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LINEARIZED OSCILLATION RESULTS FOR EVEN-ORDER

NEUTRAL DIFFERENTIAL EQUATIONS

J. H. Shen and J. S. Yu1, Hunan

(Received September 14, 1993)

1. Introduction

Consider the even-order nonlinear neutral equation

(1)
dn

dtn
(
x(t) − P (t)g

(
x(t− τ)

))
−Q(t)h

(
x(t− σ)

)
= 0

where

(2) P, Q ∈ C
(
[t0,∞),�

)
, g, h ∈ C(�,�) and τ > 0, σ � 0.

Recently, a linearized oscillation result for Eq. (1) has been established by Ladas et
al. [3, 4]; for some further results, we refer to [1, 2, 5–7]. As we see in [3, 4], it seems

that the

Lim sup
t→∞

P (t) = P0 ∈ (0, 1), Lim inf
t→∞

P (t) = p0 ∈ (0, 1)

is always assumed to hold. However, the case P (t) < 0 or P (t) � 1 has not yet
been handled. Therefore, Györi and Ladas put forth the following open problem
in [4, problem 10.10.4]: Obtain linearized oscillation results for Eq. (1) when the

coefficients P (t) < 0 for t � t0 or P (t) � 1 for t � t0.

Our aim in this paper is to answer the above problem when P (t) � −1 for t � t0

and P (t) � 1 for t � t0. Our main results are the following two theorems:

1Research is partially supported by the NNSF of China.
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Theorem 1. Assume that (2) holds and that

Lim sup
t→∞

P (t) = −P0 ∈ (−∞,−1), Lim inf
t→∞

P (t) = −p0 ∈ (−∞,−1),(3)

Lim
t→∞

Q(t) = q ∈ (0,∞),(4)

g(u)
u

� 1 for u �= 0 and Lim
u→0

g(u)
u
= 1,(5)

uh(u) > 0 for u �= 0 and Lim
u→0

(
h(u)/u

)
= 1.(6)

If every bounded solution of the linear equation

(7)
dn

dtn
(
y(t) + p0y(t− τ)

)
− qy(t− σ) = 0

oscillates, then every bounded solution of Eq. (1) also oscillates.

Theorem 2. Assume that (2) and (4) hold and that

Lim sup
t→∞

P (t) = P0 ∈ (1,∞), Lim inf
t→∞

P (t) = p0 ∈ (1,∞),(8)

g(u)/u � 1 for u �= 0,(9)

uh(u) > 0 for u �= 0 and Lim inf
|u|→∞

|h(u)| > 0.(10)

Then every bounded solution of Eq. (1) oscillates.

The proof of Theorems 1 and 2 will be given in Section 2.

Let � = max{τ, σ}. By a solution of Eq. (1) we mean a function x ∈ C
(
[t1 −

�,∞),�
)
for some t1 � t0, such that x(t)− P (t)g

(
x(t− τ)

)
is n times continuously

differentiable on [t1,∞) and (1) is satisfied for t � t1.
Let t1 � t0 and let ϕ ∈ C([t1 − �, t1],�) be a given initial function, and let zk,

k = 0, 1, . . ., n − 1, be given initial constants. Using the method of steps one can
see that Eq. (1) has a unique solution x ∈ C

(
[t1 − �,∞),�

)
such that

x(t) = ϕ(t) for t ∈ [t1 − �, t1]

and
dk

dtk
(
ϕ(t)− P (t)g

(
ϕ(t− τ)

))
t=t1
= zk for k = 0, 1, 2, . . . , n− 1.

As usual, a solution of Eq. (1) is called oscillatory if it has arbitrarily large zeros
and nonoscillatory if it is eventually positive or eventually negative.

In the sequel, for convenience, when we write a functional inequality without
specifying its domain of validity we assume that it holds for all sufficiently large t.
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2. Proof of Theorems 1 and 2

The following lemmas will be useful in the proof of Theorem 1.

Lemma 1. Let n be even and assume that

(11) p ∈ (1,∞), τ, q ∈ (0,∞) and σ ∈ [0,∞).

If every bounded solution of the linear equation

(12)
dn

dtn
(
x(t) + px(t− τ)

)
− qx(t− σ) = 0

oscillates, then there exists an ε ∈ (0, q) such that every bounded solution of the
equation

(13)
dn

dtn
(
x(t) + (p+ ε)x(t− τ)

)
− (q − ε)x(t− σ) = 0

also oscillates.

�����. By Lemma 4 in [3], the hypothesis that every bounded solution of
Eq. (12) oscillates implies that the characteristic equation of Eq. (12),

f(λ) = λn + p · λne−λt − qe−λσ = 0

has no real roots in (−∞, 0). This and f(0) = −q < 0 imply that

f(λ) < 0 for all λ ∈ (−∞, 0]

and hence τ < σ. Clearly, f(−∞) = −∞ and so

f(λ) � sup
ξ∈(−∞,0]

f(ξ) := m < 0 for all λ ∈ (−∞, 0].

Next we set

δ = 1
3q and g(λ) = δ(−λne−λt − e−λσ).

Then it is easy to see that

f(λ)− q(λ) = λn
(
1 + (p+ δ)e−λt

)
− (q − δ)e−λσ → −∞ as λ → −∞,

which implies that there exists a λ0 < 0 such that

f(λ)− q(λ) � 1
2m for λ � λ0.
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Let

µ = sup
λ∈[λ0,0]

(λne−λτ + e−λσ)

and set

ε = min{δ,− 12mµ}.

To complete the proof, by Lemma 4 in [3] it suffices to show that the characteristic
equation

(14) λn + (p+ ε)λne−λτ − (q − ε)e−λσ = 0

has no real roots in (−∞, 0]. In fact, because n is even, we have for λ � λ0

λn + (p+ ε)λne−λτ − (q − ε)e−λσ = f(λ) + ε(λne−λτ + e−λσ)

� f(λ) + δ(λne−λτ + e−λσ) = f(λ)− g(λ) � 1
2m < 0

and for λ0 � λ � 0

λn + (p+ ε)λne−λτ − (q − ε)e−λσ = f(λ) + ε(λne−λτ + e−λσ)

� m+ µε � m− 1
2m =

1
2m < 0.

The proof is complete. �

Lemma 2. Consider the NDDE

(15)
dn

dtn
(
x(t)− P (t)x(t − τ)

)
−Q(t)x(t − σ) = 0

where n is even, and

(16) P, Q ∈ C
(
t0,∞),�

)
, Q(t) � 0 for t � t0 and τ > 0, σ � 0.

Assume that there are numbers p1 and p2 such that

(17) p1 � P (t) � p2 < −1

and that

(18)

∞∫

t0

Q(s) ds =∞.
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Let x(t) be an eventually bounded positive solution of Eq. (15) and set

y(t) = x(t)− P (t)x(t − τ).

Then eventually

y(n)(t) � 0, (−1)iy(n−i)(t) > 0 for i = 1, 2, . . . , n,(19)

Lim
t→∞

y(i)(t) = 0 for i = 0, 1, . . . , n− 1.(20)

�����. From (15) we have

(21) y(n)(t) = Q(t)x(t− σ) � 0

and because x(t) and P (t) are bounded it follows that

Lim
t→∞

y(n−1)(t) = h ∈ �

exists.

Hence for each i = 0, 1, . . ., n− 1, y(i)(t) is eventually monotonic and so

Lim
t→∞

y(t) = r ∈ �

exists.

We claim that r = 0. To this end, integrating both sides of (21) from t1 to t and

then letting t →∞ we obtain

h− y(n−1)(t1) =

∞∫

t1

Q(s)x(s − σ) ds.

This, in view of (18), implies that

Lim inf
t→∞

x(t) = 0.

Then by Lemma 1 in [8] we get r = 0. For this and the monotonic nature of y(i)(t) it

is easy to see that the consecutive derivatives of y(t) alternate in sign, that is, (19)
holds. It is now clear that (20) also holds, and the proof is complete. �
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Now we are ready to prove Theorem 1 by using the Banach Contraction Principle.

����� of Theorem 1. Assume that Eq. (1) has a bounded nonoscillatory so-

lution x(t). We will assume that x(t) is eventually positive. The case when x(t) is
eventually negative is similar and will be omitted. Choose t1 � t0 to be such that

x(t− τ) > 0, x(t− σ) > 0 for t � t1.

Set

(22) Z(t) = x(t) − P (t)g
(
x(t− τ)

)
.

Then Z(t) > 0 and

(23) Z(n)(t) = Q(t)h
(
x(t− σ)

)
� 0 for t � t1.

So, Z(i)(t) (i = 0, 1, . . ., n− 1) are eventually positive or eventually negative and so
either

Z(n−1)(t) < 0,(24)

or

Z(n−1)(t) > 0.(25)

We claim that (24) holds. Otherwise (25) holds which implies that there exists β > 0

such that eventually
Z(n−1)(t) � β.

This yields Z(t) → ∞, which is a contradiction because of the bounded nature of
x(t) and P (t). Hence (24) holds. Let

Lim
t→∞

Z(n−1)(t) = α ∈ (−∞, 0].

Integrating (23) from t � t1 to ∞, we have

α− Z(n−1)(t) =

∞∫

t

Q(s)h
(
x(s− σ)

)
ds

which, together with (4) and (6), yields

(26) Lim inf
t→∞

x(t) = 0.

6



Now we claim that

(27) Lim sup
t→∞

x(t) = 0.

Indeed, let Lim
t→∞

Z(t) = L, then L ∈ [0,∞) and from the definition of Z(t) we have

L � Lim sup
t→∞

(
− P (t)g

(
x(t − τ)

))

� Lim sup
t→∞

(
− P (t)x(t − τ)

)
� P0 Lim sup

t→∞
x(t− τ).

This means

(28) Lim sup
t→∞

x(t) � L/P0.

In view of (26), there exists a sequence {sn} such that sn → ∞ as n → ∞ and
x(sn − τ)→ 0 as n →∞. Noting that g

(
x(sn − τ)

)
→ 0 as n →∞, we have

Lim sup
t→∞

x(t) � Lim sup
n→∞

x(sn)

= Lim
n→∞

(
x(sn)− P (sn)g

(
x(sn − τ)

))
= Lim

n→∞
Z(sn) = L,

which, together with (28), yields L/P0 � L. Since P0 > 1, it follows that L = 0 and
so (27) holds. Form (26) and (27) we get

(29) Lim
t→∞

x(t) = 0.

Next we rewrite Eq. (1) in the form

(30)
dn

dtn
(
x(t) + P ∗(t)x(t − τ)

)
−Q∗(t)x(t − σ) = 0

where

P ∗(t) = −P (t)g
(
x(t− τ)

)
/x(t− τ), Q∗(t) = Q(t)h

(
x(t− σ)

)
/x(t− σ).

From (3)–(6) and (29) we have

(31) Lim sup
t→∞

P ∗(t) � p0, Lim
t→∞

Q∗(t) = q.

According to the definition of Z(t), we can rewrite Eq. (30) in the form

(32) Z(n)(t) + P ∗(t− σ)
Q∗(t)

Q∗(t− τ)
Z(n)(t− τ) = Q∗(t)Z(t− σ).
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Since every bounded solution of Eq. (7) oscillates, by Lemma 1 it follows that

there is an ε ∈ (0, q) such that

(33) λn + (p0 + ε)λne−λτ − (q − ε)e−λσ < 0 for all λ ∈ (−∞, 0].

For this ε > 0, let α ∈ (0, 1) be such that αq > q − ε, and let β > 1 be such that

(34) αq > β(q − ε) or q/β > (q − ε)/α.

From (31) we see that there exists t2 > t1 + σ such that

P ∗(t− σ) · Q∗(t)
Q∗(t− τ)

< p0 + ε, Q∗(t) > q/β for t � t2.

Substituting this into (32), we get

(35) Z(n)(t) + (p0 + ε)Z(n)(t− τ) >
q

β
Z(t− σ), t � t2.

Set

(36) G(t) =
(
Z(n)(t) + p0 + ε)Z(n)(t− τ)

)
/Z(t− σ),

then we have by (35)

(37) G(t) > q/β for t � t2.

From (36) we see that

(38) Z(n)(t) + (p0 + ε)Z(n)(t− τ) = G(t)Z(t− σ).

Integrating both sides of (38) from t � t2 to ∞ n− 1 times and using Lemma 2, we
get

Z ′(t) + (p0 + ε)Z ′(t− τ) +
1

(n− 2)!

∞∫

t

(s− t)n−2G(s)Z(s− σ) ds = 0.

In what follows, for the sake of convenience, we set

a = p0 + ε, H(t) =
1

(n− 2)!

∞∫

t

(s− t)n−2G(s)Z(s− σ) ds.
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Then we have

Z ′(t) + aZ ′(t− τ) +H(t) = 0.

Integrating this from t to ∞, we get

Z(t) + aZ(t− τ) =

∞∫

t

H(u) du,

or equivalently

Z(t) = −1
a
Z(t+ τ) +

1
a

∞∫

t+τ

H(u) du.

Integrating, we obtain

Z(t) =
k∑

i=1

(−1)i+1a−i

∞∫

t+iτ

H(u) du+ (−1)ka−kZ(t+ kτ).

Since a > 1 and Z(t)→ 0 as t →∞, we let k →∞ to obtain

Z(t) =
∞∑

i=1

(−1)i+1a−i

∞∫

t+iτ

H(u) du

=
∞∑

i=1

i∑

j=1

(−1)j+1a−j

t+(i+1)τ∫

t+iτ

H(u) du

=
∞∑

i=1

t+(i+1)τ∫

t+iτ

1− (−a)−i

1 + a
H(u) du

=
∞∑

i=1

t+(i+1)τ∫

t+iτ

1
1 + a

{1− (−a)−[(u−t)/τ ]}H(u) du

=
1
1 + a

∞∫

t+τ

{1− (−a)−[(u−t)/τ ]}H(u) du.

That means

Z(t) =
1

(1 + p0 + ε)(n− 2)!

∞∫

t+τ

{1− (−p0 − ε)−[(u−t)/τ ]}

×
∞∫

u

(s− u)n−2G(s)Z(s− σ) ds du

where [.] denotes the greatest integer function.
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This together with (37) and (34) yields

Z(t) � q − ε

α(1 + p0 + ε)(n− 2)!

∞∫

t+τ

{1− (−p0 − ε)−[(u−t)/τ ]}(39)

×
∞∫

u

(s− u)n−2Z(s− σ) ds du, t � t2.

From (33) we know that τ < σ. Now, let X be the set of all continuous and
bounded functions on [t2+ τ −σ,∞) with the sup-norm. Then X is a Banach space.
Set

A = {w ∈ X : 0 � w(t) � 1, for t � t2 + τ − σ}.

Clearly, A is a bounded, closed and convex subset ofX . Define a mapping S : A → X

as follows:

(Sw)(t) =





q − ε

(1 + p0 + ε)(n− 2)!Z(t)

∞∫

t+τ

{1− (−p0 − ε)−[(u−t)/τ ]}

×
∞∫

u

(s− u)n−2Z(s− σ)w(s − σ) ds du, t � t2

(Sw)(t2) + er(t2−t) − 1, t2 + τ − σ � t � t2

where r =
(
ln(2− α)

)
/(σ − τ) > 0.

Since for any w ∈ A and t � t2 we have by (39)

0 � (Sw)(t) � q − ε

(1 + p0 + ε)(n− 2)!Z(t)

∞∫

t+τ

{1− (−p0 − ε)−[(u−t)/τ ]}

×
∞∫

u

(s− u)n−2Z(s− σ) ds du � α < 1,

it follows that 0 � (Sw)(t) � 1 for all t � t2 + τ − σ and so S maps A into itself.
Next we claim that S is a contradiction on A. In fact, for any w1, w2 ∈ A and t � t2
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we have

|(Sw1)(t)− (Sw2)(t)|

� q − ε

(1 + p0 + ε)(n− 2)!Z(t)

∞∫

t+τ

{1− (−p0 − ε)−[(u−t)/τ ]}

×
∞∫

u

(s− u)n−2Z(s− σ)|w1(s− σ)− w2(s− σ)| ds du

� α‖w1 − w2‖,

and for t2 + τ − σ � t � t2 we have

|(Sw1)(t)− (Sw2)(t)| − |(Sw1)(t2)− (Sw2)(t2)| � α‖w1 − w2‖.

Hence

‖Sw1 − Sw2‖ = sup
t�t2+τ−σ

|(Sw1)(t) − (Sw2)(t)| � α‖w1 − w2‖.

Since 0 < α < 1, it follows that S is a contradiction on A. Therefore, by the Banach

Contradiction Principle S has a fixed point w ∈ A, i.e.

w(t) =
q − ε

(1 + p0 + ε)(n− 2)!Z(t)

∞∫

t+τ

{1− (−p0 − ε)−[(u−t)/τ ]}(40)

×
∞∫

u

(s− u)n−2Z(s− σ)w(s − σ) ds du, t � t2,

and for t2 + τ − σ � t < t2 we have

w(t) = w(t2) + e
r(t2−t) − 1 > 0

which, together with (40) and the continuity of w(t) yields

w(t) > 0 for all t � t2 + τ − σ.

Now, we set
y(t) = Z(t)w(t).

Then y(t) is a positive continuous function on [t2 + τ − σ,∞) and satisfies for t � t2

y(t) =
q − ε

(1 + p0 + ε)(n− 2)!

∞∫

t+τ

{1− (−p0 − ε)−[(u−t)/τ ]}

×
∞∫

u

(s− u)n−2y(s− α) ds du.
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This implies that for t � t2 + τ

y(t) + (p0 + ε)y(t− τ) =
q − ε

(n− 2)!

∞∫

t

∞∫

u

(s− u)n−2y(s− σ) ds du.

Differentiating it n times, we get

dn

dtn
(
y(t) + (p0 + ε)y(t− τ)

)
= (q − ε)y(t− σ), t � t2 + τ,

which contradicts (33) and so the proof is complete. �

����� of Theorem 2. Assume, by way of contradiction, that Eq. (1) has a

bounded eventually positive solution x(t). Let t1 � t0 be such that x(t − τ) > 0,
x(t− σ) > 0 for t � t1. Set

(41) y(t) = x(t) = P (t)g
(
x(t− τ)

)
.

Then y(t) is bounded and satisfies

y(n)(t) = Q(t)h
(
x(t− σ)

)
> 0 for t � t1.

Clearly, noting that n is even, we eventually have

y(n−1)(t) < 0, . . . , y′′(t) > 0, y′(t) < 0.

We consider the following two possible cases:

Case 1. y(t) > 0 eventually. Let t2 � t1 be such that y(t) > 0 for t � t2, that is,

x(t) > P (t)g
(
x(t − τ)

)
for t � t2.

This together with (8) and (9) yields x(t)→∞ as t →∞. This is a contradiction.

Case 2. y(t) < 0 eventually. Let t∗2 � t1 be such that y(t) < 0 for t � t∗2. By the

nonincreasing nature of y(t), we have

y(t) � y(t∗2) for t � t∗2,

that is,

x(t) − P (t)g
(
x(t− τ)

)
� y(t∗2) < 0 for t � t∗2.
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We claim that

β := inf
t�t∗2

x(t) > 0.

Otherwise, β = 0 and hence there exists a sequence {sn} such that sn → ∞ as
n →∞ and x(sn)→ 0 as n →∞. Noting that g

(
x(sn)

)
→ 0 as n →∞, we have

0 � Lim inf
n→∞

x(sn + τ) � Lim
n→∞

(
P (Sn + τ)g

(
x(sn)

)
+ y(t∗2)

)
= y(t∗2) < 0,

which is a contradiction and so β > 0. Therefore,

x(t) � β for t � t∗2.

From (10) we see that
α : = min{h(u) : u � β} > 0

which, together with (42), yields

h
(
x(t− σ)

)
� α for t � t∗2 + σ.

Substituting this into Eq. (1), we get

y(n)(t) � αQ(t) for t � t∗2 + σ.

This implies that y(n−1)(t)→∞ as t →∞, which is a contradiction and so the proof
is complete. �
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