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CHARACTERIZATIONS OF COMPLETENESS OF NORMED SPACES

THROUGH WEAKLY UNCONDITIONALLY CAUCHY SERIES

F. J. Pérez-Fernández, F. Benítez-Trujillo and A. Aizpuru, Cádiz

(Received December 9, 1998)

Abstract. In this paper we obtain two new characterizations of completeness of a normed
space through the behaviour of its weakly unconditionally Cauchy series. We also prove
that barrelledness of a normed space X can be characterized through the behaviour of its
weakly-∗ unconditionally Cauchy series in X∗.
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1. Introduction

Let X be a real normed space and let σ =
∞∑

i=1
xi be a series in X . Let us recall that

σ is called unconditionally convergent (uc) (resp. weakly unconditionally Cauchy

(wuC)) if
∞∑

i=1
x
�(i) converges (resp.

( i∑
k=1

x
�(k)

)
i
is a weakly Cauchy sequence) for

every permutation � of �. It is well known that
∞∑

i=1
xi is wuC if and only if for each

x∗ ∈ X∗
∞∑

i=1
|x∗(xi)| < ∞, where X∗ is the dual space of X .

Many studies have been made on the behaviour of a series of the form
∞∑

i=1
aixi,

where (ai)i is a bounded sequence of real numbers. For instance, unconditionally
convergent (resp. weakly unconditionally Cauchy) series can be characterized as the

series
∞∑

i=1
xi such that

∞∑
i=1

aixi is convergent for every bounded sequence (resp. for

every null sequence) (ai)i (Cf. [2], [3] and [4]). The Banach space of bounded se-

quences (resp. null sequences) of real numbers, endowed with the sup norm, will be
denoted, as usual, by �∞ (resp. c0).
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For any given series σ =
∞∑

i=1
xi inX , let us consider the setS = S (σ) (resp.Sw =

Sw(σ)) of sequences (ai)i ∈ l∞ such that
∞∑

i=1
aixi converges (resp. converges for the

weak topology). The set S (resp. Sw), endowed with the sup norm, will be called
the space of convergence (resp. weak convergence) of the series σ. Clearly S and

Sw are subspaces of �∞.

If X is a normed space and S is a subspace of �∞ such that c0 ⊆ S , we will

denote

X(S ) =

{
x = (xi)i∈� ∈ X� :

∞∑

i=1

aixi is convergent for every (ai)i∈� ∈ S

}
.

In [1] it is proved that X(S ) is a normed space with the norm

‖x‖S = sup

{∥∥∥∥
∞∑

i=1

aixi

∥∥∥∥ : (ai)i∈� ∈ BS

}
,

where BS denotes the unit ball in S , and that if X is complete then X(S ) is

also complete. Some others properties of spaces X(S ) have been studied in [1], [6]
and [7].

For a given series σ =
∞∑

i=1
x∗i in X∗, the set of bounded sequences (ai)i of real

numbers such that
∞∑

i=1
aix

∗
i is ∗-weakly convergent will be denoted by S∗w(σ).

It is well known (see [2], [3] and [5]) that if X is a Banach space then:

1. There exists a wuC series in X which is convergent but which is not uncondi-
tionally convergent if and only if X has a copy of c0.

2. There exists in X a wuC and weakly convergent series which does not converge

if and only if X has a copy of c0.

3. There exists in X∗ a ∗-weakly unconditionally Cauchy (∗-wuC) series which is
not unconditionally convergent if and only if X∗ has a copy of �∞.

It is obvious that if X does not have a copy of c0 then the following conditions

are equivalent: 1) The series σ =
∞∑

i=1
xi is wuC. 2) The series σ is uc. 3) S (σ) =

Sw(σ) = �∞.

In this paper we characterize the completeness of X through the spaces S (σ) and

Sw(σ), where σ is a wuC series in X . We also characterize the barrelledness of a
normed space X through the spaces S∗w(σ), where σ is a ∗-wuC series in X∗.
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2. Completeness through convergent series

Let us recall that if X is a normed space then σ =
∞∑

i=1
xi is wuC if and only if

(2.1) E =

{ n∑

i=1

αixi : n ∈ �, |αi| � 1, i ∈ {1, . . . , n}
}

is bounded.

Theorem 2.1. Let X be a Banach space and let σ =
∞∑

i=1
xi be a series in X . The

space S (σ) is complete if and only if σ is wuC.

�����. Let us suppose that σ is wuC. Let E be the set defined by (2.1). Let us
suppose that ‖x‖ < M for every x ∈ E. Let

{
(a(k)i )i

}
k
be a sequence in S (σ) that

converges to
(
a
(0)
i

)
i
∈ l∞. For any given ε > 0, there exists k0 ∈ � such that

∣∣a(k)i −
a
(0)
i

∣∣ < ε
2M , for every k � k0 and i ∈ �. If k > k0 then there exists ik = ik(k, ε) ∈ �

such that
∥∥∥

p∑
i=q

a
(k)
i xi

∥∥∥ < ε
2 , for p > q � ik. Since 2Mε

p∑
i=q

(
a
(k)
i − a

(0)
i

)
xi ∈ E, we

obtain that
∥∥∥

p∑
i=q

(
a
(k)
i − a

(0)
i

)
xi

∥∥∥ � ε
2 , for k > k0, and that

∥∥∥
p∑

i=q

a
(0)
i xi

∥∥∥ < ε. This

proves that S (σ) is complete.

It is obvious that if S (σ) is complete then σ is wuC. �

Theorem 2.2. Let X be a normed space. The space X is complete if and only

if for every weakly unconditionally Cauchy series σ =
∞∑

i=1
xi in X the space S (σ) is

complete.

�����. If X is not complete then there exists an absolutely convergent series

σ =
∞∑

i=1
xi in X which is not convergent and is such that ‖xi‖ < 1

i2i for every i ∈ �.

Let σ′ =
∞∑

i=1
zi be the series defined by z2i−1 = ixi, z2i = −ixi, for i ∈ �. It is clear

that σ′ is wuC.

Let (ai)i ∈ c0 be the sequence defined by a2i−1 = 1
2i , a2i = − 12i , for i ∈ �. Since

the series
∞∑

i=1
aizi does not converge we have that S (σ′) is not complete, although

σ′ is wuC. �

Our next result give us some information on the relationship between the spaces

S (σ) and S (σ′), when σ and σ′ are two different series in X . The natural frame-
works for this study are the spaces X(S ).
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Theorem 2.3. Let X be a Banach space. Let σ =
∞∑

i=1
xi be a wuC series in X

and let S = S (σ).

1. If (σn)n∈� is a sequence in X(S ) that converges to σ then
⋂

n∈�
S (σn) = S (σ).

2. If σ0 ∈ X(S ) then the set {σ′ ∈ X(S ) : S (σ′) �= S (σ0)} is open in X(S ).

�����. 1. For n ∈ �, we denote σn =
∞∑

i=1
xn

i . It is clear that S (σn) ⊇ S (σ).

Let us suppose that (ai)i∈� ∈
⋂

n∈�
S (σn) and let ε > 0. Let n ∈ � be such that

‖σ−σn‖S < ε
2 . There exists i0 ∈ � such that

∣∣∣
p∑

i=q+1

ai

‖(ai)i∈�‖x
n
i

∣∣∣ < ε
2 , for p > q � i0.

Then

∣∣∣∣
p∑

i=q+1

ai

‖(ai)i∈�‖
xi

∣∣∣∣ �
∣∣∣∣

p∑

i=q+1

ai

‖(ai)i∈�‖
(xi − xn

i )

∣∣∣∣+
∣∣∣∣

p∑

i=q+1

ai

‖(ai)i∈�‖
xn

i

∣∣∣∣

� ‖σ − σn‖S +
ε

2
� ε.

2. It is clear that X(S (σ0)) is a closed subspace of X(S ). The first part of this

theorem proves that {σ′ ∈ X(S ) : S (σ′) = S (σ0)} is closed in X(S (σ0)). �

Remark 2.4. Let X be a Banach space and let σ =
∞∑

i=1
xi be a wuC series in X .

It is clear that S (σ) = c0 if and only if (xi)i∈� does not have any null subsequence.

In this case (xi)i∈� has a basic subsequence that is equivalent to the c0-base.

Therefore, if σ is wuC then S (σ) = S (σ′), for every subseries σ′ of σ, if and only

if either S (σ) = �∞ or S (σ) = c0.

Nevertheless, if σ1 and σ2 are two arbitrary wuC series in X , we do not know any
conditions on σ1 and σ2 that let us affirm that S (σ1) = S (σ2).

If X has a copy of c0 and F is a closed subspace of �∞ such that c0 ⊆ F , we do
not know if there exists a series σ in X such that S (σ) = F (if X does not have a

copy of c0 and F �= �∞ the answer to this question is negative).

3. Completeness through weakly convergent series

It is well known that if a series converges in a Banach space X then this series
is weakly convergent. Nevertheless, the converse is, in general, false. A weakly

convergent series
∞∑

i=1
xi is not necessarily a weakly unconditionally Cauchy series. We

can ask, as in the second section, if the sets Sw(σ) may also be used to characterize
the completeness of a normed space X .
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Lemma 3.1. If X is a Banach space and σ =
∞∑

i=1
xi is a series in X , then σ is

wuC if and only if c0 ⊆ Sw(σ).

�����. It is obvious that the condition is necessary. Let us suppose that c0 ⊆
Sw(σ) and let (ai)i be an arbitrary null sequence. The series

∞∑
i=1

aixi is weakly con-

vergent. Let (ik)k be an increasing sequence of positive integers and let us consider

the set M = {ik : k ∈ �}. Let (bi)i be the sequence defined by bi = ai if i ∈ M ,

and bi = 0 if i /∈ M . The series
∞∑

i=1
bixi =

∞∑
k=1

aik
xik
is weakly convergent. Therefore

∞∑
i=1

xi is wuC. �

Theorem 3.2. Let X be a Banach space and let σ =
∞∑

i=1
xi be a series in X . The

space Sw(σ) is complete if and only if σ is wuC.

�����. Let us suppose that σ is wuC. We will prove that Sw(σ) is complete.
Let

{
(a(k)i )i

}
k
be a sequence in Sw(σ) that converges to

(
a
(0)
i

)
i
∈ �∞ and let (zk)k

be a sequence in X such that
∞∑

i=1
a
(k)
i x∗(xi) = x∗(zk), for every x∗ ∈ X∗.

Let E be the set defined by (2.1). There existsM > 0 such that ‖x‖ � M , for every
x ∈ E. For any given ε > 0, there exists k0 ∈ � such that

∥∥(a(k)i )i − (a
(0)
i )i

∥∥ < ε
3M ,

for k � k0. Hence,
∣∣a(k)i − a

(0)
i

∣∣ < ε
3M , for i ∈ � and k � k0. This proves that

(3.1)

∥∥∥∥
m∑

i=1

(
a
(k)
i − a

(0)
i

)
xi

∥∥∥∥ � ε

3
,

for m � 1, and we have
∥∥∥

m∑
i=1

(
a
(p)
i − a

(q)
i

)
xi

∥∥∥ � 2ε
3 , for p > q � k0 and m � 1.

Therefore
m∑

i=1

(
a
(p)
i − a

(q)
i

)
x∗(xi) � 2ε

3 , for every x∗ ∈ X∗ such that ‖x∗‖ = 1 and
m � 1. There exists x∗0 ∈ X∗ such that

∥∥x∗0
∥∥ = 1 and

‖zp − zq‖ =
∞∑

i=1

(a(p)i − a
(q)
i )x

∗
0(xi),

for every p > q � k0. Since

m∑

i=1

(
a
(p)
i − a

(q)
i

)
x∗0(xi) �

∥∥∥∥
m∑

i=1

(
a
(p)
i − a

(q)
i

)
xi

∥∥∥∥ � 2ε
3

,

it is clear that ‖zp − zq‖ < ε. Hence there exists z0 ∈ X such that lim
k→∞

zk = z0.
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On the other hand, for any given ε > 0, there exists k1 ∈ � such that ‖zk−z0‖ < ε
3 ,

for k � k1. If x∗ ∈ X∗ and ‖x∗‖ = 1 then, by (3.1),
∣∣∣

m∑
i=1

(
a
(0)
i − a

(k)
i

)
x∗(xi)

∣∣∣ � ε
3 , for

m ∈ � and k � k0. If k � max{k0, k1} then we have that
∣∣∣∣

m∑

i=1

a
(0)
i x∗(xi)− x∗(z0)

∣∣∣∣ <
2ε
3
+

∣∣∣∣
m∑

i=1

a
(k)
i x∗(xi)− x∗(zk)

∣∣∣∣,

for m ∈ �. Since
∞∑

i=1
a
(k)
i x∗(xi) = x∗(zk), there exists m0 ∈ � such that if m � m0

then
∣∣∣

m∑
i=1

a
(k)
i x∗(xi)− x∗(zk)

∣∣∣ < ε
3 . Hence

∣∣∣
m∑

i=1
a
(0)
i x∗(xi)− x∗(z0)

∣∣∣ < ε. This proves

the theorem. �

Lemma 3.3. LetX be a normed space. If σ =
∞∑

i=1
xi is an unconditionally Cauchy

series in X then S (σ) = Sw(σ).

�����. If (ai)i ∈ Sw there exists x ∈ X such that x∗
( n∑

i=1
aixi

)
→ x∗(x), for

x∗ ∈ X∗. Since σ is an unconditionally Cauchy series, there exists x∗∗ ∈ X∗∗ such

that
∞∑

i=1
aixi = x∗∗. Hence x∗

( n∑
i=1

aixi

)
→ x∗∗(x∗), for x∗ ∈ X∗. This proves that

x∗∗ = x and (ai)i ∈ S . �

Theorem 3.4. A normed space X is complete if and only if for every weakly

unconditionally Cauchy series σ =
∞∑

i=1
xi in X the space Sw(σ) is complete.

�����. Let us suppose that X is not complete. We can find, as in the proof of

Theorem 2.2, an absolutely convergent series σ′ =
∞∑

i=1
zi that is wuC and such that

c0 �⊆ S (σ′); therefore S (σ′) is not complete. Since σ′ is an unconditionally Cauchy

series, by Lemma 3.3, we have that S (σ′) = Sw(σ′). �

4. Barrelledness through weak-∗ convergent series in X∗

The study that we have made in sections 2 and 3 can be extended, in a natural
way, to series in the dual space X∗ of X .

Theorem 4.1. Let X be a normed space and let ζ =
∞∑

i=1
x∗i be a series in X∗.

Let us consider the following conditions:

1) ζ is wuC.
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2) S∗w(ζ) = �∞.

3)
∞∑

i=1

∣∣x∗i (x)
∣∣ < +∞ for every x ∈ X .

We have that 1⇒ 2⇒ 3.
These three conditions are equivalent for every series ζ =

∞∑
i=1

x∗i in X∗ if and only

if X is a barrelled normed space.

�����. 1) ⇒ 2). If
∞∑

i=1
x∗i is wuC and (ai)i ∈ �∞ then

∞∑
i=1

aix
∗
i is also wuC.

Hence,
( n∑

i=1
aix

∗
i

)
n
is a bounded sequence in X∗ that is a Cauchy sequence for the

weak-∗ topology on X∗. Hence we have that
∞∑

i=1
aix

∗
i is weak-∗ convergent.

2)⇒ 3). For every x ∈ X , let us consider the series
∞∑

i=1
x∗i (x). For every (ai)i ∈ c0,

the series
∞∑

i=1
aix

∗
i (x) is convergent. Hence

∞∑
i=1

∣∣x∗i (x)
∣∣ < +∞.

Let us suppose that X is a barrelled normed space and that
∞∑

i=1
x∗i is a series in

X∗ such that condition 3) is satisfied. Let us consider the set

E =

{ m∑

i=1

αix
∗
i : m ∈ �, |αi| � 1, i ∈ {1, . . . , m}

}
.

It is clear that E is pointwise bounded and, therefore, E is bounded for the norm

topology of X∗. This proves that
∞∑

i=1
x∗i is wuC.

If X is not barrelled then there exists a weak-∗ bounded set F ⊆ X∗ which is not

bounded. For every i ∈ �, there exists y∗i ∈ F such that
∥∥y∗i

∥∥ > 22i. Let us write

x∗i =
1
2i y

∗
i , for i ∈ �. It is clear that

∞∑
i=1

∣∣x∗i (x)
∣∣ < +∞ for every x ∈ X . Nevertheless,

since ‖x∗i ‖ > 2i for every i ∈ �, the series
∞∑

i=1

1
2i x

∗
i does not converge and

∞∑
i=1

x∗i is

not a weakly unconditionally Cauchy series. This completes the proof. �

Remark 4.2. If X is a barrelled normed space, S∗w is complete if and only if
S∗w = �∞.

Remark 4.3. The proof of Theorem 4.1 shows that X is a barrelled normed

space if and only if in X∗ the set of weak unconditionally Cauchy series coincides
with the set of weak-∗ unconditionally Cauchy series.
Let us observe that if X is a Banach space, then there exists a weakly uncondi-

tionally Cauchy series in X∗ which is not unconditionally convergent if and only if
X∗ has a copy of �∞.
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