Czechoslovak Mathematical Journal

Sian Hua Shan; Sian She Mu
Linearized oscillation results for even-order neutral differential equations

Czechoslovak Mathematical Journal, Vol. 51 (2001), No. 1, 1-13

Persistent URL: http://dml.cz/dmlcz/127621

Terms of use:

© Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

LINEARIZED OSCILLATION RESULTS FOR EVEN-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

J. H. Shen and J. S. Yu ${ }^{1}$, Hunan

(Received September 14, 1993)

1. Introduction

Consider the even-order nonlinear neutral equation

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}(x(t)-P(t) g(x(t-\tau)))-Q(t) h(x(t-\sigma))=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
P, Q \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), \quad g, h \in C(\mathbb{R}, \mathbb{R}) \quad \text { and } \tau>0, \sigma \geqslant 0 \tag{2}
\end{equation*}
$$

Recently, a linearized oscillation result for Eq. (1) has been established by Ladas et al. $[3,4]$; for some further results, we refer to $[1,2,5-7]$. As we see in $[3,4]$, it seems that the

$$
\operatorname{Limsup}_{t \rightarrow \infty} P(t)=P_{0} \in(0,1), \quad \operatorname{Liminf}_{t \rightarrow \infty} P(t)=p_{0} \in(0,1)
$$

is always assumed to hold. However, the case $P(t)<0$ or $P(t) \geqslant 1$ has not yet been handled. Therefore, Györi and Ladas put forth the following open problem in [4, problem 10.10.4]: Obtain linearized oscillation results for Eq. (1) when the coefficients $P(t)<0$ for $t \geqslant t_{0}$ or $P(t) \geqslant 1$ for $t \geqslant t_{0}$.

Our aim in this paper is to answer the above problem when $P(t) \leqslant-1$ for $t \geqslant t_{0}$ and $P(t) \geqslant 1$ for $t \geqslant t_{0}$. Our main results are the following two theorems:

[^0]Theorem 1. Assume that (2) holds and that

$$
\begin{gather*}
\operatorname{Limsup}_{t \rightarrow \infty} P(t)=-P_{0} \in(-\infty,-1), \quad \operatorname{Liminf}_{t \rightarrow \infty} P(t)=-p_{0} \in(-\infty,-1), \tag{3}\\
\operatorname{Lim}_{t \rightarrow \infty} Q(t)=q \in(0, \infty) \tag{4}\\
\frac{g(u)}{u} \geqslant 1 \quad \text { for } u \neq 0 \quad \text { and } \quad \operatorname{Lim}_{u \rightarrow 0} \frac{g(u)}{u}=1 \tag{5}\\
u h(u)>0 \quad \text { for } u \neq 0 \quad \text { and } \quad \operatorname{Lim}_{u \rightarrow 0}(h(u) / u)=1 . \tag{6}
\end{gather*}
$$

If every bounded solution of the linear equation

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}\left(y(t)+p_{0} y(t-\tau)\right)-q y(t-\sigma)=0 \tag{7}
\end{equation*}
$$

oscillates, then every bounded solution of Eq. (1) also oscillates.
Theorem 2. Assume that (2) and (4) hold and that

$$
\begin{gather*}
\operatorname{Limsup}_{t \rightarrow \infty} P(t)=P_{0} \in(1, \infty), \quad \operatorname{Liminf}_{t \rightarrow \infty} P(t)=p_{0} \in(1, \infty), \tag{8}\\
 \tag{9}\\
g(u) / u \geqslant 1 \quad \text { for } u \neq 0, \tag{10}\\
u h(u)>0 \quad \text { for } u \neq 0 \quad \text { and } \quad \operatorname{Liminf}_{|u| \rightarrow \infty}|h(u)|>0
\end{gather*}
$$

Then every bounded solution of Eq. (1) oscillates.
The proof of Theorems 1 and 2 will be given in Section 2.
Let $\varrho=\max \{\tau, \sigma\}$. By a solution of Eq. (1) we mean a function $x \in C\left(\left[t_{1}-\right.\right.$ $\varrho, \infty), \mathbb{R})$ for some $t_{1} \geqslant t_{0}$, such that $x(t)-P(t) g(x(t-\tau))$ is n times continuously differentiable on $\left[t_{1}, \infty\right)$ and (1) is satisfied for $t \geqslant t_{1}$.

Let $t_{1} \geqslant t_{0}$ and let $\varphi \in C\left(\left[t_{1}-\varrho, t_{1}\right], \mathbb{R}\right)$ be a given initial function, and let z_{k}, $k=0,1, \ldots, n-1$, be given initial constants. Using the method of steps one can see that Eq. (1) has a unique solution $x \in C\left(\left[t_{1}-\varrho, \infty\right), \mathbb{R}\right)$ such that

$$
x(t)=\varphi(t) \quad \text { for } t \in\left[t_{1}-\varrho, t_{1}\right]
$$

and

$$
\frac{\mathrm{d}^{k}}{\mathrm{~d} t^{k}}(\varphi(t)-P(t) g(\varphi(t-\tau)))_{t=t_{1}}=z_{k} \quad \text { for } k=0,1,2, \ldots, n-1
$$

As usual, a solution of Eq. (1) is called oscillatory if it has arbitrarily large zeros and nonoscillatory if it is eventually positive or eventually negative.

In the sequel, for convenience, when we write a functional inequality without specifying its domain of validity we assume that it holds for all sufficiently large t.

2. Proof of Theorems 1 and 2

The following lemmas will be useful in the proof of Theorem 1.

Lemma 1. Let n be even and assume that

$$
\begin{equation*}
p \in(1, \infty), \quad \tau, q \in(0, \infty) \quad \text { and } \sigma \in[0, \infty) \tag{11}
\end{equation*}
$$

If every bounded solution of the linear equation

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}(x(t)+p x(t-\tau))-q x(t-\sigma)=0 \tag{12}
\end{equation*}
$$

oscillates, then there exists an $\varepsilon \in(0, q)$ such that every bounded solution of the equation

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}(x(t)+(p+\varepsilon) x(t-\tau))-(q-\varepsilon) x(t-\sigma)=0 \tag{13}
\end{equation*}
$$

also oscillates.
Proof. By Lemma 4 in [3], the hypothesis that every bounded solution of Eq. (12) oscillates implies that the characteristic equation of Eq. (12),

$$
f(\lambda)=\lambda^{n}+p \cdot \lambda^{n} \mathrm{e}^{-\lambda t}-q \mathrm{e}^{-\lambda \sigma}=0
$$

has no real roots in $(-\infty, 0)$. This and $f(0)=-q<0$ imply that

$$
f(\lambda)<0 \quad \text { for all } \lambda \in(-\infty, 0]
$$

and hence $\tau<\sigma$. Clearly, $f(-\infty)=-\infty$ and so

$$
f(\lambda) \leqslant \sup _{\xi \in(-\infty, 0]} f(\xi):=m<0 \quad \text { for all } \lambda \in(-\infty, 0]
$$

Next we set

$$
\delta=\frac{1}{3} q \quad \text { and } \quad g(\lambda)=\delta\left(-\lambda^{n} \mathrm{e}^{-\lambda t}-\mathrm{e}^{-\lambda \sigma}\right)
$$

Then it is easy to see that

$$
f(\lambda)-q(\lambda)=\lambda^{n}\left(1+(p+\delta) \mathrm{e}^{-\lambda t}\right)-(q-\delta) \mathrm{e}^{-\lambda \sigma} \rightarrow-\infty \quad \text { as } \lambda \rightarrow-\infty
$$

which implies that there exists a $\lambda_{0}<0$ such that

$$
f(\lambda)-q(\lambda) \leqslant \frac{1}{2} m \quad \text { for } \lambda \leqslant \lambda_{0} .
$$

Let

$$
\mu=\sup _{\lambda \in\left[\lambda_{0}, 0\right]}\left(\lambda^{n} \mathrm{e}^{-\lambda \tau}+\mathrm{e}^{-\lambda \sigma}\right)
$$

and set

$$
\varepsilon=\min \left\{\delta,-\frac{1}{2} m \mu\right\}
$$

To complete the proof, by Lemma 4 in [3] it suffices to show that the characteristic equation

$$
\begin{equation*}
\lambda^{n}+(p+\varepsilon) \lambda^{n} \mathrm{e}^{-\lambda \tau}-(q-\varepsilon) \mathrm{e}^{-\lambda \sigma}=0 \tag{14}
\end{equation*}
$$

has no real roots in $(-\infty, 0]$. In fact, because n is even, we have for $\lambda \leqslant \lambda_{0}$

$$
\begin{aligned}
& \lambda^{n}+(p+\varepsilon) \lambda^{n} \mathrm{e}^{-\lambda \tau}-(q-\varepsilon) \mathrm{e}^{-\lambda \sigma}=f(\lambda)+\varepsilon\left(\lambda^{n} \mathrm{e}^{-\lambda \tau}+\mathrm{e}^{-\lambda \sigma}\right) \\
& \leqslant f(\lambda)+\delta\left(\lambda^{n} \mathrm{e}^{-\lambda \tau}+\mathrm{e}^{-\lambda \sigma}\right)=f(\lambda)-g(\lambda) \leqslant \frac{1}{2} m<0
\end{aligned}
$$

and for $\lambda_{0} \leqslant \lambda \leqslant 0$

$$
\begin{aligned}
\lambda^{n}+(p+\varepsilon) \lambda^{n} \mathrm{e}^{-\lambda \tau}-(q-\varepsilon) \mathrm{e}^{-\lambda \sigma} & =f(\lambda)+\varepsilon\left(\lambda^{n} \mathrm{e}^{-\lambda \tau}+\mathrm{e}^{-\lambda \sigma}\right) \\
& \leqslant m+\mu \varepsilon \leqslant m-\frac{1}{2} m=\frac{1}{2} m<0 .
\end{aligned}
$$

The proof is complete.

Lemma 2. Consider the $N D D E$

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}(x(t)-P(t) x(t-\tau))-Q(t) x(t-\sigma)=0 \tag{15}
\end{equation*}
$$

where n is even, and

$$
\begin{equation*}
\left.P, Q \in C\left(t_{0}, \infty\right), \mathbb{R}\right), \quad Q(t) \geqslant 0 \quad \text { for } t \geqslant t_{0} \quad \text { and } \tau>0, \sigma \geqslant 0 \tag{16}
\end{equation*}
$$

Assume that there are numbers p_{1} and p_{2} such that

$$
\begin{equation*}
p_{1} \leqslant P(t) \leqslant p_{2}<-1 \tag{17}
\end{equation*}
$$

and that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} Q(s) \mathrm{d} s=\infty \tag{18}
\end{equation*}
$$

Let $x(t)$ be an eventually bounded positive solution of Eq. (15) and set

$$
y(t)=x(t)-P(t) x(t-\tau) .
$$

Then eventually

$$
\begin{gather*}
y^{(n)}(t) \geqslant 0, \quad(-1)^{i} y^{(n-i)}(t)>0 \quad \text { for } i=1,2, \ldots, n, \tag{19}\\
\operatorname{Lim}_{t \rightarrow \infty} y^{(i)}(t)=0 \quad \text { for } i=0,1, \ldots, n-1 . \tag{20}
\end{gather*}
$$

Proof. From (15) we have

$$
\begin{equation*}
y^{(n)}(t)=Q(t) x(t-\sigma) \geqslant 0 \tag{21}
\end{equation*}
$$

and because $x(t)$ and $P(t)$ are bounded it follows that

$$
\operatorname{Lim}_{t \rightarrow \infty} y^{(n-1)}(t)=h \in \mathbb{R}
$$

exists.
Hence for each $i=0,1, \ldots, n-1, y^{(i)}(t)$ is eventually monotonic and so

$$
\operatorname{Lim}_{t \rightarrow \infty} y(t)=r \in \mathbb{R}
$$

exists.
We claim that $r=0$. To this end, integrating both sides of (21) from t_{1} to t and then letting $t \rightarrow \infty$ we obtain

$$
h-y^{(n-1)}\left(t_{1}\right)=\int_{t_{1}}^{\infty} Q(s) x(s-\sigma) \mathrm{d} s
$$

This, in view of (18), implies that

$$
\operatorname{Liminf}_{t \rightarrow \infty} x(t)=0
$$

Then by Lemma 1 in [8] we get $r=0$. For this and the monotonic nature of $y^{(i)}(t)$ it is easy to see that the consecutive derivatives of $y(t)$ alternate in sign, that is, (19) holds. It is now clear that (20) also holds, and the proof is complete.

Now we are ready to prove Theorem 1 by using the Banach Contraction Principle.
Proof of Theorem 1. Assume that Eq. (1) has a bounded nonoscillatory solution $x(t)$. We will assume that $x(t)$ is eventually positive. The case when $x(t)$ is eventually negative is similar and will be omitted. Choose $t_{1} \geqslant t_{0}$ to be such that

$$
x(t-\tau)>0, \quad x(t-\sigma)>0 \quad \text { for } t \geqslant t_{1} .
$$

Set

$$
\begin{equation*}
Z(t)=x(t)-P(t) g(x(t-\tau)) \tag{22}
\end{equation*}
$$

Then $Z(t)>0$ and

$$
\begin{equation*}
Z^{(n)}(t)=Q(t) h(x(t-\sigma)) \geqslant 0 \quad \text { for } t \geqslant t_{1} \tag{23}
\end{equation*}
$$

So, $Z^{(i)}(t)(i=0,1, \ldots, n-1)$ are eventually positive or eventually negative and so either

$$
\begin{equation*}
Z^{(n-1)}(t)<0, \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
Z^{(n-1)}(t)>0 \tag{25}
\end{equation*}
$$

We claim that (24) holds. Otherwise (25) holds which implies that there exists $\beta>0$ such that eventually

$$
Z^{(n-1)}(t) \geqslant \beta
$$

This yields $Z(t) \rightarrow \infty$, which is a contradiction because of the bounded nature of $x(t)$ and $P(t)$. Hence (24) holds. Let

$$
\operatorname{Lim}_{t \rightarrow \infty} Z^{(n-1)}(t)=\alpha \in(-\infty, 0]
$$

Integrating (23) from $t \geqslant t_{1}$ to ∞, we have

$$
\alpha-Z^{(n-1)}(t)=\int_{t}^{\infty} Q(s) h(x(s-\sigma)) \mathrm{d} s
$$

which, together with (4) and (6), yields

$$
\begin{equation*}
\operatorname{Liminf}_{t \rightarrow \infty} x(t)=0 \tag{26}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
\operatorname{Limsup}_{t \rightarrow \infty} x(t)=0 \tag{27}
\end{equation*}
$$

Indeed, let $\operatorname{Lim}_{t \rightarrow \infty} Z(t)=L$, then $L \in[0, \infty)$ and from the definition of $Z(t)$ we have

$$
\begin{aligned}
L & \geqslant \operatorname{Limsup}_{t \rightarrow \infty}(-P(t) g(x(t-\tau))) \\
& \geqslant \operatorname{Limsup}_{t \rightarrow \infty}(-P(t) x(t-\tau)) \geqslant P_{0} \operatorname{Limsup}_{t \rightarrow \infty} x(t-\tau) .
\end{aligned}
$$

This means

$$
\begin{equation*}
\operatorname{Limsup}_{t \rightarrow \infty} x(t) \leqslant L / P_{0} . \tag{28}
\end{equation*}
$$

In view of (26), there exists a sequence $\left\{s_{n}\right\}$ such that $s_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $x\left(s_{n}-\tau\right) \rightarrow 0$ as $n \rightarrow \infty$. Noting that $g\left(x\left(s_{n}-\tau\right)\right) \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
\begin{aligned}
\operatorname{Limsup}_{t \rightarrow \infty} x(t) & \geqslant \operatorname{Limsup}_{n \rightarrow \infty} x\left(s_{n}\right) \\
& =\operatorname{Lim}_{n \rightarrow \infty}\left(x\left(s_{n}\right)-P\left(s_{n}\right) g\left(x\left(s_{n}-\tau\right)\right)\right)=\operatorname{Lim}_{n \rightarrow \infty} Z\left(s_{n}\right)=L
\end{aligned}
$$

which, together with (28), yields $L / P_{0} \geqslant L$. Since $P_{0}>1$, it follows that $L=0$ and so (27) holds. Form (26) and (27) we get

$$
\begin{equation*}
\operatorname{Lim}_{t \rightarrow \infty} x(t)=0 . \tag{29}
\end{equation*}
$$

Next we rewrite Eq. (1) in the form

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}\left(x(t)+P^{*}(t) x(t-\tau)\right)-Q^{*}(t) x(t-\sigma)=0 \tag{30}
\end{equation*}
$$

where

$$
P^{*}(t)=-P(t) g(x(t-\tau)) / x(t-\tau), \quad Q^{*}(t)=Q(t) h(x(t-\sigma)) / x(t-\sigma) .
$$

From (3)-(6) and (29) we have

$$
\begin{equation*}
\operatorname{Limsup}_{t \rightarrow \infty} P^{*}(t) \leqslant p_{0}, \quad \operatorname{Lim}_{t \rightarrow \infty} Q^{*}(t)=q \tag{31}
\end{equation*}
$$

According to the definition of $Z(t)$, we can rewrite Eq. (30) in the form

$$
\begin{equation*}
Z^{(n)}(t)+P^{*}(t-\sigma) \frac{Q^{*}(t)}{Q^{*}(t-\tau)} Z^{(n)}(t-\tau)=Q^{*}(t) Z(t-\sigma) \tag{32}
\end{equation*}
$$

Since every bounded solution of Eq. (7) oscillates, by Lemma 1 it follows that there is an $\varepsilon \in(0, q)$ such that

$$
\begin{equation*}
\lambda^{n}+\left(p_{0}+\varepsilon\right) \lambda^{n} \mathrm{e}^{-\lambda \tau}-(q-\varepsilon) \mathrm{e}^{-\lambda \sigma}<0 \quad \text { for all } \lambda \in(-\infty, 0] \tag{33}
\end{equation*}
$$

For this $\varepsilon>0$, let $\alpha \in(0,1)$ be such that $\alpha q>q-\varepsilon$, and let $\beta>1$ be such that

$$
\begin{equation*}
\alpha q>\beta(q-\varepsilon) \quad \text { or } \quad q / \beta>(q-\varepsilon) / \alpha \tag{34}
\end{equation*}
$$

From (31) we see that there exists $t_{2}>t_{1}+\sigma$ such that

$$
P^{*}(t-\sigma) \cdot \frac{Q^{*}(t)}{Q^{*}(t-\tau)}<p_{0}+\varepsilon, \quad Q^{*}(t)>q / \beta \quad \text { for } t \geqslant t_{2}
$$

Substituting this into (32), we get

$$
\begin{equation*}
Z^{(n)}(t)+\left(p_{0}+\varepsilon\right) Z^{(n)}(t-\tau)>\frac{q}{\beta} Z(t-\sigma), \quad t \geqslant t_{2} \tag{35}
\end{equation*}
$$

Set

$$
\begin{equation*}
\left.G(t)=\left(Z^{(n)}(t)+p_{0}+\varepsilon\right) Z^{(n)}(t-\tau)\right) / Z(t-\sigma) \tag{36}
\end{equation*}
$$

then we have by (35)

$$
\begin{equation*}
G(t)>q / \beta \quad \text { for } t \geqslant t_{2} . \tag{37}
\end{equation*}
$$

From (36) we see that

$$
\begin{equation*}
Z^{(n)}(t)+\left(p_{0}+\varepsilon\right) Z^{(n)}(t-\tau)=G(t) Z(t-\sigma) \tag{38}
\end{equation*}
$$

Integrating both sides of (38) from $t \geqslant t_{2}$ to $\infty n-1$ times and using Lemma 2, we get

$$
Z^{\prime}(t)+\left(p_{0}+\varepsilon\right) Z^{\prime}(t-\tau)+\frac{1}{(n-2)!} \int_{t}^{\infty}(s-t)^{n-2} G(s) Z(s-\sigma) \mathrm{d} s=0
$$

In what follows, for the sake of convenience, we set

$$
a=p_{0}+\varepsilon, \quad H(t)=\frac{1}{(n-2)!} \int_{t}^{\infty}(s-t)^{n-2} G(s) Z(s-\sigma) \mathrm{d} s
$$

Then we have

$$
Z^{\prime}(t)+a Z^{\prime}(t-\tau)+H(t)=0
$$

Integrating this from t to ∞, we get

$$
Z(t)+a Z(t-\tau)=\int_{t}^{\infty} H(u) \mathrm{d} u
$$

or equivalently

$$
Z(t)=-\frac{1}{a} Z(t+\tau)+\frac{1}{a} \int_{t+\tau}^{\infty} H(u) \mathrm{d} u
$$

Integrating, we obtain

$$
Z(t)=\sum_{i=1}^{k}(-1)^{i+1} a^{-i} \int_{t+i \tau}^{\infty} H(u) \mathrm{d} u+(-1)^{k} a^{-k} Z(t+k \tau)
$$

Since $a>1$ and $Z(t) \rightarrow 0$ as $t \rightarrow \infty$, we let $k \rightarrow \infty$ to obtain

$$
\begin{aligned}
Z(t) & =\sum_{i=1}^{\infty}(-1)^{i+1} a^{-i} \int_{t+i \tau}^{\infty} H(u) \mathrm{d} u \\
& =\sum_{i=1}^{\infty} \sum_{j=1}^{i}(-1)^{j+1} a^{-j} \int_{t+i \tau}^{t+(i+1) \tau} H(u) \mathrm{d} u \\
& =\sum_{i=1}^{\infty} \int_{t+i \tau}^{t+(i+1) \tau} \frac{1-(-a)^{-i}}{1+a} H(u) \mathrm{d} u \\
& =\sum_{i=1}^{\infty} \int_{t+i \tau}^{t+(i+1) \tau} \frac{1}{1+a}\left\{1-(-a)^{-[(u-t) / \tau]}\right\} H(u) \mathrm{d} u \\
& =\frac{1}{1+a} \int_{t+\tau}^{\infty}\left\{1-(-a)^{-[(u-t) / \tau]}\right\} H(u) \mathrm{d} u
\end{aligned}
$$

That means

$$
\begin{aligned}
Z(t)= & \frac{1}{\left(1+p_{0}+\varepsilon\right)(n-2)!} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \\
& \times \int_{u}^{\infty}(s-u)^{n-2} G(s) Z(s-\sigma) \mathrm{d} s \mathrm{~d} u
\end{aligned}
$$

where [.] denotes the greatest integer function.

This together with (37) and (34) yields

$$
\begin{align*}
Z(t) \geqslant & \frac{q-\varepsilon}{\alpha\left(1+p_{0}+\varepsilon\right)(n-2)!} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \tag{39}\\
& \times \int_{u}^{\infty}(s-u)^{n-2} Z(s-\sigma) \mathrm{d} s \mathrm{~d} u, \quad t \geqslant t_{2}
\end{align*}
$$

From (33) we know that $\tau<\sigma$. Now, let X be the set of all continuous and bounded functions on $\left[t_{2}+\tau-\sigma, \infty\right)$ with the sup-norm. Then X is a Banach space. Set

$$
A=\left\{w \in X: 0 \leqslant w(t) \leqslant 1, \text { for } t \geqslant t_{2}+\tau-\sigma\right\}
$$

Clearly, A is a bounded, closed and convex subset of X. Define a mapping $S: A \rightarrow X$ as follows:

$$
(S w)(t)=\left\{\begin{array}{c}
\frac{q-\varepsilon}{\left(1+p_{0}+\varepsilon\right)(n-2)!Z(t)} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \\
\times \int_{u}^{\infty}(s-u)^{n-2} Z(s-\sigma) w(s-\sigma) \mathrm{d} s \mathrm{~d} u, \quad t \geqslant t_{2} \\
(S w)\left(t_{2}\right)+\mathrm{e}^{r\left(t_{2}-t\right)}-1, \quad t_{2}+\tau-\sigma \leqslant t \leqslant t_{2}
\end{array}\right.
$$

where $r=(\ln (2-\alpha)) /(\sigma-\tau)>0$.
Since for any $w \in A$ and $t \geqslant t_{2}$ we have by (39)

$$
\begin{aligned}
0 \leqslant(S w)(t) \leqslant & \frac{q-\varepsilon}{\left(1+p_{0}+\varepsilon\right)(n-2)!Z(t)} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \\
& \times \int_{u}^{\infty}(s-u)^{n-2} Z(s-\sigma) \mathrm{d} s \mathrm{~d} u \leqslant \alpha<1
\end{aligned}
$$

it follows that $0 \leqslant(S w)(t) \leqslant 1$ for all $t \geqslant t_{2}+\tau-\sigma$ and so S maps A into itself. Next we claim that S is a contradiction on A. In fact, for any $w_{1}, w_{2} \in A$ and $t \geqslant t_{2}$
we have

$$
\begin{aligned}
\mid\left(S w_{1}\right)(t) & -\left(S w_{2}\right)(t) \mid \\
\leqslant & \frac{q-\varepsilon}{\left(1+p_{0}+\varepsilon\right)(n-2)!Z(t)} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \\
& \times \int_{u}^{\infty}(s-u)^{n-2} Z(s-\sigma)\left|w_{1}(s-\sigma)-w_{2}(s-\sigma)\right| \mathrm{d} s \mathrm{~d} u \\
\leqslant & \alpha\left\|w_{1}-w_{2}\right\|
\end{aligned}
$$

and for $t_{2}+\tau-\sigma \leqslant t \leqslant t_{2}$ we have

$$
\left|\left(S w_{1}\right)(t)-\left(S w_{2}\right)(t)\right|-\left|\left(S w_{1}\right)\left(t_{2}\right)-\left(S w_{2}\right)\left(t_{2}\right)\right| \leqslant \alpha\left\|w_{1}-w_{2}\right\| .
$$

Hence

$$
\left\|S w_{1}-S w_{2}\right\|=\sup _{t \geqslant t_{2}+\tau-\sigma}\left|\left(S w_{1}\right)(t)-\left(S w_{2}\right)(t)\right| \leqslant \alpha\left\|w_{1}-w_{2}\right\| .
$$

Since $0<\alpha<1$, it follows that S is a contradiction on A. Therefore, by the Banach Contradiction Principle S has a fixed point $w \in A$, i.e.

$$
\begin{align*}
w(t)= & \frac{q-\varepsilon}{\left(1+p_{0}+\varepsilon\right)(n-2)!Z(t)} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \tag{40}\\
& \times \int_{u}^{\infty}(s-u)^{n-2} Z(s-\sigma) w(s-\sigma) \mathrm{d} s \mathrm{~d} u, \quad t \geqslant t_{2},
\end{align*}
$$

and for $t_{2}+\tau-\sigma \leqslant t<t_{2}$ we have

$$
w(t)=w\left(t_{2}\right)+\mathrm{e}^{r\left(t_{2}-t\right)}-1>0
$$

which, together with (40) and the continuity of $w(t)$ yields

$$
w(t)>0 \quad \text { for all } t \geqslant t_{2}+\tau-\sigma .
$$

Now, we set

$$
y(t)=Z(t) w(t)
$$

Then $y(t)$ is a positive continuous function on $\left[t_{2}+\tau-\sigma, \infty\right)$ and satisfies for $t \geqslant t_{2}$

$$
\begin{aligned}
y(t)= & \frac{q-\varepsilon}{\left(1+p_{0}+\varepsilon\right)(n-2)!} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \\
& \times \int_{u}^{\infty}(s-u)^{n-2} y(s-\alpha) \mathrm{d} s \mathrm{~d} u .
\end{aligned}
$$

This implies that for $t \geqslant t_{2}+\tau$

$$
y(t)+\left(p_{0}+\varepsilon\right) y(t-\tau)=\frac{q-\varepsilon}{(n-2)!} \int_{t}^{\infty} \int_{u}^{\infty}(s-u)^{n-2} y(s-\sigma) \mathrm{d} s \mathrm{~d} u .
$$

Differentiating it n times, we get

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}\left(y(t)+\left(p_{0}+\varepsilon\right) y(t-\tau)\right)=(q-\varepsilon) y(t-\sigma), \quad t \geqslant t_{2}+\tau
$$

which contradicts (33) and so the proof is complete.
Proof of Theorem 2. Assume, by way of contradiction, that Eq. (1) has a bounded eventually positive solution $x(t)$. Let $t_{1} \geqslant t_{0}$ be such that $x(t-\tau)>0$, $x(t-\sigma)>0$ for $t \geqslant t_{1}$. Set

$$
\begin{equation*}
y(t)=x(t)=P(t) g(x(t-\tau)) \tag{41}
\end{equation*}
$$

Then $y(t)$ is bounded and satisfies

$$
y^{(n)}(t)=Q(t) h(x(t-\sigma))>0 \quad \text { for } t \geqslant t_{1} .
$$

Clearly, noting that n is even, we eventually have

$$
y^{(n-1)}(t)<0, \ldots, y^{\prime \prime}(t)>0, y^{\prime}(t)<0
$$

We consider the following two possible cases:

Case 1. $y(t)>0$ eventually. Let $t_{2} \geqslant t_{1}$ be such that $y(t)>0$ for $t \geqslant t_{2}$, that is,

$$
x(t)>P(t) g(x(t-\tau)) \quad \text { for } t \geqslant t_{2} .
$$

This together with (8) and (9) yields $x(t) \rightarrow \infty$ as $t \rightarrow \infty$. This is a contradiction.

Case 2. $y(t)<0$ eventually. Let $t_{2}^{*} \geqslant t_{1}$ be such that $y(t)<0$ for $t \geqslant t_{2}^{*}$. By the nonincreasing nature of $y(t)$, we have

$$
y(t) \leqslant y\left(t_{2}^{*}\right) \quad \text { for } t \geqslant t_{2}^{*},
$$

that is,

$$
x(t)-P(t) g(x(t-\tau)) \leqslant y\left(t_{2}^{*}\right)<0 \quad \text { for } t \geqslant t_{2}^{*}
$$

We claim that

$$
\beta:=\inf _{t \geqslant t_{2}^{*}} x(t)>0 .
$$

Otherwise, $\beta=0$ and hence there exists a sequence $\left\{s_{n}\right\}$ such that $s_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $x\left(s_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Noting that $g\left(x\left(s_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
0 \leqslant \operatorname{Liminf}_{n \rightarrow \infty} x\left(s_{n}+\tau\right) \leqslant \operatorname{Lim}_{n \rightarrow \infty}\left(P\left(S_{n}+\tau\right) g\left(x\left(s_{n}\right)\right)+y\left(t_{2}^{*}\right)\right)=y\left(t_{2}^{*}\right)<0
$$

which is a contradiction and so $\beta>0$. Therefore,

$$
x(t) \geqslant \beta \quad \text { for } t \geqslant t_{2}^{*}
$$

From (10) we see that

$$
\alpha:=\min \{h(u): u \geqslant \beta\}>0
$$

which, together with (42), yields

$$
h(x(t-\sigma)) \geqslant \alpha \quad \text { for } t \geqslant t_{2}^{*}+\sigma .
$$

Substituting this into Eq. (1), we get

$$
y^{(n)}(t) \geqslant \alpha Q(t) \quad \text { for } t \geqslant t_{2}^{*}+\sigma .
$$

This implies that $y^{(n-1)}(t) \rightarrow \infty$ as $t \rightarrow \infty$, which is a contradiction and so the proof is complete.

References

[1] G. Ladas and C. Qian: Linearized oscillations for odd-order neutral differential equations. J. Differential Equations 88 (1990), 238-247.
[2] Q. Chuanxi and G. Ladas: Linearized oscillations for equations with positive and negative coefficients. Hiroshima Math. J. 20 (1990), 331-340.
[3] Q. Chuanxi and G. Ladas: Linearized oscillations for even-order neutral differential equations. J. Math. Anal. Appl. 159 (1991), 237-250.
[4] I. Györi and G. Ladas: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford, 1991.
[5] G. Ladas: Linearized Oscillation For Neutral Equations, Lecture Notes in Pure and Applied Mathematics, Differential Equations. Marcel Dekker, Inc., New York, 1990, pp. 379-387.
[6] J.S. Yu and M. P. Chen: Linearized oscillation for first order neutral delay differential equations. Panamer. Math. J. 2 (1993).
[7] J. H. Shen, J.S. Yu and X. Z. Qian: A linearized oscillation result for odd-order neutral differential equations. J. Math. Anal. Appl. 185 (1994).
[8] Q. Chuanxi and G. Ladas: Oscillations of neutral differential equations with variable coefficients. Appl. Anal. 32 (1989), 215-228.

Authors' addresses: J. H. Shen, Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China; J. S. Yu, Department of Applied Mathematics, Hunan University, Changsha, Hunan 410082, China.

[^0]: ${ }^{1}$ Research is partially supported by the NNSF of China.

