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ANNIHILATORS IN NORMAL AUTOMETRIZED ALGEBRAS

Ivan Chajda and Jiří Rachůnek, Olomouc

(Received November 14, 1997)

Abstract. The concepts of an annihilator and a relative annihilator in an autometrized
l-algebra are introduced. It is shown that every relative annihilator in a normal autometrized
l-algebra A is an ideal of A and every principal ideal of A is an annihilator of A. The set
of all annihilators of A forms a complete lattice. The concept of an I-polar is introduced
for every ideal I of A. The set of all I-polars is a complete lattice which becomes a two-
element chain provided I is prime. The I-polars are characterized as pseudocomplements
in the lattice of all ideals of A containing I .
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1. Autometrized l-algebras, basic concepts

The concept of an annihilator was introduced for lattices by M. Mandelker [5]
as a generalization of the concept of a pseudocomplement. Since the set of all an-
nihilators of a lattice L need not form a lattice with respect to inclusion, the first
author introduced in [2] the concept of the so called indexed annihilator; the set
of indexed annihilators in L does form a lattice. Both the annihilators and the in-
dexed annihilators characterize distributive and modular lattices. Recall the that
for a lattice L = (L;∨,∧) and elements a, b ∈ L the annihilator 〈a, b〉 is the set
〈a, b〉 = {x ∈ L ; a ∧ x � b}; an indexed annihilator in L is every subset of L which
is the intersection of a system of annihilators of L.

This work was supported by The Ministry of Education of Czech Republic (Project PG
98439).

111



Autometrized algebras were introduced by K.L.N. Swamy [8] as a common gener-

alization of Brouwerian algebras and commutative lattice ordered groups (l-groups,
for short). Let us recall this basic concept:

Definition. An algebraic system A = (A; +, ′, �, ∗) is called an autometrized
algebra if

(1) (A; +, 0) is a commutative monoid;

(2) (A; +, �) is an ordered semigroup, i.e. � is an order on A and a � b =⇒ a+ c �
b+ c for all a, b, c ∈ A;

(3) ∗ is a binary operation on A satisfying

a ∗ b � 0,
a ∗ b = 0 if and only if a = b,

a ∗ b = b ∗ a,

a ∗ c � (a ∗ b) + (b ∗ c)

for all a, b, c in A; ∗ is called an autometric on A.

If, moreover, (A, �) is a lattice whose operations are denoted by ∨ and ∧ and

a+ (b ∨ c) = (a+ b) ∨ (a+ c),

a+ (b ∧ c) = (a+ b) ∧ (a+ c)

for every a, b, c ∈ A, then A is called an autometrized lattice algebra, briefly an
Al-algebra.

In this case A is considered to be also equipped by the lattice operations and this
fact is expressed by the notation A = (A; +, 0,∨,∧, ∗).
However, the concept of an Al-algebra can be too general for our purpose, so we

use the following specification (which was introduced by Swamy [8]):

Definition. An Al-algebra A = (A; +, 0,∨,∧, ∗) is called normal (briefly an
NAl-algebra if

a � a ∗ 0,
(a+ c) ∗ (b+ d) � (a ∗ b) + (c ∗ d),

(a ∗ c) ∗ (b ∗ d) � (a ∗ b) + (c ∗ d),

a � b =⇒ ∃x � 0 such that a+ x = b

for all a, b, c, d ∈ A.
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Remark.
(a) Having an abelian l-group G = (G; +, 0,−,∨,∧) we can set

a ∗ b = |a− b| = (a− b) ∨ (b − a)

for a, b ∈ G. Then (G; +, 0,∨,∧, ∗) is an NAl -algebra.
(b) Having a Brouwerian algebra B = (B;∨,∧), i.e. a dually relative pseudocomple-
mented lattice with the greatest element (it means that for each a, b ∈ B there
is a least x ∈ B with b∨x � a), denote by a− b this relative pseudocomplement

x of b with respect to a and set a∗b = (a−b)∨(b−a). Thus also (B; +, 0,∨,∧, ∗)
is an NAl -algebra where + denotes the lattice join ∨.

The concept of an ideal of an NAl -algebra was introduced in [9]:

Definition. Let A = (A; +, 0,∨,∧, ∗) be an NAl -algebra and ∅ �= I ⊆ A. The
set I is called an ideal of A if it satisfies

a, b ∈ I =⇒ a+ b ∈ I,

a ∈ I, x ∈ A, x ∗ 0 � a ∗ 0 =⇒ x ∈ I

for all a, b, x ∈ A.

Denote by I(A) the set of all ideals of an NAl -algebra A. Following Theorem 1
in [9], I(A) is an algebraic lattice with respect to set inclusion where infM =

⋂
M

for every subset M ⊆ I(A). If B ⊆ A, denote by I(B) the ideal of A generated

by B, i.e. the least ideal of A containing B; if B is a singleton, say {b}, we will write
briefly I(b). Then I(b) is called a principal ideal of A generated by b.

It is easy to verify that

I(B) = {x ∈ A; x ∗ 0 � (b1 ∗ 0) + . . .+ (bn ∗ 0); b1, . . . , bn ∈ B},
I(b) = {x ∈ A; x ∗ 0 � m(b ∗ 0), for m ∈ �}.

Two elements a, b in any NAl -algebra A are said to be orthogonal (denoted by
a ⊥ b) if

(a ∗ 0) ∧ (b ∗ 0) = 0.

For a subset B of A we denote by B⊥ the set of all elements of A which are orthogonal
to every element of B, i.e.

B⊥ = {x ∈ A; x ⊥ b for each b ∈ B}.

The set B⊥ is called the polar of B. For B = {b} we will write briefly b⊥ instead
of {b}⊥. A subset C of A is called a polar in A if C = B⊥ for some subset B of A.
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Now, we specify some kinds of NAl -algebras: An NAl -algebra A is called
(a) semiregular if for every a ∈ A

a � 0 =⇒ a ∗ 0 = a;

(b) interpolation if for all a, b, c ∈ A, 0 � a, b, c and a � b + c imply the existence
of b1, c1 ∈ A such that 0 � b1 � b, 0 � c1 � c and a = b1 + c1.

Denote by P(A) the set of all polars of an NAl -algebra A. It was proved in [9],
Theorem 7, that for a semiregular A the set P(A) ordered by inclusion is a complete
Boolean algebra. The properties of P(A) for an interpolation semiregular NAl -
algebra A were investigated in [7].
On the other hand, the assumption “to be interpolation” can be omitted by virtue

of Lemma 1.2 in [3]. Further, Lemma 5 in [9] enables us to omit the assumption of
semiregularity in the most cases as it was done in [4], where some results on lattices
I(A) and P(A) are generalized to arbitrary NAl -algebras. This way will be used
also here for an investigation of the above introduced concepts in a general setting.

2. Annihilators and relative annihilators

Definition. Let a, b be elements in an NAl -algebra A. A subset

〈a, b〉 = {x ∈ A; (a ∗ 0) ∧ (x ∗ 0) � n(b ∗ 0) for some n ∈ �}

will be called the relative annihilator of a with respect to b.

A subset B of A is a relative annihilator in A if B = 〈a, b〉 for some elements
a, b ∈ A.

Theorem 1. Every relative annihilator of an NAl-algebra A is an ideal of A.

�����. Let a, b, x, y ∈ A and suppose x, y ∈ 〈a, b〉. Then there are n1, n2 ∈ �

such that

(a ∗ 0) ∧ (x ∗ 0) � n1(b ∗ 0),
(a ∗ 0) ∧ (y ∗ 0) � n2(b ∗ 0).

On account of normality of A we have

(a ∗ 0) ∧
(
(x+ y) ∗ 0

)
� (a ∗ 0) ∧

(
(x ∗ 0) + (y ∗ 0)

)
.
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By Lemma 1.2 in [3], this yields

(a ∗ 0) ∧
(
(x ∗ 0) + (y ∗ 0)

)
�

(
(a ∗ 0) ∧ (x ∗ 0)

)
+

(
(a ∗ 0) ∧ (y ∗ 0)

)

� n1(b ∗ 0) + n2(b ∗ 0)
= (n1 + n2)(b ∗ 0),

whence x+ y ∈ 〈a, b〉.
It is obvious that for z ∈ A we have z ∗ 0 � x ∗ 0 =⇒ z ∈ 〈a, b〉. �

Remark.
(a) Of course, 〈a, a〉 = A for each a ∈ A, thus A is a relative annihilator of A for
each NAl -algebra A.

(b) If a ∈ A then 〈a, 0〉 = a⊥, the polar of a.

(c) The set of all relative annihilators of A need not be a complete lattice with
respect to set inclusion. We can illuminate this fact by the following example:

Let G be an abelian l-group. For a ∈ G we denote |a| = a∨−a. Then a∗b = |a−b|
is an autometric on G with a ∗ 0 = |a|, thus

〈a, b〉 = {x ∈ G; |a| ∧ |x| � n|b|, n ∈ �},

and hence a⊥ = {x ∈ G; |x| ∧ |a| = 0}. Therefore polars in the autometrized
algebra G coincide with polars in the l-group G. Recall that an element b in an

l-group G is a weak unit of G if b⊥ = {0}.
Suppose now that the l-group G contains no weak units and let a, b ∈ G be

elements with 〈a, b〉 = {0}. Since |a| ∧ |b| � n|b| for each n ∈ �, we have n|b| = 0.
Since G is torsion free, this yields b = 0. Then 〈a, b〉 = 〈a, 0〉 = a⊥, i.e. a⊥ = {0},
a contradiction. Hence there are no elements a, b ∈ G with 〈a, b〉 = {0}, i.e. {0} is
not a relative annihilator of G.

On the other hand, {0} = I(0), and, as will be shown in Theorem 4 later, every

ideal generated by a singleton is the intersection of a set of relative annihilators.
Altogether, {0} is the intersection of all relative annihilators of G but it is not

a relative annihilator of G.
The foregoing Remark (c) motivates us to introduce the following concept:

Definition. A subset B of an NAl -algebra A is called an annihilator of A if
B =

⋂{Bγ ; γ ∈ Γ} for a system of relative annihilators in A.

Let us note that for lattices a different terminology was used, see [2] and [5],

namely, relative annihilators in our sense are annihilators in [5] and annihilators in
our sense are called indexed annihilators in [2].
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Corollary 2. Every annihilator of an NAl-algebra A is an ideal of A.

�����. It follows from Theorem 1 and the fact that I(A ) forms a lattice where
meets are intersections. �

Corollary 3. The set Ann(A) of all annihilators of an NAl-algebra A forms
a complete lattice with respect to set inclusion. For Bγ ∈ Ann(A), γ ∈ Γ, we have

inf{Bγ ; γ ∈ Γ} =
⋂
{Bγ ; γ ∈ Γ}.

Applying Corollary 3, we conclude that for everyNAl -algebraA and each subsetM
of A there exists the least annihilator of A containing M . We denote it by A(M)
and call it the annihilator generated by M .

For principal ideals of A, we can prove

Theorem 4. Every principal ideal of an NAl-algebra A is an annihilator of A.

�����. Let c ∈ A and A(c) = A({c}). For the principal ideal I(c) we clearly
have I(c) ⊆ A(c). Let us prove the converse inclusion. Let z ∈ A(c). Then for every

a, b ∈ A we obviously have c ∈ 〈a, b〉 ⇒ z ∈ 〈a, b〉. Since (z ∗ 0)∧ (c ∗ 0) � c ∗ 0, there
must exist s ∈ � with (z ∗ 0)∧ (z ∗ 0) � s(c ∗ 0), i.e. z ∗ 0 � s(c ∗ 0). Then, of course,
z ∈ I(c). �

Remark.
(a) By Theorem 4, I(0) = {0} is the least element of the lattice Ann(A); of course,

A is the greatest element of Ann(A) by Remark after Theorem 1.
(b) By the proof of Theorem 4, I(c) = A(c) = A(I(c)) for each element c ∈ A.

The concept of a relative annihilator can be also generalized to subsets:

Definition. Let B, C be non-void subsets of anNAl -algebraA. The set 〈B, C〉 =⋂{〈b, c〉 ; b ∈ B, c ∈ C} is called the generalized relative annihilator of B with respect

to C. A subset D of A is a generalized relative annihilator of A if D = 〈B, C〉 for
some non-void subsets B, C of A.

Remark.
(a) Every relative annihilator of A is a generalized annihilator since 〈a, b〉 =

〈{a}, {b}〉.
(b) Every generalized annihilator is an annihilator of A.
(c) For every subset B of A we have B⊥ = 〈B, {0}〉, thus each polar of A is
a generalized relative annihilator of A.
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It can be of some interest to study the set of generalized relative annihilators with

a fixed second component:

Theorem 5. Let B be a non-void subset of an NAl-algebra A. The set of all
generalized relative annihilators 〈X, B〉 where X runs over all non-void subsets of A

forms a complete lattice with respect to set inclusion where infima coincide with

intersections and A is the greatest element.

�����. Of course, 〈{0}, B〉 = A, thus A is the greatest generalized annihilator

of A. It is an easy computation that for any non-void subsets Cγ of A we have⋂{〈Cγ , B〉 ; γ ∈ Γ} = ⋂{〈c, b〉 ; c ∈ Cγ , b ∈ B ; γ ∈ Γ} = ⋂{〈c, b〉 ; b ∈ B, c ∈⋃{Cγ ; γ ∈ Γ}} = 〈⋃{Cγ ; γ ∈ Γ}, B〉. �

3. I-polars

Let A be an NAl -algebra and a, b elements of A. Using the concept of a principal
ideal, we have

〈a, b〉 = {x ∈ A; (a ∗ 0) ∧ (x ∗ 0) ∈ I(b)}.
Since I(0) = {0}, the polar of a can be expressed by

a⊥ = {x ∈ A ; (a ∗ 0) ∧ (x ∗ 0) ∈ I(0)}.

From this point of view, it is natural to substitute I(0) by an arbitrary ideal I

of A to obtain the following concept:
Definition. Let I be an ideal of an NAl -algebra A and let a ∈ A. By the I-polar

of a we mean the set

a(I)⊥ = {x ∈ A ; (a ∗ 0) ∧ (x ∗ 0) ∈ I}.

By the I-polar of a non-void subset B of A we mean the set

B(I)⊥ =
⋂
{a(I)⊥ ; a ∈ B}.

A subset C is called an I-polar of A if C = B(I)⊥ for some non-void subset B of A.

Remark.
(a) Of course, if I = I(0) then a(I(0))⊥ = a⊥ and B(I(0))⊥ = B⊥ for each a ∈ A

and every ∅ �= B ⊆ Ȧ. Moreover, a subset C of A is an I(0)-polar of A if and
only if C is a polar of A.

(b) For every two elements a, b ∈ A we have a(I(b))⊥ = 〈a, b〉 and for each subset
∅ �= C ⊆ A we have C(I(b))⊥ = 〈C, {b}〉.
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We are able to prove the following theorem.

Theorem 6. Let I be an ideal of an NAl-algebra A. The set P(I) of all I-polars
of A forms a complete lattice with respect to set inclusion where infima coincide
with intersections, the least element is I and the greatest one is A. Moreover, every

I-polar of A is an ideal of A and for each non-void subset B of A we have B(I)⊥ =
{x ∈ A ; I(x) ∩ I(B) ⊆ I}.
�����. Let I be an ideal of A and B ⊆ A. Denote

C = {x ∈ A ; I(x) ∩ I(B) ⊆ I}.

(a) Suppose x ∈ B(I)⊥ and z ∈ I(x)∩I(B). Then there exist m ∈ � and elements
b1, . . . , bn ∈ B such that

z ∗ 0 � m(x ∗ 0),
z ∗ 0 � (b1 ∗ 0) + . . .+ (bn ∗ 0).

Hence

0 � z ∗ 0 � m(x ∗ 0) ∧
(
(b1 ∗ 0) + . . .+ (bn ∗ 0)

)

� m
(
(x ∗ 0) ∧ (b1 ∗ 0)

)
+ . . .+m

(
(x ∗ 0) ∧ (bn ∗ 0)

)
∈ I,

thus z ∗ 0 ∈ I and also z ∈ I. We have I(x) ∩ I(B) ⊆ I, i.e. B(I)⊥ ⊆ C.
(b) Let x ∈ A be an element satisfying I(x) ∩ I(B) ⊆ I, let b ∈ B and put

c = (x ∗ 0) ∧ (b ∗ 0). Then 0 � c � x ∗ 0 and, by Lemma 2 and Theorem 5 in [4],
I(x) = I(x ∗ 0) and every ideal of A is a convex subset of A, i.e. c ∈ I(x).

Analogously, c ∈ I(b), which implies c ∈ I. Thus x ∈ B(I)⊥ proving C ⊆ B(I)⊥.
We conclude B(I)⊥ = {x ∈ A ; I(x) ∩ I(B) ⊆ I}. Suppose now x /∈ I. Then

(x ∗ 0) ∧ (x ∗ 0) /∈ I whence x /∈ A(I)⊥. Conversely, if x /∈ A(I)⊥ then there exists
a ∈ A with (a ∗ 0) ∧ (x ∗ 0) /∈ I. Suppose x ∈ I. Then x ∗ 0 ∈ I and, on account

of convexity of I, also (a ∗ 0) ∧ (x ∗ 0) ∈ I, a contradiction. Hence x /∈ I. We
have shown A(I)⊥ = I, i.e. I ∈ P(I). Since B ⊆ C ⊆ A implies C(I)⊥ ⊆ B(I)⊥,

I is clearly the least element of P(I). Of course, A is the greatest element of P(I)
because {0}(I)⊥ = A.

Let us prove that every I-polar is an ideal of A. To this end, let a ∈ A and
x, y ∈ a(I)⊥. Then (a ∗ 0) ∧ (x ∗ 0) ∈ I and (a ∗ 0) ∧ (y ∗ 0) ∈ I. Applying the

normality of A we have

0 �
(
(x+ y) ∗ 0

)
∧ (a ∗ 0)

�
(
(x ∗ 0) + (y ∗ 0)

)
∧ (a ∗ 0)

�
(
(x ∗ 0) ∧ (a ∗ 0)

)
+

(
(y ∗ 0) ∧ (a ∗ 0)

)
∈ I.
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Since I is convex, we obtain
(
(x+ y) ∗ 0

)
∧ (a ∗ 0) ∈ I, whence x+ y ∈ a(I)⊥.

Suppose now x ∈ a(I)⊥, z ∈ A, z ∗ 0 � x ∗ 0. Then 0 � (a ∗ 0) ∧ (z ∗ 0) �
(a ∗ 0) ∧ (x ∗ 0) ∈ I, i.e. also (a ∗ 0) ∧ (z ∗ 0) ∈ I, which implies z ∈ a(I)⊥.

Hence a(I)⊥ is an ideal of A and, moreover, for any non-void subset B of A we

have B(I)⊥ =
⋂{a(I)⊥; a ∈ B}, thus also B(I)⊥ is an ideal of A. This yields the

fact that infima in P(I) coincide with intersections. �

Corollary 7. Let I be an ideal of an NAl-algebra A and let C∈ P(I). Then there
exists an ideal J of A with C = J(I)⊥.

�����. Of course, if C = B(I)⊥ then C = J(I)⊥ for J = I(B). �

An ideal I of an NAl -algebra A is called a prime ideal if for each ideals J and

K of A the implication J ∩ K = I =⇒ J = I or K = I holds. This concept was
introduced by the second author in [6] where it was also shown that forA semiregular,
I is a prime ideal of A if and only if 0 � a ∧ b ∈ I =⇒ a ∈ I or b ∈ I for every
a, b in A. On account of Theorem 9 in [4], this equivalent condition holds in every

NAl -algebra. Hence we have

Corollary 8. If I is a prime ideal of an NAl-algebra A then P(I) is the two-
element chain {I, A}.

�����. Let I be a prime ideal of A and let a /∈ I, x ∈ A. If (a ∗ 0)∧ (x ∗ 0) ∈ I

then x ∗ 0 ∈ I and also x ∈ I. Hence a(I)⊥ = I. If a ∈ I then a(I)⊥ = A. This
yields that for ∅ �= B ⊆ A we have only two possibilities:

B �⊆ I =⇒ B(I)⊥ = I and

B ⊆ I =⇒ B(I)⊥ = A.

�

Remark. Applying Corollary 7, we can restrict ourselves to I-polars of ideals
when investigating properties of arbitrary I-polars.

Let A be an NAl -algebra and I an ideal of A. Denote

I(A)I = {J ∈ I(A); I ⊆ J},

i.e. I(A)I is the principal filter of the lattice I(A) generated by I. This fact together
with Theorem 6 in [9] (stating that I(A) is a complete and Brouwerian lattice,
i.e. K ∩ ∨

γ∈Γ
Jγ =

∨
γ∈Γ
(K ∩ Jγ) for every K, Jγ ∈ I(A), γ ∈ Γ) immediately imply
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Corollary 9. For every ideal I of an NAl-algebra A, I(A)I is a complete Brouw-
erian lattice.

Hence, we can ask about pseudocomplements in the lattice I(A)I .

Theorem 10. Let I be an ideal of an NAl-algebra A and J ∈ I(A)I . Then the
pseudocomplement of J in the lattice I(A)I is J(I)⊥.

�����. Since J(I)⊥ ∈ P(A), we have I ⊆ J(I)⊥, i.e. J(I)⊥ ∈ I(A)I . Suppose
x ∈ J ∩ J(I)⊥. Then x ∈ J and x ∈ J(I)⊥, thus x ∗ 0 = (x ∗ 0) ∧ (x ∗ 0) ∈ I whence

x ∈ I. We have J ∩ J(I)⊥ = I.
Let K ∈ I(A)I with J ∩K = I. Let x ∈ K and a ∈ J . Then 0 � (x∗0)∧ (a∗0) �

x ∗ 0. Since K is convex, this yields (x ∗ 0) ∧ (a ∗ 0) ∈ K. Analogously we obtain
(x ∗ 0) ∧ (a ∗ 0) ∈ J , thus also (x ∗ 0) ∧ (a ∗ 0) ∈ K ∩ J = I. However, this means

x ∈ J(I)⊥, i.e. K ⊆ J(I)⊥. We have shown that J(I)⊥ is the pseudocomplement
of J in I(A)I . �

Applying Theorem 10 together with Glivenko’s Theorem (see e.g. Theorem
VIII. 4.3 in [1]), we immediately conclude

Corollary 11. For every NAl-algebra A and I ∈ I(A), the mapping J �−→
J(I)⊥⊥ is a closure operator on I(A)I . The closed subsets are just all I-polars of A.
The set P(A)I of all I-polars of A is a complete Boolean algebra with respect to set
inclusion.
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