Czechoslovak Mathematical Journal

Pavel Řehák

Oscillatory properties of second order half-linear difference equations

Czechoslovak Mathematical Journal, Vol. 51 (2001), No. 2, 303-321

Persistent URL: http: //dml.cz/dmlcz/127649

Terms of use:

(C) Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml. cz

OSCILLATORY PROPERTIES OF SECOND ORDER HALF-LINEAR DIFFERENCE EQUATIONS

Pavel Řehák, Brno

(Received July 10, 1998)

Abstract. We study oscillatory properties of the second order half-linear difference equation

$$
\begin{equation*}
\Delta\left(r_{k}\left|\Delta y_{k}\right|^{\alpha-2} \Delta y_{k}\right)-p_{k}\left|y_{k+1}\right|^{\alpha-2} y_{k+1}=0, \quad \alpha>1 . \tag{HL}
\end{equation*}
$$

It will be shown that the basic facts of oscillation theory for this equation are essentially the same as those for the linear equation

$$
\Delta\left(r_{k} \Delta y_{k}\right)-p_{k} y_{k+1}=0
$$

We present here the Picone type identity, Reid Roundabout Theorem and Sturmian theory for equation (HL). Some oscillation criteria are also given.

Keywords: half-linear difference equation, Picone identity, Reid Roundabout Theorem, oscillation criteria

MSC 2000: 39A10

1. Introduction

In this paper we establish the basic facts of oscillation theory for the second order half-linear difference equation

$$
\begin{equation*}
\Delta\left(r_{k} \Phi\left(\Delta y_{k}\right)\right)-p_{k} \Phi\left(y_{k+1}\right)=0 \tag{1}
\end{equation*}
$$

where p_{k} and r_{k} are real-valued sequences with $r_{k} \neq 0$ and $\Phi(y):=|y|^{\alpha-1} \operatorname{sgn} y=$ $|y|^{\alpha-2} y, \Phi(0)=0$, with $\alpha>1$.

Supported by the grants No. 201/98/0677 and No. 201/96/0410 of the Grant Agency of the Czech Republic.

This work was motivated by some recent papers [4], [9] dealing with the oscillation theory of the second order half-linear differential equation

$$
\begin{equation*}
\left(r(t) \Phi\left(y^{\prime}\right)\right)^{\prime}-p(t) \Phi(y)=0 \tag{2}
\end{equation*}
$$

where r and p are real-valued continuous functions with $r(t)>0$. The terminology half-linear equations is justified by the following fact. If a sequence y (a function y) is a solution of (1) (of (2)) then for any real constant c the sequence $c y$ (the function $c y$, respectively) is also a solution of the same equation. Note that there are most frequently referred [7], [11] as basis papers concerning oscillation theory of (2).

We will show that the basic oscillatory properties of (1) are essentially the same as those of the linear difference equation

$$
\begin{equation*}
\Delta\left(r_{k} \Delta y_{k}\right)-p_{k} y_{k+1}=0, \tag{3}
\end{equation*}
$$

which is a special case of (1) with $\alpha=2$; the oscillatory properties of this linear equation can be found e.g. in [1].

The objects of our examinations in the present paper are especially:

- the generalized Picone identity. We establish this identity in the general form, which involves two half-linear difference operators (for the precise statement see the next section). It is a very useful tool for proving the following result.
- the discrete half-linear version of Reid's Roundabout Theorem. This theorem provides, among other, the following equivalence: An " α-degree" functional

$$
\mathcal{F}(\xi ; m, n)=\sum_{k=m}^{n}\left[r_{k}\left|\Delta \xi_{k}\right|^{\alpha}+p_{k}\left|\xi_{k+1}\right|^{\alpha}\right]
$$

is positive definite on $[m, n]$ in the class of the so called admissible sequences if and only if the equation (1) is disconjugate on $[m, n]$. These results are presented in Section 3. The Sturmian theory (comparison and separation theorems) is also included in this section.

- oscillation criteria as an application of the above results. In Section 4 we present Leighton-Wintner type and Hinton-Lewis type criteria. The proof of these statements is based specifically on the relationship between the positive definiteness of the above functional and the disconjugacy of (1).
Note that the last section is devoted to remarks and comments.

2. The Picone identity

Consider the second order difference operators of the form

$$
l\left[y_{k}\right] \equiv \Delta\left(r_{k} \Phi\left(\Delta y_{k}\right)\right)-p_{k} \Phi\left(y_{k+1}\right)
$$

and

$$
L\left[z_{k}\right] \equiv \Delta\left(R_{k} \Phi\left(\Delta z_{k}\right)\right)-P_{k} \Phi\left(z_{k+1}\right)
$$

where $k \in[m, n] \equiv\{m, m+1, \ldots, n\}, m, n \in \mathbb{Z}, m \leqslant n$, and p_{k}, P_{k} are real-valued sequences defined on $[m, n]$. Sequences r_{k}, R_{k} are real-valued and defined on $[m, n+1]$ with $r_{k} \neq 0, R_{k} \neq 0$ on this interval.

Now we can formulate a statement playing an important role in the proof of Theorem 1. The idea is to rewrite the functional \mathcal{F} associated with the disconjugate equation (1) into a form which in the linear case corresponds to the "completion to the square" which then shows equivalence of the disconjugacy of (1) with the positive definiteness of \mathcal{F}. Note that our version of the Picone identity is quite general and we will use only its special case.

Lemma 1 (Picone Type Identity). Let y_{k}, z_{k} be defined on $[m, n+2]$ and let $z_{k} \neq 0$ for $k \in[m, n+1]$. Then the equality

$$
\begin{align*}
\Delta\left\{\frac{y_{k}}{\Phi\left(z_{k}\right)}\right. & {\left.\left[\Phi\left(z_{k}\right) r_{k} \Phi\left(\Delta y_{k}\right)-\Phi\left(y_{k}\right) R_{k} \Phi\left(\Delta z_{k}\right)\right]\right\} } \tag{4}\\
= & \left(p_{k}-P_{k}\right)\left|y_{k+1}\right|^{\alpha}+\left(r_{k}-R_{k}\right)\left|\Delta y_{k}\right|^{\alpha} \\
& +\frac{y_{k+1}}{\Phi\left(z_{k+1}\right)}\left\{l\left[y_{k}\right] \Phi\left(z_{k+1}\right)-L\left[z_{k}\right] \Phi\left(y_{k+1}\right)\right\} \\
& +\left\{R_{k}\left|\Delta y_{k}\right|^{\alpha}-\frac{R_{k} \Phi\left(\Delta z_{k}\right)}{\Phi\left(z_{k+1}\right)}\left|y_{k+1}\right|^{\alpha}+\frac{R_{k} \Phi\left(\Delta z_{k}\right)}{\Phi\left(z_{k}\right)}\left|y_{k}\right|^{\alpha}\right\}
\end{align*}
$$

holds for $k \in[m, n]$.

Proof. For $k \in[m, n]$ we have

$$
\begin{aligned}
\Delta & {\left[y_{k} r_{k} \Phi\left(\Delta y_{k}\right)\right]-y_{k+1} l\left[y_{k}\right] } \\
& =y_{k+1} \Delta\left(r_{k} \Phi\left(\Delta y_{k}\right)\right)+\Delta y_{k} r_{k} \Phi\left(\Delta y_{k}\right)-y_{k+1} \Delta\left(r_{k} \Phi\left(\Delta y_{k}\right)\right)+y_{k+1} p_{k} \Phi\left(y_{k+1}\right) \\
& =p_{k}\left|y_{k+1}\right|^{\alpha}+r_{k}\left|\Delta y_{k}\right|^{\alpha} .
\end{aligned}
$$

Further, again for $k \in[m, n]$, we have

$$
\begin{aligned}
L\left[z_{k}\right] & \Phi\left(y_{k+1}\right) \frac{y_{k+1}}{\Phi\left(z_{k+1}\right)}-\Delta\left[\frac{y_{k}}{\Phi\left(z_{k}\right)} \Phi\left(y_{k}\right) R_{k} \Phi\left(\Delta z_{k}\right)\right] \\
& -R_{k}\left|\Delta y_{k}\right|^{\alpha}+\frac{R_{k} \Phi\left(\Delta z_{k}\right)}{\Phi\left(z_{k+1}\right)} y_{k+1} \Phi\left(y_{k+1}\right)-\frac{R_{k} \Phi\left(\Delta z_{k}\right)}{\Phi\left(z_{k}\right)} y_{k} \Phi\left(y_{k}\right) \\
= & \frac{\Delta\left(R_{k} \Phi\left(\Delta z_{k}\right)\right)}{\Phi\left(z_{k+1}\right)} y_{k+1} \Phi\left(y_{k+1}\right)-P_{k} y_{k+1} \Phi\left(y_{k+1}\right)-\frac{\Delta y_{k} \Phi\left(z_{k}\right)-y_{k} \Delta \Phi\left(z_{k}\right)}{\Phi\left(z_{k}\right) \Phi\left(z_{k+1}\right)} \\
& \times \Phi\left(y_{k}\right) R_{k} \Phi\left(\Delta z_{k}\right)-\frac{y_{k+1}}{\Phi\left(z_{k+1}\right)} \Phi\left(y_{k+1}\right) \Delta\left(R_{k} \Phi\left(\Delta z_{k}\right)\right) \\
& -\frac{y_{k+1}}{\Phi\left(z_{k+1}\right)} \Delta \Phi\left(y_{k}\right) R_{k} \Phi\left(\Delta z_{k}\right) \\
& -R_{k}\left|\Delta y_{k}\right|^{\alpha}+\frac{R_{k} \Phi\left(\Delta z_{k}\right)}{\Phi\left(z_{k+1}\right)} y_{k+1} \Phi\left(y_{k+1}\right)-\frac{R_{k} \Phi\left(\Delta z_{k}\right)}{\Phi\left(z_{k}\right)} y_{k} \Phi\left(y_{k}\right) \\
= & -P_{k}\left|y_{k+1}\right|^{\alpha}-R_{k}\left|\Delta y_{k}\right|^{\alpha} \\
& +\frac{1}{\Phi\left(z_{k}\right) \Phi\left(z_{k+1}\right)}\left[-R_{k} \Delta y_{k} \Phi\left(y_{k}\right) \Phi\left(z_{k}\right) \Phi\left(\Delta z_{k}\right)\right. \\
& +R_{k} y_{k} \Phi\left(y_{k}\right) \Phi\left(\Delta z_{k}\right) \Delta \Phi\left(z_{k}\right)-R_{k} y_{k+1} \Delta \Phi\left(y_{k}\right) \Phi\left(z_{k}\right) \Phi\left(\Delta z_{k}\right) \\
& \left.+R_{k} y_{k+1} \Phi\left(y_{k+1}\right) \Phi\left(z_{k}\right) \Phi\left(\Delta z_{k}\right)-R_{k} y_{k} \Phi\left(y_{k}\right) \Phi\left(z_{k+1}\right) \Phi\left(\Delta z_{k}\right)\right] \\
= & -P_{k}\left|y_{k+1}\right|^{\alpha}-R_{k}\left|\Delta y_{k}\right|^{\alpha} \\
& +\frac{1}{\Phi\left(z_{k}\right) \Phi\left(z_{k+1}\right)}\left[R_{k} y_{k} \Phi\left(y_{k}\right) \Phi\left(z_{k}\right) \Phi\left(\Delta z_{k}\right)-R_{k} y_{k} \Phi\left(y_{k}\right) \Phi\left(z_{k}\right) \Phi\left(\Delta z_{k}\right)\right] \\
= & -P_{k}\left|y_{k+1}\right|^{\alpha}-R_{k}\left|\Delta y_{k}\right|^{\alpha} .
\end{aligned}
$$

Combining these two equalities we get the desired result.
The last summand of (4) can be rewritten as $\frac{R_{k} z_{k}}{z_{k+1}} G(y, z)$, where

$$
G(y, z):=\frac{z_{k+1}}{z_{k}}\left|\Delta y_{k}\right|^{\alpha}-\frac{z_{k+1} \Phi\left(\Delta z_{k}\right)}{z_{k} \Phi\left(z_{k+1}\right)}\left|y_{k+1}\right|^{\alpha}+\frac{z_{k+1} \Phi\left(\Delta z_{k}\right)}{z_{k} \Phi\left(z_{k}\right)}\left|y_{k}\right|^{\alpha} .
$$

Using this fact we have the following lemma.
Lemma 2. Let y_{k}, z_{k} be defined on $[m, n+1]$ and let $z_{k} \neq 0$ on this interval. Then

$$
G(y, z) \geqslant 0
$$

for $k \in[m, n]$, where the equality holds if and only if $\Delta y_{k}=y_{k}\left(\Delta z_{k} / z_{k}\right)$.
Proof. It is sufficient to verify the inequality

$$
\begin{equation*}
\frac{z_{k+1}}{z_{k}}\left|\Delta y_{k}\right|^{\alpha}+\frac{z_{k+1}\left|\Delta z_{k}\right|^{\alpha-2} \Delta z_{k}}{\left|z_{k}\right|^{\alpha-2} z_{k}^{2}}\left|y_{k}\right|^{\alpha} \geqslant \frac{z_{k+1}\left|\Delta z_{k}\right|^{\alpha-2} \Delta z_{k}}{z_{k}\left|z_{k+1}\right|^{\alpha-2} z_{k+1}}\left|y_{k+1}\right|^{\alpha} \tag{5}
\end{equation*}
$$

for $k \in[m, n]$.

Denote $u_{k}:=z_{k} / z_{k+1}$. Then inequality (5) assumes the form

$$
\frac{\left|\Delta y_{k}\right|^{\alpha}}{u_{k}}+\frac{\left|1-u_{k}\right|^{\alpha-2}\left(1-u_{k}\right)}{\left|u_{k}\right|^{\alpha}}\left|y_{k}\right|^{\alpha} \geqslant \frac{1}{u_{k}}\left|1-u_{k}\right|^{\alpha-2}\left(1-u_{k}\right)\left|y_{k+1}\right|^{\alpha} .
$$

First we prove the statement of Lemma (2) for $k \in[m, n]$ such that $u_{k}=1$. In this case clearly $G(y, z)=\left|\Delta y_{k}\right|^{\alpha} \geqslant 0$, where equality holds if and only if $\Delta y_{k}=0$, which holds if and only if $\Delta y_{k}=y_{k}\left(\Delta z_{k} / z_{k}\right)$.

In the remainder of this proof, when we write u we mean u_{k} (the same holds for the sequences a, b, v and v_{0}).

Now, denote

$$
\begin{aligned}
J_{0} & :=\left\{k \in[m, n] ; z_{k} \neq z_{k+1}\right\}, \\
J_{1} & :=\left\{k \in J_{0} ; y_{k}=0\right\}, \\
J_{2} & :=\left\{k \in J_{0} ; \Delta y_{k}=0\right\} .
\end{aligned}
$$

Hence we have four cases:
Case I: $k \in J_{0} \backslash\left(J_{1} \cup J_{2}\right)$.
Putting $a=\Delta y_{k}, b=y_{k}$ we get $y_{k+1}=a+b$. Inequality (6) now leads to

$$
\frac{|a|^{\alpha}}{u}+\frac{|1-u|^{\alpha-2}(1-u)}{|u|^{\alpha}}|b|^{\alpha} \geqslant \frac{1}{u}|1-u|^{\alpha-2}(1-u)|a+b|^{\alpha}
$$

and by dividing it by $|b|^{\alpha}$ the inequality (6) assumes the form

$$
\left|\frac{a}{b}\right|^{\alpha} \frac{1}{u}+\frac{1}{|u|^{\alpha}}|1-u|^{\alpha-2}(1-u) \geqslant \frac{1}{u}|1-u|^{\alpha-2}(1-u)\left|1+\frac{a}{b}\right|^{\alpha} .
$$

Now, denote

$$
H(v ; u):=\frac{|v|^{\alpha}}{u}-\frac{1}{u}|1-u|^{\alpha-2}(1-u)|1+v|^{\alpha}+\frac{1}{|u|^{\alpha}}|1-u|^{\alpha-2}(1-u),
$$

where $v:=a / b$. For $v=v_{0}:=(1-u) / u$ the following equality holds:

$$
\begin{aligned}
H\left(v_{0} ; u\right) & =\frac{|1-u|^{\alpha}}{u|u|^{\alpha}}-\frac{1}{u|u|^{\alpha}}|1-u|^{\alpha-2}(1-u)+\frac{1}{|u|^{\alpha}}|1-u|^{\alpha-2}(1-u) \\
& =\frac{|1-u|^{\alpha-2}}{u|u|^{\alpha}}\left((1-u)^{2}-(1-u)+u-u^{2}\right)=0
\end{aligned}
$$

Differentiating H with respect to v we obtain

$$
H_{v}(v ; u)=\alpha \frac{|v|^{\alpha-1} \operatorname{sgn} v}{u}-\alpha \frac{1}{u}|1-u|^{\alpha-2}(1-u)|1+v|^{\alpha-1} \operatorname{sgn}(1+v)
$$

and hence

$$
H_{v}\left(v_{0} ; u\right)=\alpha \frac{|1-u|^{\alpha-1} \operatorname{sgn}(1-u)}{|u|^{\alpha-1} u \operatorname{sgn} u}-\alpha \frac{|1-u|^{\alpha-2}(1-u)}{|u|^{\alpha-1} u \operatorname{sgn} u}=0 .
$$

Further, we get

$$
H_{v v}(v ; u)=\alpha(\alpha-1) \frac{1}{u}\left(|v|^{\alpha-2}-|1-u|^{\alpha-2}(1-u)|1+v|^{\alpha-2}\right)
$$

Consequently,

$$
\begin{aligned}
H_{v v}\left(v_{0} ; u\right) & =\alpha(\alpha-1) \frac{1}{u}\left(\frac{|1-u|^{\alpha-2}}{|u|^{\alpha-2}}-\frac{|1-u|^{\alpha-2}(1-u)}{|u|^{\alpha-2}}\right) \\
& =\alpha(\alpha-1) \frac{|1-u|^{\alpha-2}}{u|u|^{\alpha-2}}(1-1+u) \\
& =\alpha(\alpha-1) \frac{|1-u|^{\alpha-2}}{|u|^{\alpha-2}}>0 .
\end{aligned}
$$

Since

$$
\begin{aligned}
H_{v}(v ; u)=0 & \Longleftrightarrow|v|^{\alpha-1} \operatorname{sgn} v=|1-u|^{\alpha-2}(1-u)|1+v|^{\alpha-1} \operatorname{sgn}(1+v) \\
& \Longleftrightarrow|v|^{\alpha-1} \operatorname{sgn} v=|(1-u)(1+v)|^{\alpha-1} \operatorname{sgn}[(1-u)(1+v)] \\
& \Longleftrightarrow v=1+v-u-u v \\
& \Longleftrightarrow v=\frac{1-u}{u} \\
& \Longleftrightarrow v=v_{0}
\end{aligned}
$$

holds, hence H_{v} has just a single zero v_{0}. Note that this case occurs if and only if $\Delta y_{k}=y_{k}\left(\Delta z_{k} / z_{k}\right)$. In the opposite case, $H(v ; u)>0$.

Case II: $k \in J_{1} \backslash J_{2}$.
Suppose, by contradiction (see the inequality (6)), that

$$
\frac{\left|\Delta y_{k}\right|^{\alpha}}{u} \leqslant \frac{1}{u}|1-u|^{\alpha-2}(1-u)\left|\Delta y_{k}\right|^{\alpha} .
$$

Therefore

$$
\frac{1}{u}+|1-u|^{\alpha-2} \leqslant \frac{|1-u|^{\alpha-2}}{u}
$$

Further, we distinguish the following particular cases:

- if $u>1$, then the following inequality holds:

$$
\begin{aligned}
1+u|1-u|^{\alpha-2} & \leqslant|1-u|^{\alpha-2} \\
\frac{1}{|1-u|^{\alpha-1}} & \leqslant \operatorname{sgn}(1-u),
\end{aligned}
$$

a contradiction, since the left hand side is positive,

- for $0<u<1$ the same computation as above holds and hence we get a contradiction, since $1 /|1-u|^{\alpha-1} \nless 1$, where $0<|1-u|^{\alpha-1}<1$,
- for $u<0$ we have

$$
\frac{1}{|1-u|^{\alpha-1}} \geqslant \operatorname{sgn}(1-u)
$$

again a contradiction, since $1 /|1-u|^{\alpha-1} \nsupseteq 1$, where $|1-u|^{\alpha-1}>1$.
Case III: $k \in J_{2} \backslash J_{1}$.
Assume, by way of contradiction, that

$$
\frac{|1-u|^{\alpha-2}(1-u)}{|u|^{\alpha}}\left|y_{k}\right|^{\alpha} \leqslant \frac{1}{u}|1-u|^{\alpha-2}(1-u)\left|y_{k}\right|^{\alpha} .
$$

Consequently,

$$
\frac{1-u}{|u|^{\alpha}} \leqslant \frac{1-u}{u} .
$$

Similarly as in Case II we have

- $u>1: 1 /|u|^{\alpha} \geqslant 1 / u \Longrightarrow u \geqslant|u|^{\alpha}$,
- $0<u<1: 1 /|u|^{\alpha} \leqslant 1 / u \Longrightarrow u \leqslant|u|^{\alpha}$,
- $u<0: 1 /|u|^{\alpha} \leqslant 1 / u \Longrightarrow u \geqslant|u|^{\alpha}$.

Obviously in every particular case we again come to a contradiction.
Case IV: $k \in J_{1} \cap J_{2}$.
Here we clearly see that $G(y, z)=0$, since $y_{k}=0$ and $\Delta y_{k}=0$. Note that this case occurs if and only if $\Delta y_{k}=y_{k}\left(\Delta z_{k} / z_{k}\right)$. The proof is complete.

Remark (Linear case). If we put $\alpha=2$, we get

$$
G(y, z)=\left(\Delta y_{k}-\frac{\Delta z_{k}}{z_{k}} y_{k}\right)^{2}
$$

3. Roundabout Theorem

In this section we consider equation (1) on the interval $[m, n]$ with $r_{k} \neq 0$ on $[m, n+1]$. First of all we define and recall some important concepts. An interval ($m, m+1$] is said to contain the generalized zero of a solution y of (1), if $y_{m} \neq 0$ and $r_{m} y_{m} y_{m+1} \leqslant 0$. Equation (1) is said to be disconjugate on $[m, n]$ provided any solution of this equation has at most one generalized zero on $(m, n+1]$ and the solution \widetilde{y} satisfying $\widetilde{y}_{m}=0$ has no generalized zeros on $(m, n+1]$. Define a class U of the so called admissible sequences by

$$
U(m, n)=\left\{\xi \mid \xi:[m, n+2] \longrightarrow \mathbb{R} \text { such that } \xi_{m}=\xi_{n+1}=0\right\}
$$

Then define an " α-degree" functional \mathcal{F} on $U(m, n)$ by

$$
\mathcal{F}(\xi ; m, n)=\sum_{k=m}^{n}\left[r_{k}\left|\Delta \xi_{k}\right|^{\alpha}+p_{k}\left|\xi_{k+1}\right|^{\alpha}\right] .
$$

We say \mathcal{F} is positive definite on $U(m, n)$ provided $\mathcal{F}(\xi) \geqslant 0$ for all $\xi \in U(m, n)$ and $\mathcal{F}(\xi)=0$ if and only if $\xi=0$.

Now we are in a position to formulate one of the main results of this paper, the discrete half-linear version of the Reid type Roundabout Theorem.

Theorem 1 (Roundabout Theorem). The following statements are equivalent:
(i) Equation (1) is disconjugate on $[m, n]$.
(ii) Equation (1) has a solution y without generalized zeros on $[m, n+1]$.
(iii) The generalized Riccati equation

$$
\begin{equation*}
\Delta w_{k}=p_{k}-w_{k}\left(1-\frac{\Phi\left(r_{k}\right)}{\Phi\left(\Phi^{-1}\left(r_{k}\right)+\Phi^{-1}\left(w_{k}\right)\right)}\right) \tag{7}
\end{equation*}
$$

or, equivalently,

$$
w_{k+1}=p_{k}+\frac{w_{k} \Phi\left(r_{k}\right)}{\Phi\left(\Phi^{-1}\left(r_{k}\right)+\Phi^{-1}\left(w_{k}\right)\right)},
$$

where $w_{k}=r_{k} \Phi\left(\Delta y_{k}\right) / \Phi\left(y_{k}\right)$ (the Riccati type substitution) and Φ^{-1} is the inverse of Φ, has a solution w_{k} on $[m, n]$ with $r_{k}+w_{k}>0$ on $[m, n]$.
(iv) \mathcal{F} is positive definite on $U(m, n)$.

Proof. (i) \Longrightarrow (ii): The proof of this implication is essentially the same as in the linear case. Indeed, let z_{k} be a solution of (1) given by the initial conditions

$$
z_{m}=0, \quad z_{m+1}=1
$$

It follows that $r_{k} z_{k} z_{k+1}>0$ for $k \in[m+1, n]$. Consider a solution $z_{k}^{[\varepsilon]}$ satisfying the initial conditions

$$
z_{m}^{[\varepsilon]}=\varepsilon r_{m}, \quad z_{m+1}^{[\varepsilon]}=1
$$

Then

$$
z_{k}^{[\varepsilon]} \rightarrow z_{k} \text { as } \varepsilon \rightarrow 0
$$

If we choose $\varepsilon>0$ sufficiently small, then $y_{k} \equiv z_{k}^{[\varepsilon]}$ satisfies

$$
r_{k} y_{k} y_{k+1}>0 \text { for } k \in[m, n]
$$

i.e., y has no generalized zero on $[m, n+1]$.
(ii) \Longrightarrow (iii): Assume that z_{k} is a solution of (1) with $r_{k} z_{k} z_{k+1}>0$ on $[m, n]$. Use the Riccati type substitution $w_{k}=r_{k} \Phi\left(\Delta z_{k}\right) / \Phi\left(z_{k}\right)$. Than we have

$$
\begin{align*}
\frac{r_{k} z_{k+1}}{z_{k}} & =r_{k}\left(\frac{z_{k}+\Delta z_{k}}{z_{k}}\right)=r_{k}\left(1+\frac{\Phi^{-1}\left(w_{k}\right)}{\Phi^{-1}\left(r_{k}\right)}\right) \tag{8}\\
& =\frac{r_{k}}{\Phi^{-1}\left(r_{k}\right)}+\left(\Phi^{-1}\left(r_{k}\right)+\Phi^{-1}\left(w_{k}\right)\right)
\end{align*}
$$

Since

$$
\Phi\left(\frac{z_{k}}{z_{k+1}}\right)=\Phi\left(r_{k}\right) \Phi\left(\frac{z_{k}}{r_{k} z_{k+1}}\right)=\frac{r_{k}}{\Phi\left(\Phi^{-1}\left(r_{k}\right)+\Phi^{-1}\left(w_{k}\right)\right)}
$$

we obtain

$$
\Delta w_{k}=p_{k}-w_{k}\left(1-\frac{\Phi\left(z_{k}\right)}{\Phi\left(z_{k+1}\right)}\right)=p_{k}-w_{k}\left(1-\frac{r_{k}}{\Phi\left(\Phi^{-1}\left(r_{k}\right)+\Phi^{-1}\left(w_{k}\right)\right)}\right)
$$

Now, (8) clearly implies $r_{k}+w_{k}>0$ and hence (iii) holds.
(iii) \Longrightarrow (iv): Assume that w_{k} is a solution of (7) with $r_{k}+w_{k}>0$. Note that then z_{k} given by $w_{k}=r_{k} \Phi\left(\Delta z_{k}\right) / \Phi\left(z_{k}\right)$, i.e. $\Delta z_{k}=\Phi^{-1}\left(w_{k} / r_{k}\right) z_{k}, \Phi^{-1}$ being the inverse function of Φ, is a solution of (1). From the Picone identity (4) applied to the case $p_{k} \equiv P_{k}, r_{k} \equiv R_{k}, y_{k}=\xi_{k}$ and $w_{k}=r_{k} \Phi\left(\Delta z_{k}\right) / \Phi\left(z_{k}\right)$ (see equality (9)) we obtain

$$
\Delta\left[\xi_{k} r_{k} \Phi\left(\Delta \xi_{k}\right)\right]-\Delta\left[\left|\xi_{k}\right|^{\alpha} w_{k}\right]=\xi_{k+1} \Delta\left(r_{k} \Phi\left(\Delta \xi_{k}\right)\right)-p_{k}\left|\xi_{k+1}\right|^{\alpha}+\widetilde{G}
$$

where

$$
\widetilde{G}=\widetilde{G}(\xi, w)=r_{k}\left|\Delta \xi_{k}\right|^{\alpha}-\frac{w_{k} \Phi\left(r_{k}\right)}{\left(r_{k}+w_{k}\right)^{\alpha-1}}\left|\xi_{k+1}\right|^{\alpha}+w_{k}\left|\xi_{k}\right|^{\alpha}
$$

Hence

$$
r_{k}\left|\Delta \xi_{k}\right|^{\alpha}+p_{k}\left|\xi_{k+1}\right|^{\alpha}=\Delta\left[w_{k}\left|\xi_{k}\right|^{\alpha}\right]+\widetilde{G}
$$

The summation of the above given equality from m to n yields

$$
\mathcal{F}(\xi)=\left[w_{k}\left|\xi_{k}\right|^{\alpha}\right]_{k=m}^{n+1}+\sum_{k=m}^{n} \widetilde{G}(\xi, w)
$$

Then $\mathcal{F}(\xi) \geqslant 0$, since $r_{k} z_{k+1} / z_{k}=r_{k}+w_{k}>0$ and Lemma 2 holds. In addition, if $\mathcal{F}(\xi)=0$, then again by Lemma $2, \Delta \xi_{k}=\left(\Delta z_{k} / z_{k}\right) \xi_{k}$. Further, we have $\xi_{m}=0$ and therefore $\xi \equiv 0$. Consequently, $\mathcal{F}(\xi)>0$ for all nontrivial admissible sequences.
(iv) \Longrightarrow (i): Suppose, by contradiction, that (1) is not disconjugate on $[m, n]$. Then there exists a nontrivial solution y of (1) such that

$$
\begin{aligned}
r_{M} y_{M} y_{M+1} & \leqslant 0, \quad y_{M+1} \neq 0 \\
r_{N} y_{N} y_{N+1} & \leqslant 0, \quad y_{N} \neq 0
\end{aligned}
$$

where $m+1 \leqslant M+1<N \leqslant n$. Define

$$
\xi_{k}= \begin{cases}0 & \text { for } k=m, \ldots, M \\ y_{k} & \text { for } k=M+1, \ldots, N \\ 0 & \text { for } k=N+1, \ldots, n+1\end{cases}
$$

Then ξ_{k} is a nontrivial admissible sequence and hence $\mathcal{F}(\xi)>0$. Using summation by parts we obtain

$$
\begin{aligned}
\mathcal{F}(\xi)= & \sum_{k=m}^{n}\left[r_{k}\left|\Delta \xi_{k}\right|^{\alpha}+p_{k}\left|\xi_{k+1}\right|^{\alpha}\right] \\
= & {\left[\xi_{k} r_{k} \Phi\left(\Delta \xi_{k}\right)\right]_{k=m}^{n+1}-\sum_{k=m}^{n} \xi_{k+1} l\left[\xi_{k}\right]=-\sum_{k=M}^{N-1} \xi_{k+1} l\left[\xi_{k}\right] } \\
= & y_{M+1}\left[p_{M} \Phi\left(y_{M+1}\right)-\Delta\left(r_{M} \Phi\left(\Delta \xi_{M}\right)\right)\right] \\
& +y_{N}\left[p_{N-1} \Phi\left(y_{N}\right)-\Delta\left(r_{N-1} \Phi\left(\Delta \xi_{N-1}\right)\right)\right] \\
= & y_{M+1}\left[\Delta\left(r_{M} \Phi\left(\Delta y_{M}\right)\right)-r_{M+1} \Phi\left(\Delta \xi_{M+1}\right)+r_{M} \Phi\left(\Delta \xi_{M}\right)\right] \\
& +y_{N}\left[\Delta\left(r_{N-1} \Phi\left(\Delta y_{N-1}\right)\right)-r_{N} \Phi\left(\Delta \xi_{N}\right)+r_{N-1} \Phi\left(\Delta \xi_{N-1}\right)\right] \\
= & y_{M+1}\left[r_{M+1} \Phi\left(\Delta y_{M+1}\right)-r_{M} \Phi\left(\Delta y_{M}\right)-r_{M+1} \Phi\left(\Delta y_{M+1}\right)+r_{M} \Phi\left(y_{M+1}\right)\right] \\
& +y_{N}\left[r_{N} \Phi\left(\Delta y_{N}\right)-r_{N-1} \Phi\left(\Delta y_{N-1}\right)+r_{N} \Phi\left(y_{N}\right)+r_{N-1} \Phi\left(\Delta y_{N-1}\right)\right] \\
= & G_{1}+G_{2},
\end{aligned}
$$

where

$$
G_{1}=G_{1}\left(y_{M}, y_{M+1} ; r_{M}\right)=y_{M+1} r_{M} \Phi\left(y_{M+1}\right)-y_{M+1} r_{M} \Phi\left(\Delta y_{M}\right)
$$

and

$$
G_{2}=G_{2}\left(y_{N}, y_{N+1} ; r_{N}\right)=y_{N} r_{N} \Phi\left(\Delta y_{N}\right)+y_{N} r_{N} \Phi\left(y_{N}\right) .
$$

To show that $\mathcal{F}(\xi) \leqslant 0$ it remains to verify that $G_{1} \leqslant 0$ and $G_{2} \leqslant 0$. Let us examine for example the function G_{2}. It means that we shall to check the inequality

$$
y_{N} r_{N} \Phi\left(\Delta y_{N}\right) \leqslant-y_{N} r_{N} \Phi\left(y_{N}\right)
$$

It holds if and only if

$$
r_{N} \Phi\left(\frac{\Delta y_{N}}{y_{N}}\right) \leqslant-r_{N}
$$

Now, if $\Delta y_{N}=0$, then we get $G_{2}=r_{N}\left|y_{N}\right|^{\alpha}$. Hence r_{N} must be negative, since we assume $r_{N} y_{N}^{2} \leqslant 0$. Consequently, $G_{2}<0$. Further, let $\Delta y_{N} \neq 0$. Putting $x=y_{N+1} / y_{N}$ we obtain

$$
\widetilde{G}_{2}\left(x ; r_{N}\right):=r_{N}|x-1|^{\alpha-1} \operatorname{sgn}(x-1)+r_{N} .
$$

Note that $G_{2}<0\left(G_{2}=0\right)$ if and only if $\widetilde{G}_{2}<0\left(\widetilde{G}_{2}=0\right)$. If $y_{N+1}=0$ then $x=0$ and hence $\widetilde{G}_{2}\left(0 ; r_{N}\right)=0$. Differentiating \widetilde{G}_{2} with respect to x we obtain

$$
\frac{\partial \widetilde{G}_{2}}{\partial x}=(\alpha-1) r_{N}|x-1|^{\alpha-2}
$$

Now, we distinguish the following particular cases:

- $x>0 \Longleftrightarrow y_{N} y_{N+1}>0 \Longleftrightarrow r_{N}<0 \Longleftrightarrow \partial \widetilde{G}_{2} / \partial x<0$,
- $x<0 \Longleftrightarrow y_{N} y_{N+1}<0 \Longleftrightarrow r_{N}>0 \Longleftrightarrow \partial \widetilde{G}_{2} / \partial x>0$.

Therefore we get $G_{2} \leqslant 0$.
Similarly one can verify that $G_{1} \leqslant 0$ holds. Summarizing the above computations we have $\mathcal{F}(\xi)=G_{1}+G_{2} \leqslant 0$, a contradiction. Hence (i) holds.

The end of this section is devoted to Sturmian theory. Consider two equations $l\left[y_{k}\right]=0$ and $L\left[z_{k}\right]=0$ (the operators l, L are defined at the beginning of Section 2). Denote

$$
\mathcal{F}_{R, P}(\xi):=\sum_{k=m}^{n}\left[R_{k}\left|\Delta \xi_{k}\right|^{\alpha}+P_{k}\left|\xi_{k+1}\right|^{\alpha}\right] .
$$

Then we have the following versions of Sturmian theorems for half-linear difference equations.

Theorem 2 (Sturm's Comparison Theorem). Suppose that we have $R_{k} \geqslant r_{k}$ and $P_{k} \geqslant p_{k}$ for $k \in[m, n]$. Then, if $l\left[y_{k}\right]=0$ is disconjugate on $[m, n]$, then $L\left[z_{k}\right]=0$ is also disconjugate on $[m, n]$.

Proof. Suppose that $l\left[y_{k}\right]=0$ is disconjugate on $[m, n]$. Then Theorem 1 yields $\mathcal{F}(\xi)>0$ for all admissible sequences ξ. For such a ξ we also have

$$
\mathcal{F}_{R, P}(\xi) \geqslant \mathcal{F}(\xi)>0
$$

Hence $\mathcal{F}_{R, P}(\xi)>0$ and thus $L\left[z_{k}\right]=0$ is disconjugate on $[m, n]$ by Theorem 1 .
As far as the separation result is concerned, note that the implication (ii) \Rightarrow (i) from Theorem 1 is a Sturmian type separation theorem. Hence we have the following statement.

Theorem 3 (Sturm's Separation Theorem). Two nontrivial solutions $y^{[1]}$ and $y^{[2]}$ of $l\left[y_{k}\right]=0$, which are not proportional, cannot have a common zero. If $y^{[1]}$ satisfying $y_{m}^{[1]}=0$ has a generalized zero in $(n, n+1]$, then $y^{[2]}$ has a generalized zero in $(m, n+1]$. If $y^{[1]}$ has generalized zeros in $(m, m+1]$ and $(n, n+1]$, then $y^{[2]}$ has a generalized zero in ($m, n+1$].

Proof. It is sufficient to prove the part concerning the common zero of nonproportional solutions since the remaining part follows from Theorem 1. Suppose, by contradiction, that $y_{l}^{[1]}=0=y_{l}^{[2]}$ for some $l \in[m, n]$. Let \widetilde{y} be a solution of $l\left[y_{k}\right]=0$ such that $\widetilde{y}_{l}=0, \widetilde{y}_{l+1}=1$. Then $y^{[1]}:=A \widetilde{y}$ and $y^{[2]}:=B \widetilde{y}$, where A, B are suitable nonzero constants, are also nontrivial solutions of $l\left[y_{k}\right]=0$ satisfying

$$
y_{l}^{[1]}=0, y_{l+1}^{[1]}=A \text { and } y_{l}^{[2]}=0, y_{l+1}^{[2]}=B,
$$

respectively. Hence $y^{[1]}=C y^{[2]}$, where $C=A / B$, a contradiction.

4. Oscillation criteria

In this section we give oscillation criteria for equation (1), $k \in[m, \infty)$, with $r_{k}>0$ on this interval.

First of all, let us recall some important concepts. Equation (1) is said to be nonoscillatory if there exists $K \geqslant m$ such that (1) is disconjugate on $[K, N]$ for every $N>K$. In the opposite case (1) is said to be oscillatory. Oscillation of (1) may be equivalently defined as follows. A nontrivial solution of (1) is called oscillatory if it has infinitely many generalized zeros. In view of the fact that Sturm's Separation Theorem holds, we have the following equivalence: Any solution of (1) is oscillatory if and only if every solution of (1) is oscillatory. Hence we can speak about oscillation of equation (1).

In order to prove our oscillation criteria we need, among other, the following auxiliary statement which is proved in [3].

Lemma 3 (The second mean value theorem of "summation calculus"). Let a sequence a_{k} be monotonic for $k \in[K, L+1]$. Then for any sequence b_{k} there exist $N_{1}, N_{2} \in[K, L]$ such that

$$
\begin{aligned}
& \sum_{j=K}^{L} a_{j+1} b_{j} \leqslant a_{K} \sum_{i=K}^{N_{1}-1} b_{i}+a_{L+1} \sum_{i=N_{1}}^{L} b_{i}, \\
& \sum_{j=K}^{L} a_{j+1} b_{j} \geqslant a_{K} \sum_{i=K}^{N_{2}-1} b_{i}+a_{L+1} \sum_{i=N_{2}}^{L} b_{i} .
\end{aligned}
$$

Theorem 4 (Leighton-Wintner type oscillation criterion). Suppose that

$$
\begin{equation*}
\sum_{j=m}^{\infty} r_{j}^{1-\beta}=\infty \tag{9}
\end{equation*}
$$

(β is the conjugate number of α, i.e., $1 / \alpha+1 / \beta=1$) and

$$
\begin{equation*}
\sum_{j=m}^{\infty} p_{j}=-\infty \tag{10}
\end{equation*}
$$

Then (1) is oscillatory.
Proof. According to Theorem 1, it is sufficient to find for any $K \geqslant m$ a sequence y satisfying $y_{k}=0$ for $k \leqslant K$ and $k \geqslant N+1$, where $N>K$ (then y is admissible), such that

$$
\mathcal{F}(y ; K, N)=\sum_{k=K}^{N}\left[r_{k}\left|\Delta y_{k}\right|^{\alpha}+p_{k}\left|y_{k+1}\right|^{\alpha}\right] \leqslant 0 .
$$

Let $K<L<M<N$. Define the sequence y_{k} by

$$
y_{k}= \begin{cases}0 & \text { for } k=m, \ldots, K \\ \left(\sum_{j=K}^{k-1} r_{j}^{1-\beta}\right)\left(\sum_{j=K}^{L} r_{j}^{1-\beta}\right)^{-1} & \text { for } k=K+1, \ldots, L+1 \\ 1 & \text { for } k=L+1, \ldots, M \\ \left(\sum_{j=k}^{N} r_{j}^{1-\beta}\right)\left(\sum_{j=M}^{N} r_{j}^{1-\beta}\right)^{-1} & \text { for } k=M, \ldots, N \\ 0 & k \geqslant N+1\end{cases}
$$

Using summation by parts we have

$$
\begin{aligned}
\mathcal{F}(y ; K, N)= & \sum_{k=K}^{N}\left[r_{k}\left|\Delta y_{k}\right|^{\alpha}+p_{k}\left|y_{k+1}\right|^{\alpha}\right] \\
= & \sum_{k=K}^{L-1} r_{k}\left|\Delta y_{k}\right|^{\alpha}+r_{L}\left|\Delta y_{L}\right|^{\alpha}+\sum_{k=L+1}^{M-1} r_{k}\left|\Delta y_{k}\right|^{\alpha}+\sum_{k=M}^{N} r_{k}\left|\Delta y_{k}\right|^{\alpha} \\
& +\sum_{k=K}^{N} p_{k}\left|y_{k+1}\right|^{\alpha} \\
= & l\left[y_{k} r_{k} \Phi\left(\Delta y_{k}\right)\right]_{k=K}^{L}-\sum_{j=K}^{L-1} y_{k+1} \Delta\left(r_{k} \Phi\left(\Delta y_{k}\right)\right) \\
& +r_{L}\left(r_{L}^{1-\beta}\right)^{\alpha}\left(\sum_{j=K}^{L} r_{j}^{1-\beta}\right)^{-\alpha}+\left[y_{k} r_{k} \Phi\left(\Delta y_{k}\right)\right]_{k=M}^{N+1}
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{k=M}^{N} y_{k+1} \Delta\left(r_{k} \Phi\left(\Delta y_{k}\right)\right)+\sum_{k=K}^{N} p_{k}\left|y_{k+1}\right|^{\alpha} \\
= & y_{L} r_{L} \Phi\left(\Delta y_{L}\right)+r_{L}^{1-\beta}\left(\sum_{j=K}^{L} r_{j}^{1-\beta}\right)^{-\alpha}+y_{M} r_{M} \Phi\left(\Delta y_{M}\right) \\
& +\sum_{k=K}^{N} p_{k}\left|y_{k+1}\right|^{\alpha} \\
= & \left(\sum_{k=K}^{L} r_{k}^{1-\beta}\right)^{1-\alpha}+\left(\sum_{k=M}^{N} r_{k}^{1-\beta}\right)^{1-\alpha}+\sum_{k=K}^{L} p_{k}\left|y_{k+1}\right|^{\alpha} \\
& +\sum_{k=L+1}^{M-1} p_{k}+\sum_{k=M}^{N} p_{k}\left|y_{k+1}\right|^{\alpha} .
\end{aligned}
$$

Further, the sequence y is strictly monotonic on $[K, L+1]$ and $[M, N+1]$ since

$$
\Delta y_{k}=r_{k}^{1-\beta}\left(\sum_{j=K}^{L} r_{j}^{1-\beta}\right)^{-1}>0 \text { for } k \in[K, L]
$$

and

$$
\Delta y_{k}=-r_{k}^{1-\beta}\left(\sum_{j=M}^{N} r_{j}^{1-\beta}\right)^{-1}<0 \text { for } k \in[M, N]
$$

and therefore $|y|^{\alpha}$ is also strictly monotonic. Hence, by Lemma 3 , there exists $N_{1} \in$ [$K, L]$ such that

$$
\sum_{k=K}^{L} p_{k}\left|y_{k+1}\right|^{\alpha} \leqslant\left|y_{K}\right|^{\alpha} \sum_{k=K}^{N_{1}-1} p_{k}+\left|y_{L+1}\right|^{\alpha} \sum_{k=N_{1}}^{L} p_{k}=\sum_{k=N_{1}}^{L} p_{k}
$$

and similarly there exists $N_{2} \in[M, N]$ for which

$$
\sum_{k=M}^{N} p_{k}\left|y_{k+1}\right|^{\alpha} \leqslant\left|y_{M}\right|^{\alpha} \sum_{k=M}^{N_{2}-1} p_{k}+\left|y_{N+1}\right|^{\alpha} \sum_{k=N_{2}}^{N} p_{k}=\sum_{k=M}^{N_{2}-1} p_{k}
$$

Using these estimates we have

$$
\mathcal{F}(y ; K, N) \leqslant\left(\sum_{k=K}^{L} r_{k}^{1-\beta}\right)^{1-\alpha}+\left(\sum_{k=M}^{N} r_{k}^{1-\beta}\right)^{1-\alpha}+\sum_{k=N_{1}}^{N_{2}-1} p_{k}
$$

Now, denote $A=\left(\sum_{j=K}^{L} r_{j}^{1-\beta}\right)^{1-\alpha}$ and let $\varepsilon>0$ be arbitrary. According to (10), the integer M can be chosen in such a way that

$$
\sum_{j=N_{1}}^{k} p_{j} \leqslant-(A+\varepsilon)
$$

whenever $k>M$. Since (9) holds,

$$
\left(\sum_{k=M}^{N} r_{k}^{1-\beta}\right)^{1-\alpha} \leqslant \varepsilon
$$

if N is sufficiently large.
Summarizing the above estimates, if M, N are sufficiently large, then we have

$$
\mathcal{F}(y ; K, N) \leqslant A+\varepsilon-(A+\varepsilon)=0,
$$

which completes the proof.
In the case when $\sum_{j=m}^{\infty} p_{j}$ is convergent, we can use the following criterion.
Theorem 5 (Hinton-Lewis type oscillation criterion). Suppose that (9) holds and

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\sum_{j=m}^{k} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=k}^{\infty} p_{j}\right)<-1 . \tag{11}
\end{equation*}
$$

Then (1) is oscillatory.
Proof. Let the sequence y be the same as in the proof of the previous theorem. Hence we have

$$
\begin{aligned}
\mathcal{F}(y) \leqslant & \left(\sum_{j=K}^{L} r_{j}^{1-\beta}\right)^{1-\alpha}+\left(\sum_{j=M}^{N} r_{j}^{1-\beta}\right)^{1-\alpha}+\sum_{j=N_{1}}^{N_{2}-1} p_{k} \\
= & \left(\sum_{j=m}^{L} r_{j}^{1-\beta}\right)^{1-\alpha}\left[\left(\sum_{j=m}^{L} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=K}^{L} r_{j}^{1-\beta}\right)^{1-\alpha}\right. \\
& \left.+\left(\sum_{j=m}^{L} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=N_{1}}^{N_{2}-1} p_{j}\right)+\left(\sum_{j=m}^{L} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=M}^{N} r_{j}^{1-\beta}\right)^{1-\alpha}\right],
\end{aligned}
$$

where $m \leqslant K<L<M<N, N_{1} \in[K, L]$ and $N_{2} \in[M, N]$.

Now, let $\varepsilon>0$ be such that lim in (11) is less than or equal to $-1-4 \varepsilon$. According to (11), K may be chosen in such a way that

$$
\begin{equation*}
\left(\sum_{j=m}^{k} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=k}^{\infty} p_{j}\right) \leqslant-1-3 \varepsilon \tag{12}
\end{equation*}
$$

for $k>K$. Obviously there exists $L>K$ such that

$$
\left(\sum_{j=m}^{L} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=K}^{L} r_{j}^{1-\beta}\right)^{1-\alpha} \leqslant 1+\varepsilon
$$

In view of the fact that (12) holds, there exists $M>L$ such that

$$
\left(\sum_{j=m}^{k} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=k}^{l} p_{j}\right) \leqslant-1-2 \varepsilon
$$

for $l \geqslant M$. Finally, since $\sum_{j=m}^{\infty} r_{j}^{1-\beta}=\infty$ holds, we have

$$
\left(\sum_{j=m}^{L} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=M}^{N} r_{j}^{1-\beta}\right)^{1-\alpha} \leqslant \varepsilon
$$

if $N>M$ is sufficiently large.
Using these estimates and the fact that $\sum_{j=m}^{k} r_{j}^{1-\beta}$ is positive and increasing with respect to $k, k \geqslant m$ and $\sum_{j=N_{1}}^{N_{2}} p_{j}$ is negative if N_{1}, N_{2} are sufficiently large, we get

$$
\begin{aligned}
\mathcal{F}(y) \leqslant & \left(\sum_{j=m}^{L} r_{j}^{1-\beta}\right)^{1-\alpha}\left[\left(\sum_{j=m}^{L} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=K}^{L} r_{j}^{1-\beta}\right)^{1-\alpha}\right. \\
& \left.+\left(\sum_{j=m}^{N_{1}} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=N_{1}}^{N_{2}-1} p_{j}\right)+\left(\sum_{j=m}^{L} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=M}^{N} r_{j}^{1-\beta}\right)^{1-\alpha}\right] \\
\leqslant & \left(\sum_{j=m}^{L} r_{j}^{1-\beta}\right)^{1-\alpha}[1+\varepsilon-1-2 \varepsilon+\varepsilon]=0
\end{aligned}
$$

which yields the desired result.

REmARKS

1) A closer examination of the last proof shows that lim in (11) can be replaced by \lim sup.
2) In [13] it is proved a "complementary case" of the last criterion-in the sense of the convergence of $\sum_{j=m}^{\infty} r_{j}^{1-\beta}$. In its proof we use the so called reciprocity principle. This statement is read as follows:

Suppose $p_{k}<0$ on $[m, \infty)$. Further, let

$$
\sum_{j=m}^{\infty} r_{j}^{1-\beta}<\infty
$$

and

$$
\lim _{k \rightarrow \infty}\left(\sum_{j=k+1}^{\infty} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=m}^{k} p_{j}\right)<-1
$$

Then (1) is oscillatory.
3) Using the Riccati technique in [6] we have proved the following "nonoscillatory suplement" of Theorem 5. Suppose that (9) holds, $\sum_{j=m}^{\infty} p_{j}$ is convergent and

$$
\lim _{k \rightarrow \infty} \frac{r_{k}^{1-\beta}}{\sum_{j=m}^{k-1} r_{j}^{1-\beta}}=0
$$

If

$$
\liminf _{k \rightarrow \infty}\left(\sum_{j=m}^{k-1} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=k}^{\infty} p_{j}\right)>\frac{1}{\alpha}\left(\frac{\alpha-1}{\alpha}\right)^{\alpha-1}
$$

and

$$
\limsup _{k \rightarrow \infty}\left(\sum_{j=m}^{k-1} r_{j}^{1-\beta}\right)^{\alpha-1}\left(\sum_{j=k}^{\infty} p_{j}\right)<\frac{2 \alpha-1}{\alpha}\left(\frac{\alpha-1}{\alpha}\right)^{\alpha-1},
$$

then (1) is nonoscillatory.
4) In [15], [16] and in the papers cited therein can be found further oscillation criteria (and other "oscillatory results") for equation (1). For example, we have shown (as a consequence) of more general statement that if $r_{k} \equiv 1$, then the condition (11)
can be replaced by the weaker one, namely

$$
\limsup _{k \rightarrow \infty} k^{\alpha-1} \sum_{j=k}^{\infty} p_{j}<-\frac{1}{\alpha}\left(\frac{\alpha-1}{\alpha}\right)^{\alpha-1}
$$

5) Very important role in the oscillation theory of linear differential equations is played by the so called principal solution. An extension of this concept to the half-linear differential equation (2) has been already partly done. In [5], [8], [12] the construction of this solution was made and it is based either on the minimality of the solution of generalized Riccati differential equation (since in the linear case the principal solution of linear differential equation generates a minimal solution (near ∞) of the corresponding Riccati equation-the so called distinguished solution), or it is based on the generalized Prüfer transformation. Recall that the discrete counterpart of principal solution is called recessive solution (for linear equation). Taking into account the above facts we would like to construct recessive solution for euqation (1) and possibly apply it.
6) The fact that we have a theory for differential and also difference equations suggests an idea to develop a unified theory for these equations on arbitrary time scales. This problem was very recently solved in the paper [14].

Acknowledgement. I would like to thank Professor O. Došlý for very helpful comments on an earlier version of this paper.

References

[1] R. P. Agarwal: Difference equations and inequalities, theory, methods, and applications, the second edition. Pure and Appl. Math. M. Dekker, New York-Basel-Hong Kong, 2000.
[2] C.D. Ahlbrandt and A. C. Peterson: Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations. Kluwer Academic Publishers, Boston, 1996.
[3] O. Došlý: Oscillation criteria for higher order Sturm-Liouville difference equations. J. Differ. Equations Appl. 4 (1998), 425-450.
[4] O. Došlý: Oscillation criteria for half-linear second order differential equations. Hiroshima Math. J. 28 (1998), 507-521.
[5] O. Došlý: A remark on conjugacy of half-linear second order differential equations. Math. Slovaca 50 (2000), 67-79.
[6] O. Došlý and P. Řehák: Nonoscillation criteria for second order half-linear difference equations. Comput. Math. Appl. In press.
[7] A. Elbert: A half-linear second order differential equations. Colloq. Math. Soc. János Bolayi 30 (1979), 158-180.
[8] Á. Elbert and T. Kusano: Principal solutions of nonoscillatory half-linear differential equations. Adv. Math. Sci. Appl. (Tokyo) 8 (1998), 745-759.
[9] J. Jaroš and T. Kusano: A Picone type identity for second order half-linear differential equations. Acta Math. Univ. Comenian. (N. S.) 68 (1999), 137-151.
[10] W. G. Kelley and A. Peterson: Difference Equations: An Introduction with Applications. Acad. Press, San Diego, 1991.
[11] J. D. Mirzov: On some analogs of Sturm's and Kneser's theorems for nonlinear systems. J. Math. Anal. Appl. 3 (1976), 418-425.
[12] J. D. Mirzov: Principial and nonprincipial solutions of a nonoscillatory system. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100-117.
[13] P. Řehák: Half-linear discrete oscillation theory. In: Proceedings of 6th Colloquium on the qualitative theory of DE, Szeged 1999, http://www.math.u-szeged.hu/ejqtde/index. html. EJQTDE, Szeged, 2000, pp. 1-14.
[14] P. Řehák: Half-linear dynamic equations on time scales: IVP and oscillatory properties. Submitted.
[15] P. Řehák: Hartman-Wintner type lemma, oscillation and conjugacy criteria for half-linear difference equations. J. Math. Anal. Appl. 252 (2000), 813-827.
[16] P. Řehák: Oscillation criteria for second order half-linear difference equations. J. Differ. Equations Appl. In press.

Author's address: Department of Mathematics, Faculty of Sciences, Masaryk University Brno, Janáčkovo nám. 2a, CZ-662 95 Brno, Czech Republic, e-mail rehak@math.muni.cz.

