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1. Introduction

Let H be a real separable Hilbert space and ν a Borel probability measure on H .
We are given a linear operator A : D(A) ⊂ H → H that we suppose to be the

infinitesimal generator of a strongly continuous semigroup etA onH , a linear operator
B ∈ L(H) and a nonlinear Borel mapping F : H → H . We set C = BB∗.
Let us introduce the function space EA(H) as the linear span of all real and

imaginary parts of functions on H of the form x → ei〈h,x〉, where h ∈ D(A∗) and
A∗ is the adjoint of A. It is well known that this space is dense in Lp(H, ν) for any

p � 1.
We are concerned with the linear operator

K̊ϕ = Lϕ+ 〈F (x), C1/2Dϕ〉, ϕ ∈ EA(H),

where L is the Ornstein-Uhlenbeck operator

Lϕ =
1
2
Tr[CD2ϕ] + 〈x,A∗Dϕ〉, ϕ ∈ EA(H).
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In a sense this paper is a continuation of the paper [4]. The main difference is that

here we do not assume that ν is absolutely continuous with respect to a Gaussian
measure.
Let us state our assumptions. Concerning A and C we will assume

Hypothesis 1.
(i) There exists ω � 0 such that

(1.1) 〈Ax, x〉 � −ω|x|2, x ∈ D(A),

(ii) TrQ < +∞, where

Qx =
∫ +∞

0
etACetA

∗
xdt, x ∈ H,

and concerning F we will assume

Hypothesis 2.
(i) There exists a constant c > 0 such that

(1.2)
∫

H

(|x|2 + |F (x)|2) ν(dx) � c,

(ii) for any ϕ ∈ EA(H) we suppose

(1.3)
∫

H

K̊ϕdν = 0,

(iii) K̊ is dissipative in Lp(H, ν), ∀p � 1,
(iv) there exist a sequence (Fn) ⊂ C2b (H ;H) such that Fn(x) → F (x) ν-a.e. and a

constant c1 > 0 such that
∫

H

|Fn(x)|2 ν(dx) � c1.

It is well known that the operator K̊ is closable in Lp(H, ν) since it is dissipative
in it, as stated in (iii). Let us denote its closure in Lp(H, ν) by Kp. Our goal is

to show that Kp is dissipative on Lp(H, ν), p � 1 and that ν is an infinitesimally
invariant measure for Kp. The main result of the paper is Theorem 3.6, where we

show that K1 is m-dissipative on L1(H, ν).
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2. The Ornstein-Uhlenbeck semigroup

In this section we assume that Hypothesis 1 holds. Let Cb(H) be the space of

uniformly continuous and bounded functions ϕ : H → �. Moreover, for any integer
k � 0 let us define Cb,k(H) as the space of all ϕ : H → � such that the mapping

H → �, x→ ϕ(x)
1 + |x|k

belongs to Cb(H). We set

‖ϕ‖b,k = sup
x∈H

|ϕ(x)|
1 + |x|k .

Obviously one has Cb,k(H) ⊂ Cb,k+1(H).
Denoting by NQt the Gaussian measure with mean 0 and covariance operator

Qtx =
∫ t

0
esACesA∗

xds, x ∈ H,

let Rt be the Ornstein-Uhlenbeck “semigroup”

(2.1) Rtϕ(x) =
∫

H

ϕ(etAx+ y)NQt(dy), ϕ ∈ Cb,k(H), k � 0.

It is not difficult to show that for all t � 0 and for all k � 0, Rt maps Cb,k(H) into

itself, see [1]. Following [1]1, we define the infinitesimal generator L of Rt through
its resolvent

(2.2) (λ− L)−1ϕ(x) =
∫ +∞

0
e−λtRtϕ(x) dt, x ∈ H, λ > 0.

Thus for any λ > 0, (λ − L)−1 maps Cb,k(H) into itself. Since the image of the
resolvent is independent of λ we can set, see [1],

D
(
L, Cb,k(H)

)
= (λ− L)−1

(
Cb,k(H)

)
, k � 0.

As noticed in [1], Rt is not a strongly continuous semigroup on Cb,k(H) for any k � 0.
Let us denote by Xk the maximal closed subspace of Cb,k(H) where Rt is strongly
continuous, that is

Xk =
{
ϕ ∈ Cb,k(H) : lim

t→0
Rtϕ = ϕ in Cb,k(H)

}
.

1 See also [2] and [7].
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To characterize Xk it is useful to introduce an auxiliary family (Gt) of linear op-

erators on Cb,k(H):

Gtϕ(x) =
∫

H

ϕ(x+ y)NQt(dy), ϕ ∈ Cb,k(H).

They are related to (Rt) by

Rtϕ(x) = (Gtϕ)(etAx), ϕ ∈ Cb,k(H).

Proposition 2.1. Let ϕ ∈ Cb,k(H). Then the following statements are equiva-

lent:

(i) lim
t→0

Rtϕ = ϕ in Cb,k(H).

(ii) lim
t→0

ϕ(etA·) = ϕ in Cb,k(H).

�����. We first show that for any ϕ ∈ Cb,k(H) we have

(2.3) lim
t→0

Gtϕ = ϕ in Cb,k(H).

Let ϕ ∈ Cb,k(H) and set ψ(x) = ϕ(x)/(1 + |x|k). We may assume that ψ ∈
C1b (H).Then we have

Gtϕ(x) − ϕ(x) =
∫

H

[
(1 + |x+ y|k)ψ(x + y)− (1 + |x|k)ψ(x)

]
NQt(dy).

Consequently,

|Gtϕ(x) − ϕ(x)|
1 + |x|k �

∫

H

∣∣∣∣
1 + |x+ y|k
1 + |x|k − 1

∣∣∣∣ ‖ψ‖0NQt(dy)

+ ‖ψ‖1
∫

H

|y|NQt(dy).

Therefore (2.3) follows.

We now prove that (i)⇒ (ii). In fact we have

|ϕ(etAx)− ϕ(x)| � |ϕ(etAx)− Gtϕ(etAx)|+ |Rtϕ(x) − ϕ(x)|.

So (i)⇒ (ii). The converse can be proved similarly. �

Remark 2.2. Since for any ϕh = ei〈h,x〉 we have

Rtϕh = e
−1/2〈Qth,h〉ϕetA∗h,

it follows that Rt maps EA(H) into itself. Properties of the space EA(H) follow also
from the results in [3] and [10].
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Corollary 2.3.
(i) EA(H) ⊂ D

(
L, Cb,k(H)

)
for all k � 1,

(ii) EA(H) ⊂ X1, and consequently,

(2.4) Lϕ =
1
2
Tr[CD2ϕ] + 〈x,A∗Dϕ〉, ϕ ∈ EA(H).

(iii) If ϕ ∈ EA(H), then we have Lϕ ∈ X2.

�����. Taking in account the definition of EA(H), we need only to prove the
corollary in the case of the functions sin[〈x, h〉] and cos[〈x, h〉]. Moreover, since the
proof for the cosine function is just the same as for the sine, we are reduced to make
the proof only for ϕh(x) = sin[〈x, h〉]. Hence we have

(2.5) Lϕh = −1
2
sin[〈x, h〉] |h|2 + cos[〈x, h〉]〈x,A∗h〉,

which yields (i). Let us prove (ii). We have

ϕh(etAx)− ϕh(x)
1 + |x| =

sin[〈etAx, h〉]− sin[〈x, h〉]
1 + |x| .

Consequently,

|ϕh(etAx)− ϕh(x)|
1 + |x| � |〈x, etA∗

h〉 − 〈x, h〉|
1 + |x| � |x|

1 + |x| |e
tA∗

h− h|.

This implies

lim
t→0
sup
x∈H

|ϕh(etAx)− ϕh(x)|
1 + |x| = 0,

and so ϕh ∈ X1 by Proposition 2.1.

Finally, (iii) follows by a similar argument, when taking into account (2.5). �

2.1. Approximations by exponential functions.
This subsection is devoted to the study of a kind of approximations of functions

of Cb(H), and moreover of D
(
L, Cb(H)

)
, by functions of EA(H), which we need in

the sequel.
These approximations are not possible by using simple sequences, but k-sequences,

k ∈ �, that is sequences {ϕn} = {ϕn1,...,nk
} depending on k indices. We say that

{ϕn} is convergent to ϕ if

lim
n→∞

ϕn := lim
n1→∞

. . . lim
nk→∞

ϕn1,...,nk
(x) = ϕ(x), x ∈ H.

689



Lemma 2.4. For any ϕ ∈ Cb(H) there exists a 3-sequence (ϕn) = (ϕn1,n2,n3) ⊂
EA(H) such that

lim
n→∞

ϕn(x) = ϕ(x), ∀x ∈ H,(2.6)

and

‖ϕn‖b,0 � ‖ϕ‖b,0.(2.7)

�����. Let ϕ ∈ Cb(H) and let (Pn1)n1∈� be a sequence of finite dimensional

projection operators on H strongly convergent to the identity. Then for each n1 ∈ �

there exists2 a sequence (ϕn1,n2)n2∈� ⊂ E(H) such that

lim
n2→∞

ϕn1,n2(x) = ϕ(Pn1x), x ∈ H,

and

|ϕn1,n2(x)| � |ϕ(Pn1x)| � ‖ϕ‖b,0.

Now set

ϕn1,n2,n3(x) = ϕn1,n2

(
n3(n3 −A∗)−1x

)
, x ∈ H.

Then ϕn = ϕn1,n2,n3 ⊂ EA(H), lim
n→∞

ϕn(x) = ϕ(x), ∀x ∈ H , and

|ϕn1,n2,n3(x)| =
∣∣ϕn1,n2

(
n3(n3 −A∗)−1x

)∣∣ � ‖ϕn1,n2‖b,0 � ‖ϕ‖b,0.

Therefore the 3-sequence (ϕn1,n2,n3) fulfils (2.6) and (2.7) as required. �

Now we want to show that any function ϕ ∈ D
(
L, Cb(H)

)
can be approximated

pointwise in the graph norm by functions in EA(H) with uniformly bounded norm.

Proposition 2.5. For any ϕ ∈ D
(
L, Cb(H)

)
there exist a 4-sequence (ϕn) ⊂

EA(H) and C(ϕ) > 0 such that for all x ∈ H we have

lim
n→∞

ϕn(x) = ϕ(x), lim
n→∞

Lϕn(x) = Lϕ(x),(2.8)

and

sup
x∈H

{ |ϕn(x)|+ |Lϕn(x)|
1 + |x|2

}
� C(ϕ).(2.9)

2 For example, first we can approximate ϕn1 by functions with support contained in squares
larger and larger, for each of which we can use multiple Fourier series; then we can apply
a diagonal procedure.
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�����. Set f = ϕ − Lϕ and let (fn) = (fn1,n2,n3) ⊂ EA(H) be a 3-sequence

fulfilling (2.6) and (2.7) (with ϕ replaced by f). Setting ϕn = (1− L)−1fn, we have

lim
n→∞

ϕn(x) = ϕ(x), ∀x ∈ H,

lim
n→∞

Lϕn(x) = Lϕ(x), ∀x ∈ H,

and

‖ϕn‖b,0 � ‖f‖b,0 � (2‖ϕ‖b,0 + ‖Lϕ‖b,0),

‖Lϕn‖b,0 � (‖ϕ‖b,0 + ‖Lϕ‖b,0).

Next, set for any M,N ∈ �

ϕn,M,N (x) =
1
M

N∑

h=1

M∑

k=1

e−(h+k/M)Rh+k/Mfn(x),

so that

|ϕn,M,N (x)| � ‖f‖0

and

Lϕn,M,N (x) =
1
M

N∑

h=1

M∑

k=1

e−(h+k/M)Rh+k/MLfn(x).

Now, by Corollary 2.3 it follows that Lfn ∈ X2 so that Rtfn is continuous on t in

the topology of Cb,2(H). Therefore for any n = (n1, n2, n3) we have

lim
M,N→∞

sup
x∈H

1
1 + |x|2

∣∣∣∣
∫ +∞

0
e−tRtLfn(x) dt−

1
M

N∑

h=1

M∑

k=1

e−(h+
k
M )Rh+ k

M
Lfn(x)

∣∣∣∣ = 0.

Therefore for any ε ∈ (0, 1] there exist Mε, Nε such that

|Lϕn(x) − Lϕn,Mε,Nε(x)| � ε(1 + |x|2), x ∈ H.

Consequently,
lim
ε↓0

Lϕn,Mε,Nε(x) = Lϕn(x),

and
|Lϕn,Mε,Nε(x)| � |Lϕn(x)| + ε(1 + |x|2) � 2‖f‖0 + |x|2.

Now the conclusion follows easily. �
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In a similar way we prove

Proposition 2.6. For any ϕ ∈ D
(
L, Cb,1(H)

)
there exist a 4-sequence (ϕn) =

(ϕn1,n2,n3,n4) ⊂ EA(H) and C(1, ϕ) > 0 such that for all x ∈ H we have

lim
n→∞

ϕn(x) = ϕ(x), lim
n→∞

Dϕn(x) = Dϕ(x), lim
n→∞

Lϕn(x) = Lϕ(x)(2.10)

and

sup
x∈H

{ |ϕn(x)| + |Dϕn(x)|+ |Lϕn(x)|
1 + |x|2

}
� C(1, ϕ).(2.11)

Proposition 2.7. Assume in addition that C−1 is bounded. Then for any

ϕ ∈ D
(
L, Cb(H)

)
there exist a 4-sequence (ϕn) ⊂ EA(H) and C(ϕ) > 0 such that for

all x ∈ H we have

lim
n→∞

ϕn(x) = ϕ(x), lim
n→∞

Dϕn(x) = Dϕ(x), lim
n→∞

Lϕn(x) = Lϕ(x)(2.12)

and

sup
x∈H

{ |ϕn(x)|+ |Dϕn(x)|+ |Lϕn(x)|
1 + |x|2

}
� C(ϕ).(2.13)

�����. Let ϕ ∈ D
(
L, Cb(H)

)
. By Proposition 2.5 we know that there exist a

4-sequence (ϕn) ⊂ EA(H) and C(ϕ) > 0 such that (2.8) and (2.9) hold. Moreover, if
C−1 is bounded then Rt is strong Feller and, for any k = 0, 1, . . ., there exists ck > 0

such that
|DRtf(x)|
1 + |x|k � ckt

−1/2‖f‖b,k, k = 0, 1, . . .

By the Laplace transform we obtain

|D(λ − L)−1f(x)|
1 + |x|k �

√
�/λ ck‖f‖b,k, k = 0, 1, . . .

Now set ϕn − Lϕn = fn. Then we have

|Dϕn(x)|
1 + |x|2 �

√
� c2‖f‖b,2.

Since

‖f‖b,2 � ‖ϕn‖b,2 + ‖Lϕn‖b,2,

the conclusion follows from (2.8) and (2.9). �
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3. m-dissipativity of K1 on L1(H, ν)

Proposition 3.1. For all ϕ ∈ EA(H) we have

(3.1)
∫

H

K̊ϕϕdν = −1
2

∫

H

|C1/2Dϕ|2 dν.

�����. In fact, if ϕ ∈ EA(H) then we have ϕ2 ∈ EA(H) and

K̊(ϕ2) = 2ϕK̊ϕ+ |C1/2Dϕ|2.

Then integrating both sides with respect to ν and using (1.3), the conclusion follows.

�

Since, by definition, EA(H) is a core for K2, (3.1) implies that the linear operator

DC : EA(H) ⊂ D(K2)→ L2(H, ν;H), ϕ→ C1/2Dϕ,

is continuous and consequently can be extended to all D(K2). We denote again by

DC the extension. By Proposition 3.1 we get

Corollary 3.2. For all ϕ ∈ D(K2) we have

(3.2)
∫

H

K2ϕϕdν = −1
2

∫

H

|DCϕ|2 dν.

Let us now consider the problem

(3.3) dXn =
(
AXn + C1/2Fn(Xn)

)
dt+B dWt, Xn(0) = x.

Since Fn ∈ C2b (H), problem (3.3) has a unique mild solution that we will denote
by Xn(t, x), see e.g. [5]. Moreover, Xn(t, x) is differentiable with respect to x and,
setting ηh

n(t, x) = DXn(t, x)h, we have

(3.4)
d
dt
ηh

n(t, x) = Aη
h
n(t, x) + C

1/2DFn

(
Xn(t, x)

)
ηh

n(t, x), ηh
n(t, x) = h.

Now we consider the equation

(3.5) λϕn − Lϕn − 〈Fn(x), C1/2Dϕn〉 = f.
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Lemma 3.3. Let f ∈ C2b (H) and λ > 0. Then equation (3.5) has a unique

solution ϕn ∈ D
(
L, C1b (H)

)
∩ C1b (H) given by

(3.6) ϕn(x) =
∫ +∞

0
e−λt

�
[
f
(
Xn(t, x)

)]
dt, x ∈ H.

�����. Let f ∈ C1b (H) and

ϕn(x) =
∫ +∞

0
e−λt

�
[
f
(
Xn(t, x)

)]
dt.

Clearly ϕn ∈ C1b (H) since |ηh
n(t, x)| � et‖C

1/2Fn‖0 , and we have

〈Dϕn(x), h〉 =
∫ +∞

0
e−λt

�
[〈
Df

(
Xn(t, x)

)
, ηh

n(t, x)
〉]
dt.

Let us prove that ϕn ∈ D
(
L, Cb(H)

)
. Set

Z(t, x) = etAx+
∫ t

0
e(t−s)AB dW (s),

so that

Xn(t, x) = Z(t, x) +
∫ t

0
e(t−s)AC1/2Fn

(
Xn(s, x)

)
ds, t � 0.

For any h > 0 we have

1
h

(
Rhϕn(x) − ϕn(x)

)

=
1
h
�
[
ϕn

(
Z(h, x)

)
− ϕn(x)

]

=
1
h
�

[
ϕn

(
Xn(h, x)−

∫ h

0
e(h−s)AC1/2Fn

(
Xn(s, x)

)
ds

)
− ϕn(x)

]

=
1
h
�
[
ϕn

(
Xn(h, x)

)
− ϕn(x)

]

− 1
h
�

[〈
Dϕn

(
Xn(h, x)

)
,

∫ h

0
e(h−s)AC1/2Fn

(
Xn(s, x)

)
ds

〉]
+ o(h).

As h→ 0 we find that ϕn ∈ D
(
L, Cb(H)

)
and

Lϕn = λϕn − 〈C1/2Fn, Dϕn〉.

If f ∈ C2b (H) we prove, by proceeding in the same way as above, that ϕn ∈
D

(
L, C1b (H)

)
. �
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Lemma 3.4. Let ϕ ∈ D
(
L, C1b (H)

)
. Then ϕ ∈ D(K1) and

(3.7) K1ϕ = Lϕ+ 〈F,C1/2Dϕ〉.

�����. By Proposition 2.6 there exist a 4-sequence (ϕk) ⊂ EA(H) and M > 0
such that

ϕk(x)→ ϕ(x), Dϕk(x)→ Dϕ(x), Lϕk(x)→ Lϕ(x), x ∈ H,

and

|ϕk(x)| + |Dϕk(x)| � M, |Lϕk(x)| � M(1 + |x|2), x ∈ H.

It follows that

K1ϕk(x)→ Lϕ(x) + 〈F (x), C1/2Dϕ(x)〉, x ∈ H,

and

|K1ϕk(x)| � M(1 + |x|2) +M |F (x)|‖C1/2‖.

Now the conclusion follows from (1.2) and the dominated convergence theorem. �

Lemma 3.5. Let f ∈ C1b (H) and λ > 0. Then the solution ϕn to (3.5) belongs

to D(K1) and we have

(3.8) K1ϕn = Lϕn + 〈Fn(x), C1/2Dϕn〉.

�����. By Lemma 3.3 we have ϕn ∈ D
(
L, C1b (H)

)
and by Lemma 3.4 we know

that ϕn ∈ D(K1). Thus the conclusion follows. �

Theorem 3.6. K1 is m-dissipative on L1(H, ν).

�����. Let f ∈ C2b (H) and let ϕn be the solution to (3.5):

λϕn − Lϕn − 〈Fn(x), C1/2Dϕn〉 = f.

Then Lemma 3.5 yields ϕn ∈ D(K1) and

K1ϕn = Lϕn + 〈F (x), C1/2Dϕn〉.
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Therefore

(3.9) λϕn −K1ϕn = f + 〈Fn(x) − F (x), C1/2Dϕn〉.

Taking into account 3.2 we obtain

λ

∫

H

ϕ2n dν +
1
2

∫

H

|C1/2Dϕn|2 dν =
∫

H

fϕn dν +
∫

H

ϕn〈Fn − F,C1/2Dϕn〉dν.

Moreover, in view of 3.6, ‖ϕn‖0 � λ−1‖f‖0,

λ

∫

H

ϕ2n dν +
1
2

∫

H

|C1/2Dϕn|2 dν

� 1
λ
‖f‖20 +

1
λ
‖f‖0

∫

H

|Fn − F | |C1/2Dϕn| dν

� 1
λ
‖f‖20 +

1
4

∫

H

|C1/2Dϕn|2 dν +
4
λ2
‖f‖20

∫

H

|Fn − F |2 dν.

Consequently, there exists a constant M1 independent of n and such that

∫

H

|C1/2Dϕn|2 dν � M1.

It follows that

lim
n→∞

〈Fn(x) − F (x), C1/2Dϕn〉 = 0

in L1(H, ν) and so

lim
n→∞

λϕn −K1ϕn = f.

Therefore the closure of the image of λ − K contains C2b (H) and so it is dense in
L1(H, ν). Now the conclusion follows from a classical result due to Lumer and
Phillips. �

4. Gradient systems

We assume here, in addition to Hypotheses 1 and 2, that A is self-adjoint and
commuting with C. In this case the Ornstein-Uhlenbeck semigroup Rt is symmetric.

We will denote by µ the Gaussian measure NQ of mean 0 and covariance operator Q.
Moreover, we recall that for any ϕ ∈ D(L) and any ψ ∈ W 1,2

C (H,µ) the following

identity holds:

(4.1)
∫

H

Lϕψ dµ = −1
2

∫

H

〈C1/2Dϕ,C1/2Dψ〉dµ.
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We are given a probability measure ν of the form

ν(dx) = �(x)µ(dx),

where � fulfils

Hypothesis 3.
(i) � � 0, � ∈ L1(H,µ) |x|2� ∈ L1(H,µ)
(ii)

√
� ∈W 1,2

C (H,µ) and � ∈W 1,2
C (H,µ).

We notice that under Hypothesis 3 we have

(4.2) C1/2D log � ∈ L2(H, ν;H).

In fact,

∫

H

|C1/2D log �|2 dν =
∫

H

|C1/2D�|2
�

dµ = 4
∫

H

|C1/2D√�|2 dµ.

We set

U = −1
2
log �, F = −C1/2DU = 1

2
C1/2D log �.

We are going to show that Hypothesis 2 is fulfilled.

(i) follows from (4.2) and the assumption |x|2� ∈ L1(H,µ).
(ii) is established by the following Proposition:

Proposition 4.1. Under Hypothesis 3 we have

(4.3)
∫

H

K̊ϕdν = 0, ϕ ∈ EA(H).

�����. We have
∫

H

K̊ϕdν =
∫

H

Lϕ� dµ−
∫

H

〈C1/2DU,C1/2Dϕ〉dν.

However, in view of (4.1) we have

∫

H

Lϕ� dµ = −1
2

∫

H

〈C1/2Dϕ,C1/2D�〉dµ =
∫

H

〈C1/2DU,C1/2Dϕ〉dν,

and the conclusion follows. �
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(iii) follows from the following Proposition:

Proposition 4.2. Under Hypothesis 3, K̊ is symmetric. Moreover,

(4.4)
∫

H

(K̊ϕ)ψ dν = −1
2

∫

H

〈C1/2Dϕ,C1/2Dψ〉dν, ϕ, ψ ∈ EA(H).

�����. For all ϕ, ψ ∈ EA(H) we have

∫

H

(K̊ϕ)ψ dν =
∫

H

Lϕ(ψ�) dµ−
∫

H

〈DU,C1/2Dϕ〉ψ dν.

However, ψ� ∈W 1,2
C (H, ν), and so by (4.1) we have

∫

H

(Lϕ)ψ� dµ = −1
2

∫

H

〈C1/2Dϕ,C1/2Dψ〉dµ− 1
2

∫

H

〈C1/2Dϕ,D log �〉dµ,

and the conclusion follows easily �

Remark 4.3. By Proposition 4.2 it follows that K2 is dissipative in L2(H,µ).
By [6] it follows that Kp is dissipative in Lp(H, ν) for all p � 1.

Finally, to prove (iv) we need suitable approximations for F . To this end it is

convenient to introduce the Sobolev space W 1,2(H, ν), in which Dh, the partial
derivative in the direction eh, is closable.

We need the following integration-by-parts formula.

Proposition 4.4. Assume that Hypotheses 1, 2 and 3 hold. Let ϕ, ψ ∈ EA(H),

h ∈ �. Then we have

(4.5)
∫

H

(Dhϕ)ψ dν = −
∫

H

ϕ(Dhψ) dν +
1
λh

∫

H

xhϕψ dν + 2
∫

H

ϕψ(DhU) dν.

�����. In fact we have
∫

H

(Dhϕ)ψ dν =
∫

H

(Dhϕ)ψ� dµ.

Since ψ� ∈W 1,2(H,µ) we have

∫

H

(Dhϕ)ψ dν −
∫

H

(Dhϕ)ψ� dµ−
∫

H

ϕDh(ψ�) dµ+
1
λh

∫

H

xhϕψ dν,

and the conclusion follows. �
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Proposition 4.4 implies, by standard arguments, that the mapping

D : EA(H) ⊂ L2(H, ν)→ L2(H, ν;H)

is closable; we denote its closure again by D.

Let us define the space W 1,2(H, ν) as the subspace of L2(H, ν) consisting of all
functions ϕ ∈ D(D) such that

∫

H

|Dϕ|2 dν < +∞.

Now, since U ∈ W 1,2(H, ν), there is a sequence (UN ) ⊂ EA(H) such that

UN → U in L2(H, ν), DUN → DU in L2(H, ν;H).

Hence we can apply the previous results.
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