), x〉 = ‖Dx‖p

p + ‖x‖p
p = ‖x‖p. Thus

K+C is coercive, therefore surjective (see Zeidler [23], Corollary 32.35, pp. 887). So
if g ∈ Lq(Z), we can find (x, u) ∈ GrK such that u + C(x) = g ⇒ u = g − C(x) ∈
Lq(Z)⇒ u ∈ K(x)∩Lq(Z) = K1(x), i.e. u = K1(x). Since g ∈ Lq(Z) was arbitrary,
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we deduce that R(K1+C) = Lq(Z). Next we will show that this surjectivity implies
the maximality ofK1. Indeed, suppose that for a pair (u, v) ∈ Lp(Z)×Lq(Z) we have
(K1(x)−v, x−u)pq � 0 for all x ∈ D. Take x ∈ D such thatK1(x)+C(x) = v+C(u)
(recall R(K1+C) = Lq(Z)) and v+C(u) ∈ Lq(Z). So v = K1(x)+C(x)−C(u) and
we have (K1(x)−K1(x)−C(x) +C(u), x− u)pq = (C(u)−C(x), x− u)pq � 0. But
C(·) is strictly monotone. So x = u and K1(x) = v, i.e. K1(·) is maximal monotone.
Because K1 ⊆ ∂ψ1, using Claim 2, we infer that K1 = ∂ψ1.
Now let L : W

1
q ,p(Γ) → � be defined by L(u) =

∫
Γ j(z, u(z)) dσ. By virtue of

hypothesis H(β)3, we see that L(·) is continuous and convex. Also L ◦ τ = V .
Claim 3. If g ∈ Lq(Z) and g = K1(x) for some x ∈ D, then we have

− div(‖Dx(z)‖p−2Dx(z)) = g(z) a.e. on Z and ∂x
∂np

∈ β(z, τ(x)(z)) a.e. on Γ.
Since x ∈ D ⊆ W 1,p(Z) by virtue of the representation theorem for the elements

of W−1,q(Z) (see Adams [1], Theorem 3.10, p. 50), we have that div(‖Dx‖p−2Dx) ∈
W−1,q(Z). Recall that for all x ∈ D, K1(x) = A(x) in the sense of distributions. So
for any η ∈ C∞0 (Z) we have

(g, η)pq = 〈A(x), η〉 =
∫

Z

‖Dx(z)‖p−2(Dx(z), Dη(z))�N dz(29)

=
〈
− div(‖Dx‖p−2Dx, η

〉

⇒ − div(‖Dx(z)‖p−2Dx(z) = g(z) a.e. on Z

(since C∞0 (Z) is dense in W
1,p
0 (Z) and W

−1,q(Z) =W 1,p
0 (Z)

∗). Because

div(‖Dx‖p−2Dx) ∈ Lq(Z) and ‖Dx‖p−2Dx ∈ Lq(Z,�N ),

from Proposition 1.4 of Kenmochi [16] we have that ∂x
∂np

∈ W− 1q ,q(Γ) = W
1
q ,p(Γ)∗

and
∫

Z

div(‖Dx‖p−2Dx)y(z) dz +
∫

Z

‖Dx‖p−2(Dx,Dy)�N dz(30)

=

〈
∂x

∂np
, τ(y)

〉

Γ

for all y ∈W 1,p(Z)

where 〈·, ·〉Γ denotes the duality brackets for the pair (W
1
q ,p(Γ),W− 1

q ,q(Γ)). For
every w ∈ G(τ(x)) = {u ∈ Lq(Γ): u(z) ∈ β(z, τ(x)(z)) a.e. on Γ}, we also have

V (y)− V (x) =
∫

Γ
(j(z, τ(y)(z))− j(z, τ(x)(z)) dσ

�
∫

Γ
w(z)(τ(y)(z) − τ(x)(z)) dσ

= 〈w, τ(y − x)〉Γ = 〈τ∗w, y − x〉 for all y ∈W 1,p(Z)

⇒ τ∗w ∈ ∂V (x).
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So we have that (τ∗Gτ)(x) ⊆ ∂V (x). Note that G(τ(x)) = ∂L(τ(x)) (see Hu-
Papageorgiou [14], Example 4.28(c), p. 349). Since V = L ◦ τ and using Theorem 2,
p. 201 of Ioffe-Tichomirov [15], we have (τ∗Gτ)(x) = ∂V (x) ⇒ τ∗w = g − A(x) for
some w ∈ ∂L(τ(x)) = G(τ(x)) ⊆ Lq(Z). Hence for all y ∈W 1,p(Z), we have

〈τ∗w, y〉 = 〈g −A(x), y〉

= −
∫

Z

div(‖Dx‖p−2Dx)y dz −
∫

Z

‖Dx‖p−2(Dx,Dy)�N dz (see (28))

⇒ 〈w, τ(y)〉Γ = −
∫

Z

div(‖Dx‖p−2Dx)y dz −
∫

Z

‖Dx‖p−2(Dx,Dy)�N dz

⇒ 〈w, τ(y)〉Γ =
〈
− ∂x

∂np
, τ(y)

〉

Γ

for all y ∈ W 1,p(Z) (see (29)).

Since Range(τ) =W
1
q ,p(Γ), from the above equality we infer that

w(z) = − ∂x

∂np
(z) a.e. on Γ.

Because w ∈ ∂L(τ(x)) = G(τ(x)), we conclude that − ∂x
∂np
(z) ∈ β(z, τ(x)(z)) a.e.

on Γ.
Now recall that −f̂(x) ∈ ∂ψ1(x) = K1(x) and f̂(x) ∈ Lq(Z) (see hypothesis

H(f)3(i)). Thus according to claim #3, x(·) is a nontrivial solution of (18). �

Remark. Problems like (19) are of physical interest and arise in the theory of
heat transfer between solids and gases (see Friedman [11]). In this respect it will be
interesting to have Theorem 6 without the condition that domβ(z, ·) = � a.e. on Z,
which is the case here (see hypothesis H(β)3).
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