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Abstract. We study the regularizing effect of the noise on differential equations with irreg-
ular coefficients. We present existence and uniqueness theorems for stochastic differential
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1. Introduction

It is well-known that the ordinary differential equation

dx(t)
dt
= b

(
t, x(t)

)

with initial condition x(0) = x0 may have many solutions or may have no solution
at all if b is not Lipschitz continuous. It is also known that for any bounded Borel

function b one can regularize this equation by adding the white noise ε dW (t)/dt to its
right-hand side with any small constant ε �= 0 and d-dimensional Wiener processW .

The work of the first author was partially supported by OTKA T 032932. The work of
the second author was supported by the European TMR program “Harmonic Analysis”,
ERBFHRX-CT97-0159.
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Namely, for any bounded Borel function b : [0,∞) × �
d → �

d , vector x0 ∈ �
d and

d-dimensional Wiener process W , there exists a unique solution of the equation

(1.1)
dX(t)
dt

= b
(
t,X(t)

)
+ ε
dW (t)
dt

, X(0) = x0

for any ε �= 0. This result is proved in [24] for d = 1, and it is generalized in [22] to
arbitrary dimension d � 1 for the stochastic differential equation

(1.2) dX(t) = b
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
dW (t), t � 0, X(0) = x0 ∈ �

d ,

with a bounded Borel function b and a bounded Lipschitz function σ, satisfying a non-
degeneracy condition. In these theorems the existence and uniqueness of the solution

is understood in the following sense. For any given probability space equipped with a
Wiener process W there exists a unique non-anticipative transformation X = F (W )

of the given Wiener process W , which satisfies (1.2). In this case one says that
equation (1.2) has a unique strong solution. We remark that by a recent result

of [2] for equation (1.1), the uniqueness holds also in the class of pathwise solutions,
obtained by solving (1.1) for (almost) every trajectory of W .

Equation (1.2) is often considered in a more general sense. We say that equa-
tion (1.2) has a solution in the wide sense if there exists a probability space (Ω,F , P )
equipped with a Wiener martingale

(
W (t),Ft

)
and anFt-adapted processX(t) such

that equation (1.2) holds. This notion of solution is often called the weak solution
in literature. The existence of a solution in this sense is known from Skorohod [19] if

b and σ are continuous functions of the space variable and satisfy the linear growth
condition. Moreover, the existence of such solutions and their uniqueness in law is

known from Stroock and Varadhan if b is a bounded Borel function and σ is continu-
ous in x, uniformly in t, and satisfies a non-degeneracy condition. By Krylov [9], [11]

one knows that equation (1.2) always admits a weak solution when the coefficients b
and σ are bounded measurable Borel functions and σ is nondegenerate.

In the present paper we are interested in solvability of equation (1.2) when b is lo-
cally unbounded. Such equations arise in stochastic mechanics, and have extensively

been studied in literature (see e.g. [1], [14], [15], [16], [17], [21] and the references
therein). Portenko [18] proves the existence and the uniqueness in law of the weak

solution if b ∈ Lp([0, T ]×�
d) for some p > d+2 and σ is bounded, uniformly Hölder

continuous and non-degenerate. This result is generalized in various directions in

[3], [4], [21].
In this paper we generalize Portenko’s result as follows. We prove the existence

of a weak solution to equation (1.2) when σ is a bounded Borel function, σσ∗ is
strongly elliptic, and b is a Borel function such that

(1.3) |b(t, x)| � K + F (t, x) dt× dx-a.e.
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for some non-negative function F ∈ Ld+1(�+×�
d) and a constantK � 0. Moreover,

if in addition to these assumptions σ is Lipschitz continuous and b ∈ L2d+2loc (�+ ×
�

d ), then we get the existence and uniqueness of a strong solution. We present
these results in Theorem 2.1 below. We derive this theorem from Theorem 2.2, in

which we construct solutions via approximations. We note that this construction
is the same as that used in Krylov [11] to obtain a solution in the wide sense to

equation (1.2) with bounded measurable coefficients. The possibility to adapt this
method to equations with locally unbounded drifts is indicated in [10], where an Lq-

estimate on the distributions of continuous semimartingales is given, see Lemma 3.1
below, which plays a crucial role in the proof of Theorem 2.2. In order to show that

for b ∈ L2d+2 this construction gives a strong solution we first prove the pathwise
uniqueness of the solution by adapting the approach of [22] and [24]. Hence a simple

characterization of the convergence in probability in terms of tne convergence in
distribution implies that the approximations converge in probability to a strong

solution. This method, which is used for example in [7], [8], provides a constructive
counterpart of the well-known result of Yamada and Watanabe, stating that the

existence of a solution in the wide sense and the pathwise uniqueness imply the
existence of a (unique) strong solution.

The paper is organized as follows. In Section 2 we formulate the main results of
the paper. In Section 3 we present the main ingredients of the proofs. In Sections 4

and 5 the result on pathwise uniqueness and Theorem 2.2 are proved. In the last
section we derive Theorem 2.1 from Theorem 2.2.

Finally, let us say a few words about the notation used in this paper. Except

otherwise stated, C will denote a positive constant which may be different from one
occurrence to another, K � 0 and δ ∈ (0, 1) denote some fixed constants. We use
the notation BR for the open ball of radius R centered at the origin in �

d , and |·|
stands for the Hilbert-Schmidt norm either of a vector or a matrix. We denote by σ∗

the transpose of a matrix σ. If F is a function defined on a domain D ⊂ �
d then

‖F‖q denotes the Lq(D)-norm of F . For standard notation from the theory of partial

differential equations we refer to [12]. Unless otherwise stated we use the summation
convention with respect to repeated indices.

2. Main results

We consider the stochastic equation

(2.1) X(t) = X0 +
∫ t

0
b
(
s,X(s)

)
ds+

∫ t

0
σ(s,X(s)) dW (s)
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on a complete probability space (Ω,F , P ) carrying a d1-dimensional Wiener mar-

tingale (Wt,Ft), t � 0. Here X0 is a vector in �
d , b and σ are Borel measurable

functions on [0,∞)× �
d with values in �

d and �
d×d1 , respectively. The stochastic

integral is understood in Itô’s sense.

Definition. An Ft-adapted �d -valued continuous process X = X(t) is called a
solution of equation (2.1) if almost surely equation (2.1) holds for all t � 0. If for
any probability space (Ω,F , P ) equipped with a Wiener martingale (Wt,Ft), t � 0
equation (2.1) has a solution then we say that (2.1) has a strong solution.

We say that equation (2.1) admits a weak solution if there exists a complete

probability space (Ω,F , P ) carrying a d1-dimensional Wiener martingale (W t,F t)
and anF t-adapted �d -valued continuous processX = X(t), such that equation (2.1)

holds P -almost surely for all t � 0 with X and W in place of X and W , respectively.
We say that for equation (2.1) the pathwise uniqueness holds if for any probability

space carrying a d1-dimensional Wiener martingale (Wt,Ft), equation (2.1) cannot
have more than one (strong) solution.

We assume the following conditions.

Assumption 2.1. There exist a constant K � 0 and a non-negative function
F ∈ Ld+1(�+ × �

d ) such that

(2.2) |b(t, x)| � K + F (t, x)

for dt× dx-almost every (t, x) ∈ �+ × �
d .

Assumption 2.2. There exists a constant δ ∈ (0, 1) such that

(2.3) δI � σσ∗(t, x) � δ−1I

for all t � 0, x ∈ �
d , where I is the d× d identity matrix.

Assumption 2.3. For every R there is a constant LR such that

|σ(t, x)− σ(t, y)| � LR|x− y|

for all t � 0, x ∈ �
d , |x| � R, |y| � R.

Remark 2.1. Notice that |σ(t, x)| �
√
d/δ for all t, x by Assumption 2.2.
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Now we formulate the main result of the paper.

Theorem 2.1. Suppose Assumptions 2.1 and 2.2. Then there exists a solution
to equation (2.1) in the wide sense. If in addition to Assumptions 2.1, 2.2, b ∈
L2d+2loc (�+ × �

d) and Assumption 2.3 also holds, then equation (2.1) has a unique

strong solution.

The first statement of this theorem generalizes a result from [18]. The second

statement generalizes an existence and uniqueness theorem from [22].
We will prove Theorem 2.1 by proving a limit theorem for the equation

(2.4) Xn(t) = X0 +
∫ t

0
bn

(
s,Xn(s)

)
ds+

∫ t

0
σn

(
s,Xn(s)

)
dW (s)

as n→∞, where bn and σn are Borel functions satisfying the following conditions.

Assumption 2.4. There exist constants K � 0, δ ∈ (0, 1) and a non-negative
function F ∈ Ld+1(�+ × �

d) such that for all n

|bn(t, x)| � K + F (t, x), δI � σnσ
∗
n(t, x) � δ−1I

for dt× dx-almost every (t, x).

Assumption 2.5.

(2.5) lim
n→∞

σn(t, x) = σ(t, x) and lim
n→∞

bn(t, x) = b(t, x)

for dt× dx-almost every (t, x).

Assumption 2.6. For each n there is a constant Kn and for each n and R there

exists a constant Ln,R such that

|bn(t, x)| � Kn,

|bn(t, z)− bn(t, y)|+ |σn(t, z)− σn(t, y)| � Ln,R|z − y|

for all t � 0 and x, y, z ∈ �
d , |z| � R, |y| � R.

Notice that Assumptions 2.4 and 2.6 ensure the existence of a strong solution Xn

to equation (2.4) by the classical existence and uniqueness theorem of Itô.

Theorem 2.2. If Assumptions 2.4, 2.5 and 2.6 hold then (Xn,W ) is tight in
C([0, T ];�d+d1 ), uniformly in n, for every finite T > 0. If (X ′,W ′) is the limit
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in distribution of a subsequence of (Xn′ ,W ), then there exists a probability space

carrying a Wiener martingale
(
W̃ (t), F̃t

)
and an F̃t-adapted process X̃ such that

(X ′,W ′) and (X̃, W̃ ) have the same joint finite dimensional distributions, and

(2.6) X̃(t) = X0 +
∫ t

0
b
(
s, X̃(s)

)
ds+

∫ t

0
σ
(
s, X̃(s)

)
dW̃ (s)

almost surely for all t � 0. If in addition to the above conditions, b ∈ L2d+2loc (�+×�
d)

and σ satisfies Assumption 2.3, then Xn converges in C([0, T ]) in probability, for

every T > 0, to a random process X , which is a strong solution of (2.1).

The following result states the pathwise uniqueness for the solutions of equa-

tion (2.1), which we will use in the proof of Theorem 2.2.

Theorem 2.3. Assume that b ∈ L2d+2loc (�+ × �
d) and that σ satisfies Assump-

tions 2.2, 2.3. Then for equation (2.1) the pathwise uniqueness holds.

3. Preliminaries

First we invoke an important estimate, Lemma 5.1 from [10], on the distributions

of continuous semimartingales.

Let (Ω,F , P,Ft) be a stochastic basis carrying a continuous �d -valued Ft-local
martingalem = mt, a continuous increasingFt-adapted process A = A(t) and a con-

tinuous �d -valuedFt-adapted stochastic process B = B(t) which has finite variation
on finite intervals. Assume that A(0) = 0, m(0) = B(0) = 0 and d〈m〉(t) 	 dA(t).

Let r(t) and c(t) be non negative progressively measurable stochastic processes such
that

y(t) :=
∫ t

0
r(s) dA(s), ϕ(t) :=

∫ t

0
c(s) dA(s)

are finite almost surely for all t � 0. Set aij(t) := d〈mi,mj〉(t)/(2 dA(t)), X(t) :=
m(t) +B(t) and let τR be the first exit time of X(t) from the ball BR.

Lemma 3.1 [10]. For every p � d, stopping time γ and nonnegative Borel function

f : �+ × �
d → �+ we have

E

∫ γ∧τR

0
e−ϕ(t)

(
c(t)p−dr(t) det a(t)

) 1
p+1 f

(
y(t), X(t)

)
dA(t)

� N(d)(� 2 + � )
d

2(p+1)

(∫ ∞

0

∫

|x|�R

fp+1(t, x) dxdt

) 1
p+1
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where

� := E
∫ γ∧τR

0
e−ϕ(t) tr a(t) dA(t), � := E

∫ γ∧τR

0
e−ϕ(t)|dB(t)|,

and N(d) is a constant depending only on the dimension d.

From this lemma we derive the following estimate for the occupation measure of
the solutions of stochastic integral equations.

Corollary 3.2. Let X(t) be a solution of equation (2.1) under Assumptions 2.1
and 2.2. Then for any Borel function f : �d+1 → �+ and numbers λ > 0, q � d+ 1

we have

(3.1) E

∫ ∞

0
e−λtf

(
t,X(t)

)
dt � N

(∫ ∞

0

∫

�d

f q(t, x) dt dx

)1/q

,

where N is a constant depending only on d, q, λ, δ, K and ‖F‖d+1, from Assump-

tions 2.1 and 2.2.

�����. First notice that by a simple argument from [10] it suffices to show (3.1)
when q = d+1. Indeed, if q > d+1 then by using Hölder’s inequality with conjugate

exponents q/(d+ 1) and q/(q − d− 1) we get

E

∫ ∞

0
e−λtf

(
t,X(t)

)
dt � C

(
E

∫ ∞

0
e−λt

∣∣f
(
t,X(t)

)∣∣q/(d+1)
dt

)(d+1)/q

with some constant C depending only on λ, q and d. Hence for q > d+1 estimate (3.1)
follows from the same estimate for q = d + 1. Notice also that because of the

shift invariance of the Lebesgue measure we may assume that X0 = 0. Applying
Lemma 3.1 with A(t) = t, dB(t) = b

(
t,X(t)

)
dt, dm(t) = σ

(
t,X(t)

)
dW (t), r(t) = 1

and c(t) = λ we get

E

∫ γn∧τR

0
e−λtf

(
t,X(t)

)
dt � 2 1

d+1 δ
−d
d+1N(d)(� 2n + � n )

d
2(d+1)(3.2)

×
(∫ ∞

0

∫

|x|�R

|f(t, x)|d+1 dxdt
) 1
(d+1)
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where

� n = E
∫ γn∧τR

0
e−λt 1

2
|σ|2 dt � d

2δ
E

∫ ∞

0
e−λt dt � d

2λδ
,

�n = E
∫ γn∧τR

0
e−ϕ(t)|dB(t)| = E

∫ γn∧τR

0
e−λt

∣∣b
(
t,X(t)

)∣∣dt,

and

γn := inf

{
t � 0:

∫ t

0

∣∣b
(
s,X(s)

)∣∣ ds � n

}

for integers n > 0. Clearly �n is finite, and we need only to show that �n is bounded
by a constant N depending only on λ, d, δ, K and ‖F‖d+1. By Assumption 2.1 and

Lemma 3.1

�n � K

λ
+ E

∫ γn∧τR

0
e−λtF

(
t,X(t)

)
dt

� K

λ
+N(� 2n + � n )

d
2(d+1) ‖F‖d+1 � K

λ
+N�

d
d+1
n ‖F‖d+1 +N�

d
2d+2
n ‖F‖d+1

with a constant N which is independent of R and n. Hence using the inequality

�
d/(d+1)
n � ε(d+1)/d

�n + ε−d−1 with sufficiently small ε > 0, we get �n � 1
2�n +N

with a constant N = N(λ, d, δ,K, ‖F‖d+1). Hence �n � 2N , and by (3.2)

E

∫ γn∧τR

0
e−λtf

(
t,X(t)

)
dt � N

(∫ ∞

0

∫

|x|�R

|f(t, x)|d+1 dxdt
)1/(d+1)

for all integers n > 0, where N is a constant depending only on λ, d, δ,K, ‖F‖d+1.

Letting here n→∞ and R→∞ we get (3.1) with q = d+ 1 by Fatou’s lemma. �

The following lemma generalizes Krylov’s extension of Itô’s formula from [11]. To

formulate it we recall that for a bounded domain D ⊂ �
d and a number q � 1

the Sobolev space W 1,2
q

(
(0, T ) × D

)
is defined as the Banach space of functions

u : (0, T )×D → � whose generalized derivatives Dα
t D

β
xu are in L

q
(
(0, T )×D

)
for

all multi-indices (α, β) such that 2α+ |β| := 2α+
d∑

i=1
βi � 2. We use the notation

‖u‖W 1,2
q
:=

∑

2α+|β|�2
‖Dα

t D
β
xu‖q

for the norm of u in W 1,2
q

(
(0, T )×D

)
, where ‖v‖q denotes the Lq norm of v. (See,

e.g., [12].)
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Lemma 3.3. Assume Assumptions 2.1 and 2.2. Let X(t) be a solution to equa-
tion (2.1), and let R > 0 be such that X0 ∈ BR. Then for any u : [0, T ]× �

d −→ �

from the Sobolev space W 1,2
q

(
(0, T )×BR

)
, q > d+ 2 we have

u
(
t,X(t)

)
= u(0, X0) +

∫ t

0
ut

(
s,X(s)

)
ds(3.3)

+
∫ t

0

[
bi

(
s,X(s)

)
uxi

(
s,X(s)

)

+ 12 (σσ
∗)ij

(
s,X(s)

)
uxixj

(
s,X(s)

)]
ds

+
∫ t

0
uxi

(
s,X(s)

)
σij

(
s,X(s)

)
dW j(s)

almost surely for t � T ∧ τR, where τR is the exit time of X from the ball BR.

�����. By making use of Corollary 3.2 we can prove this lemma in the same

way as Theorem 2.10.1 in [11] is proved. For the convenience of the reader we give
the details of the proof. First we show that each integral in (3.3) is well-defined. To

this end we note that by Sobolev’s embedding there exists a constant N such that

sup
t∈[0,T ]

sup
x∈BR

(
|u(t, x)|+

∑

i

|uxi(t, x)|
)

� N‖u‖W 1,2
q

for all u ∈W 1,2
q

(
[0, T ]×BR

)
, q > d+ 2. (See, e.g., Lemma II.3.3 in [12].) Hence

(3.4) E

∫ τR∧T

0
σ2ij

(
s,X(s)

)(
uxi

(
s,X(s)

))2
ds � K2T ‖u‖2

W 1,2
q

by the boundedness of σ, and

E

∫ T∧τR

0

∣∣bi
(
s,X(s)

)
uxi(s,Xs)

∣∣ds(3.5)

� C‖u‖W 1,2
q

(
E

∫ T∧τR

0
F (s,Xs) ds+KT

)

� C‖u‖W 1,2
q
(NeT ‖F‖Lq +KT )

by Assumption 2.1 and Corollary 3.2. Moreover,

E

∫ T∧τR

0

∣∣ut

(
s,X(s)

)∣∣ ds � NeT ‖ut‖Lq � NeT ‖u‖W 1,2
q
,(3.6)

E

∫ T∧τR

0

∣∣(σσ∗)ij
(
s,X(s)

)
uxixj

(
s,X(s)

)∣∣ds(3.7)

� K2E

∫ T∧τR

0

∣∣uxixj

(
s,X(s)

)∣∣ds � K2NeT ‖uxixj‖Lq � K2NeT ‖u‖W 1,2
q
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by Assumptions 2.1, 2.2 and Corollary 3.2. Consequently, the right-hand side of

formula (3.3) is well-defined for t � T ∧ τR.
For u ∈ W 1,2

q

(
(0, T ) × BR

)
there exists a sequence of functions u(n) from

C1,2
(
(0, T ) × �

d
)
such that u(n) → u in the norm of W 1,2

q

(
(0, T ) × BR

)
and

also for almost every (t, x) ∈ (0, T )×BR. By Itô’s formula we have

u(n)
(
t ∧ γ,X(t ∧ γ)

)
= u(n)(0, X0)(3.8)

+
∫ t∧γ

0
u(n)xi

(
s,X(s)

)
σij

(
s,X(s)

)
dW j(s) +

∫ t∧γ

0
u
(n)
t

(
s,X(s)

)
ds

+
∫ t∧γ

0

[
bi

(
s,X(s)

)
u(n)xi
(s,Xs) +

1
2
(σσ∗)ij

(
s,X(s)

)
u(n)xixj

(
s,X(s)

)]
ds

for all t � 0, where γ := T ∧ τR. Notice that inequalities (3.4), (3.5), (3.6) and (3.7)

hold also with u−u(n) in place of u, with constants independent of n. Hence letting
n→∞ in (3.8) we obtain (3.3). �

In the proof of the pathwise uniqueness we will adapt the method of transformation
of the phase space (see [24]). To this end we consider the system of partial differential

equations

(3.9) uk
t (t, x) + a

ij(t, x)uk
xixj (t, x) + bi(t, x)uk

xi(t, x) = 0, k = 1, 2, . . . , d

in the domain {(t, x) ∈ [0, T ]× �
d}, with a boundary condition

(3.10) u(T, x) = x, x ∈ �
d

for a function u = (uk) : [0, T ] × �
d → �

d , where aij = 1
2σ

ikσjk, b = (bi) and

σ = (σij) are the drift and diffusion coefficients in equation (2.1).

Lemma 3.4. Assume that b ∈ L2d+2(�+ × �
d) and that σ satisfies As-

sumptions 2.2 and 2.3. Then Problem (3.9)–(3.10) has a solution such that

u ∈ W 1,2
2d+2

(
(0, T ) × BR

)
for every R > 0. Moreover, if T = T0 is a sufficiently

small positive number, then there exists a constant N such that

|u(t, x)− u(t, y)| � N |x− y|

for all t ∈ [0, T0] and x, y ∈ �
d .

�����. One can get the existence of the solution u ∈ W 1,2
2d+2

(
(0, T )× BR

)
for

every R > 0 by Theorem IV.9.1 from [12], in which the condition on the continuity
of a(t, x) := 1

2σσ
∗(t, x) in (t, x) can be relaxed by using the method of [23]. Hence
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in the same way as in [24] one can show that ux = (uk
xi) is Hölder continuous in

(t, x) ∈ [0, T ]× �
d . In particular, there exist constants κ > 0, α ∈ (0, 1) such that

|ux(s, y)− ux(t, y)| � κ|s− t|α

for all s, t ∈ [0, T ], y ∈ �
d . Hence, noticing that ux(T, x) = I, we have

|u(t, x)− u(t, y)| =
∣∣∣∣
∫ 1

0
ux

(
t, λx+ (1− λ)y

)
(x− y) dλ

∣∣∣∣

� |x− y|
(
1−

∫ 1

0

∣∣ux(t, λx + (1− λ)y
)
− ux

(
T, λx+ (1− λ)y

)∣∣dλ
)

� |x− y|
(
1−

∫ 1

0
κ|T − t|α dλ

)

� |x− y|(1− κTα).

We can complete the proof by choosing T := T0 > 0 such that κTα
0 < 1. �

We will make use of the following generalization of Gronwall’s lemma. Its proof
can be found, for example, in [6].

Lemma 3.5. Let Z(t) be an Ft-adapted continuous process such that

0 � Z(t) �
∫ t

0
Z(s) dA(s) +M(t)

for all t � 0, where A(t) is a continuous Ft-adapted increasing process and(
M(t),Ft

)
is a continuous local martingale such that M(0) = A(0) = 0. Then

Z(t) = 0 (a.s.) for all t � 0.

4. Pathwise uniqueness

Let X0 and X1 be solutions of equation (2.1) on the same probability space with
the same Wiener-martingale. By considering the processes X0(t) −X0, X1(t)−X0

and the coefficients b(·, X0+ ·), σ(·, X0+ ·) in place of X0(t), X1(t) and b(·, ·), σ(·, ·),
respectively, we may assume that X0(0) = X1(0) = 0. Define for fixed ε > 0 and

R > 0 the stopping times

τR = inf{t � 0: |X0(t)|+ |X1(t)| > R},
τε = inf{t � 0: |X0(t)−X1(t)| > ε},
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and set τR
ε := τR ∧ τε for ε = δ/(2LR

√
d/δ), where δ and LR are from Remark 2.1

and Assumption 2.3. Note that by Corollary 3.2

(4.1) E

∫ T∧τR

0
e−λtf

(
t,X i(t)

)
dt � N‖f‖Lq((0,T )×BR

, i = 0, 1

for q � d + 1, for any T > 0 and any non-negative Borel function f , where N is a
constant depending on d, q, λ, δ, K and ‖F‖d+1.

Set Xα(t) = αX1(t) + (1 − α)X0(t) for α ∈ [0, 1], t � 0. Then by the following
lemma, estimate (4.1) holds also for Xα, with τR

ε in place of τ
R.

Lemma 4.1. For any Borel function f : �+ × �
d → �+ , constants q � d + 1,

λ > 0 and T > 0 we have

(4.2) E

∫ τR
ε ∧T

0
e−λtf

(
t,Xα(t)

)
dt � N‖f‖Lq((0,T )×BR)

for all α ∈ [0, 1], where N is a constant depending only on d, q, λ, δ, K and ‖F‖d+1.

�����. Clearly

Xα(t) = X0 +
∫ t

0
bα(s) ds+

∫ t

0
σα(s) dW (s),

where

bα(t) = αb
(
t,X1(t)

)
+ (1− α)b

(
t,X0(t)

)
,

σα(t) = ασ
(
t,X1(t)

)
+ (1 − α)σ

(
t,X0(t)

)
.

For every z ∈ �
d we have

z∗σασ
∗
α(t)z = α

2z∗σσ∗
(
t,X1(t)

)
z + (1 − α)2z∗σσ∗

(
t,X0(t)

)
z

+ 2α(1− α)z∗
[
σ
(
t,X1(t)

)
σ∗

(
t,X0(t)

)]
z

� δ|z|2 + 2α(1− α)z∗
[[
σ
(
t,X1(t)

)
− σ

(
t,X0(t)

)]
σ∗

(
t,X0(t)

)]
z

for all t, ω. By Remark 2.1 and Assumption 2.3

∣∣z∗
[
σ
(
t,X1(t)

)
− σ

(
t,X0(t)

)]
σ∗

(
t,X0(t)

)
z
∣∣

� LR

√
d/δ|X1(t)−X0(t)| |z|2 � δ

2
|z|2
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for t � τR
ε and for all z. Hence a(t) :=

1
2σασ

∗
α(t) � δ

4I for all t � τR
ε . Applying

Lemma 3.1 with r(t) = 1, c(t) = λ, A(t) = t, dB(t) = bα(t) dt, dM(t) = σα(t) dW (t)
we have

E

∫ T∧τR
ε

0
e−λtf

(
t,Xα(t)

)
dt � λ(d+1−q)/q

(4
δ

)d/q

N(d)(� 2 + � )d/2q‖f‖Lq((0,T )×BR),

where

� := E
∫ T∧τR

ε

0
e−λt tr a(t) dt = E

∫ T∧τR
ε

0
e−λt 1

2 |σα|2 dt � d

2δλ
,

and

� := E
∫ T∧τR

ε

0
e−λt|bα(s)| ds

� αE

∫ T∧τR

0
e−λt

∣∣b
(
t,X1(t)

)∣∣ dt+ (1− α)E
∫ T∧τR

0
e−λt

∣∣b
(
t,X0(t)

)∣∣ dt

� K

λ
+N‖F‖Ld+1((0,T )×BR)

by |σα|2 � d/δ and by estimate (4.1). �

����� of Theorem 2.3. For fixed R let bR denote the function which is equal
to b in the ball BR and to 0 elsewhere. Take T0 > 0 and the function u from

Lemma 3.4 with bR in place of b. Then by Lemma 3.4

|X1(t)−X0(t)| � N
∣∣u

(
t,X1(t)

)
− u

(
t,X0(t)

)∣∣,

and by Itô’s formula (Lemma 3.3)

duk
(
t,X i(t)

)
= uk

xj

(
t,X i(t)

)
σjl

(
t,X i(t)

)
dW l(t), i = 0, 1

for t ∈ (0, T0 ∧ τR]. Hence by Itô’s formula for
∣∣u

(
t,X1(t)

)
− u

(
t,X0(t)

)∣∣2 we get

|X1(t ∧ γ)−X0(t ∧ γ)|2 � N2
∫ t∧γ

0

∑

k

∣∣σ∗uk
x

(
s,X1(s)

)
− σ∗uk

x

(
s,X0(s)

)∣∣2 ds

+ 2N2
∫ t∧γ

0

[
uk

(
s,X1(s)

)
− uk

(
s,X0(s)

)]

×
[
σiju

k
xi

(
s,X1(s)

)
− σiju

k
xi

(
s,X0(s)

)]
dW j(s)

for all t � 0, where γ := τR ∧ τε ∧ T0. Since u ∈ W 1,2
2d+2(D) with D = (0, T0)×BR,

sup
t∈[0,T0]

sup
x∈BR

|ux(t, x)| <∞
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by Lemma II.3.3 from [12]. Hence by the boundedness and Lipschitz continuity of σ

∣∣σ∗uk
x

(
s,X1(s)

)
− σ∗uk

x

(
s,X0(s)

)∣∣2

� C
∣∣σ∗

(
s,X1(s)

)
− σ∗

(
s,X0(s)

)∣∣2∣∣uk
x

(
s,X1(s)

)∣∣2

+ C
∣∣σ∗

(
s,X0(s)

)∣∣2∣∣uk
x

(
s,X1(s)

)
− uk

x

(
s,X0(s)

)∣∣2

� C|X1(s)−X0(s)|2

+ C
∑

i

∣∣∣∣
〈
X1(s)−X0(s),

∫ 1

0
∇xu

k
x

(
s, αX1(s) + (1− α)X0(s)

)
dα

〉∣∣∣∣
2

.

Consequently,

|X1(t ∧ γ)−X0(t ∧ γ)|2 �
∫ t

0
|X1(s ∧ γ)−X0(s ∧ γ)|2 dA(s) +M(t),

where M(t) is a continuous martingale and

A(t) := C
∫ t∧τ

0

[∑

k,i,j

∫ 1

0

∣∣uk
xixj

(
s, Zα(s)

)∣∣2 dα+ 1
]
ds

with

Zα(s) := αX1(s) + (1− α)X0(s).

By Lemma 4.1 we have

E

∫ t∧γ

0

∫ 1

0

∣∣∇xu
k
xi

(
s, Zα(s)

)∣∣2 dα ds

� C
d∑

j=1

∫ 1

0
‖ |uk

xixj |2‖Ld+1(D) dα � C‖u‖W 1,2
2d+2(D)

<∞,

which implies that almost surely A(t) <∞ for all t > 0. Therefore Z(t) := |X1(t ∧
γ) − X0(t ∧ γ)|2 = 0 by Lemma 3.5, and we have X1(t) = X0(t) for t � γ. Hence

X1(t) = X0(t) for t � T0 ∧ τR by the definition of τε. Since R can be as large as we
want, X1(t) = X0(t) for t � T0. Hence we get X1(t) = X0(t) for all t � 0 by the
standard argument of shifting the time.
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5. Proof of Theorem 2.2

We adapt the method of the proof of Theorem 6.1 from [11]. First we need two

lemmas due to Skorohod. For their proof we refer to [19].

Lemma 5.1. Let {ψn}∞n=1 be a sequence of d-dimensional processes defined on
some probability space. Assume that for each T � 0,

lim
c→∞

sup
n
sup
t�T

P (|ψn(t)| > c) = 0,(5.1)

lim
θ↓0
sup

n
sup
t,s

{
P

(
|ψn(t)− ψn(s)| > ε

)
: t, s � T, |t− s| � θ

}
= 0(5.2)

for every ε > 0. Then there exist a sequence {nk}∞k=1, a probability space and
random processes X , Xk (k � 1), such that the finite dimensional distributions of
the processes ψnk

(t) and Xk(t) coincide, and Xk(t) converges to X(t) in probability
for every t � 0.

Lemma 5.2. Let {ηn}∞n=1, η(t) be uniformly bounded �
d×k -valued random

processes and let Wn, W be Wiener processes such that the stochastic Itô inte-

grals In(t) =
∫ t

0 ηn(s) dWn(s) and I(t) =
∫ t

0 η(s) dW (s) are well-defined. Assume

that ηn(t)→ η(t) and Wn(t)→W (t) in probability for every t � 0. Then

lim
n→∞

P
(
sup

t∈[0,T ]
|In(t)− I(t)| � ε

)
= 0

for every ε > 0 and T > 0.

We show now that the processes (Xn,W ) satisfy the assumptions of Lemma 5.1.

Obviously we need to verify the assumptions only for Xn. To this end notice that
estimate (3.1) of Corollary 3.2 holds for the process Xn with the same constant N

for all n, due to Assumption 2.4. Hence by using the Davis inequality we obtain

E|Xn(t)| � |X0|+ E sup
s�T

∣∣∣∣
∫ s

0
σn

(
u,Xn(u)

)
dW (u)

∣∣∣∣+ E
∫ T

0

∣∣bn
(
s,Xn(s)

)∣∣ds

� |X0|+ 3E
(∫ T

0

∣∣σn

(
s,Xn(s)

)∣∣2 ds
)1/2

+ eTN‖F‖d+1 +KT

� L,

where ‖F‖d+1 is the Ld+1([0, T ]×�
d)-norm of F and L is a constant which does not

depend on n and t for t � T . By Chebyshev’s inequality

sup
t�T

P (|Xn(t)| � C) � 1
C
sup
t�T

E(|Xn(t)|) � L

C
,
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which implies (5.1). Similarly, for 0 � s � t � T we have

E|Xn(t)−Xn(s)| � E

∣∣∣∣
∫ t

s

σn

(
u,Xn(u)) dW (u)

∣∣∣∣+ E
∫ t

s

∣∣bn
(
u,Xn(u)

)∣∣du

� 3E
(∫ t

s

∣∣σn

(
u,Xn(u)

)∣∣2 du
) 1
2

+ E
∫ t

s

F
(
u,Xn(u)

)
du+K(t− s)

� 3K|t− s|1/2 +NeT
(∫ t

s

∫

�d

|F (u, x)|d+1 dxdu
) 1

d+1

+K|t− s|.

Hence by Chebyshev’s inequality we obtain (5.2), since

lim
ϑ→0
sup

{∫ t

s

∫

�d

|F (u, x)|d+1 dxdu : s � t � T, |t− s| � ϑ

}
= 0

due to ‖F‖d+1 < ∞. By virtue of Lemma 5.1 we have a subsequence of (Xn,W ),

which we keep denoting by (Xn,W ), a sequence of random processes (X̃n, W̃n) and
a process (X̃, W̃ ) such that the finite dimensional distributions of (X̃n, W̃n) and

(Xn,W ) coincide, and lim
n→∞

X̃n(t) = X̃(t), lim
n→∞

W̃n(t) = W̃ (t) in probability for

every t � 0. Define F̃n
t as the completion of the σ-algebra generated by the random

variables {X̃n(s), W̃n(s); s � t}. Obviously, X̃n(t) is F̃n
t -adapted and since it is

stochastically continuous, we may assume that it is a separable process. Clearly W̃n

is a Wiener process and F̃n
t is independent of the increments of W̃n after time t.

Thus,
(
W̃n(t), F̃n

t

)
is a Wiener martingale. Consequently, the stochastic integral∫ t

0 σn(s, X̃n(s)) dW̃n(s) is well-defined. It is not difficult to show that

(5.3) X̃n(t) = X0 +
∫ t

0
bn

(
s, X̃n(s)

)
ds+

∫ t

0
σn

(
s, X̃n(s)

)
dW̃n(s)

for every t � 0, since the finite dimensional distributions of (Xn,W ) and (X̃n, W̃n)
are the same and Xn satisfies equation (2.4). Now we are going to take the limit

n → ∞ in equation (5.3). Let us fix T > 0 and consider t ∈ [0, T ]. First we show
how to take the limit in the drift term. Fix an index n0 and set

I1(t) =
∫ t

0

∣∣bn
(
s, X̃n(s)

)
− bn0

(
s, X̃n(s)

)∣∣ds,

I2(t) =
∫ t

0

∣∣bn0
(
s, X̃n(s)

)
− bn0

(
s, X̃(s)

)∣∣ds,

I3(t) =
∫ t

0

∣∣bn0
(
s, X̃(s)

)
− b

(
s, X̃(s)

)∣∣ ds.
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Let ϕ be a continuous function such that ϕ(t, x) = 1 for |(t, x)| � 1/2, ϕ(t, x) = 0
for |(t, x)| � 1 and 0 � ϕ(t, x) � 1 elsewhere. Then by Chebyshev’s inequality and
Corollary 3.2,

P

(
sup
t�T

I1(t) � ε

3

)

� 3
ε
E

∫ T

0
ϕ
( s
R
,
X̃n(s)
R

)∣∣(bn − bn0)
(
s, X̃n(s)

)∣∣ds

+
3
ε
E

∫ T

0

(
1− ϕ

( s
R
,
X̃n(s)
R

))∣∣(bn − bn0)
(
s, X̃n(s)

)∣∣ds

� 3
ε
NeT

∥∥χ[0,T ]×BR
|bn − bn0 |Ld+1

∥∥

+
6K
ε
E

∫ T

0

(
1− ϕ

( s
R
,
X̃n(s)
R

))
ds+

6NeT

ε
‖χBc

R/2
F‖Ld+1,

where Bc
R/2 =

{
(t, x) ∈ �

d+1 : |(t, x)| > R/2
}
. Hence by Lebesgue’s theorem on

dominated convergence

lim sup
n→∞

P
(
sup
t�T

I1(t) � ε

3

)
� 3Ne

T

ε

∥∥χ(0,T )×BR
|b− bn0 |

∥∥
Ld+1(5.4)

+
6K
ε
E

∫ T

0

(
1− ϕ

( s
R
,
X̃(s)
R

))
ds+

6NeT

ε
‖χBc

R/2
F‖Ld+1.

By Chebyshev’s inequality and by Lebesgue’s theorem on dominated convergence

lim
n→∞

P
(
sup
t�T

I2(t) � ε

3

)
� lim

n→∞
3
ε
E

∫ T

0

∣∣bn0
(
s, X̃n(s)

)
− bn0

(
s, X̃(s)

)∣∣ds = 0

since bn0 is bounded and continuous. To treat the term I3(t) we first observe that
the estimate in Corollary 3.2 holds also for the process X̃(t). Therefore we obtain

inequality (5.4) with I3 in place of I1 in the same way as we got it for I1. Hence

lim sup
n→∞

P

(
sup
t�T

∫ t

0

∣∣bn
(
s, X̃n(s)

)
− b

(
s, X̃(s)

)∣∣ ds � ε

)

�
3∑

i=1

P
(
sup
t�T

Ii(t) �
ε

3

)

� 6Ne
T

ε

∥∥χ(0,T )×BR
|b− bn0 |

∥∥
Ld+1 +

12K
ε

E

∫ T

0

(
1− ϕ

( s
R
,
X̃(s)
R

))
ds

+
12NeT

ε
‖χBc

R/2
F‖Ld+1
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for any index n0 and R > 0. Letting here first n0 → ∞ and then R → ∞, we get
that ∫ t

0
bn

(
s, X̃n(s)

)
ds −→

∫ t

0
b
(
s, X̃(s)

)
ds

in probability, uniformly in t ∈ [0, T ]. We consider now the diffusion term in equa-
tion (5.3). Like in the case of the drift term, define

I1(t) =
∫ t

0
σn

(
s, X̃n(s)

)
dW̃n(s)−

∫ t

0
σn0

(
s, X̃n(s)

)
dW̃n(s),

I2(t) =
∫ t

0
σn0

(
s, X̃n(s)

)
dW̃n(s)−

∫ t

0
σn0

(
s, X̃(s)

)
dW̃ (s),

I3(t) =
∫ t

0
σn0

(
s, X̃(s)

)
dW̃ (s)−

∫ t

0
σ
(
s, X̃(s)

)
dW̃ (s)

for an index n0. Similarly as before, by using Chebyshev’s and Davis’ inequalities
we have

lim
n→∞

P
(
sup
t�T

|I1(t)| �
ε

3

)
+ P

(
sup
t�T

|I3(t)| �
ε

3

)

� 18
ε
(NeT

∥∥χ(0,T )×BR
|σ − σn0 |2

∥∥
Lp

+ 4K2E
∫ T

0

(
1− ϕ

( s
R
,
X̃(s)
R

))
ds

)1/2

for any n0 and R. Letting here first n0 →∞ and then R→∞, we see that I1(t) and
I3(t) converge to zero in probability, uniformly in t ∈ [0, T ]. By using Lemma 5.2
with

ηn(t) := σn0

(
t, X̃n(t)

)
, η(t) := σn0

(
t, X̃(t)

)

we get ∫ t

0
σn0

(
s, X̃n(s)

)
dW̃n(s)→

∫ t

0
σn0

(
s, X̃(s)

)
dW̃ (s)

in probability, uniformly in t ∈ [0, T ] for every fixed n0. Hence
∫ t

0
σn

(
s, X̃n(s)

)
dW̃n(s)→

∫ t

0
σ
(
s, X̃(s)

)
dW̃ (s)

in probability, uniformly in t ∈ [0, T ]. Consequently, letting t→∞ in equation (5.3)
we get

(5.5) X̃(t) = X0 +
∫ t

0
b
(
s, X̃(s)

)
ds+

∫ t

0
σ
(
s, X̃(s)

)
dW̃ (s)
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for every t � 0. We have proved that the right-hand side of equation (5.3) converges
to the right-hand side of equation (5.5) in C([0, T ];�d), in probability, for every
T > 0. Therefore X̃n converges also in this sense. Thus we have proved the first
statement of Theorem 2.2. To prove the rest it remains to show that Xn converges

in C([0, T ];�d) in probability, if b ∈ L2d+2loc (�+ × �
d ). We show this by using the

following simple observation (see [7]).

Lemma 5.3. Let Zn be a sequence of random elements in a Polish space (S, �)

equipped with the Borel σ-algebra. Then Zn converges in probability to an S-valued

random element if and only if for every pair of subsequences Zl and Zm there exists

a subsequence vk = (Zl(k), Zm(k)) converging in distribution to a random element v

supported on the diagonal {(x, y) ∈ S × S : x = y}.

We have already proved that every pair of subsequences Xl and Xm is a tight se-
quence in C([0, T ];�2d). Hence (Xl, Xm,W ) is a tight sequence in C([0, T ];�2d+d1 ),

and by the Skorohod representation theorem there exists a subsequence (Xl(k),

Xm(k),W ) of it and a ‘copy’ of this subsequence (X̃l(k), X̃m(k), W̃k), on some prob-

ability space, such that their distributions coincide, and X̃l(k) → X̃1, X̃m(k) → X̃2,
W̃k → W̃ in C([0, T ]), in probability. Hence, as we have already seen,

X̃ i(t) = X0 +
∫ t

0
b
(
s, X̃ i(s)

)
ds+

∫ t

0
σ
(
s, X̃ i(s)

)
dW̃ (s)

follows for i = 1, 2. Consequently, X̃1(t) = X̃2(t) almost surely for all t ∈ [0, T ]
by Theorem 2.3 on the pathwise uniqueness. Hence by virtue of Lemma 5.3, Xn

converges in C([0, T ];�d) in probability for every T > 0 to a process X which
solves (2.1).

6. Proof of Theorem 2.1

Let � = �(t, x) be a smooth non-negative mollifier supported in the unit ball. We
set a(t, x) := σσ∗ for t � 0, and b(t, x) := 0, a(t, x) := δI for t < 0. We define

(6.1) an(t, x) = (a ∗ �n)(t, x), σn = a1/2n , bn(t, x) = (b ∗ �n)(t, x)

for every integer n � 1, where �n(t, x) := nd+1�(ns, nx) and ∗ stands for the convo-
lution. Then an and bn are smooth bounded functions such that

lim
n→∞

σn(t, x) = (σσ∗)1/2(t, x) := σ̃(t, x), lim
n→∞

bn(t, x) = b(t, x)
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almost everywhere with respect to the Lebesgue measure, and

δ−1I � σnσ
∗
n(t, x) � δI

for all t, x. Moreover, we can choose a subsequence from bn which satisfies Assump-

tion 2.4. Namely, take nk such that

‖F − F ∗ �nk
‖d+1 � 2−k.

Then |bnk
(t, x)| � K +G(t, x) with

G :=
∞∑

k=1

|F − F ∗ �nk
|+ F,

and clearly ‖G‖d+1 � 1 + ‖F‖d+1. We get the first statement of Theorem 2.1 from
Theorem 2.2 by considering the sequence {bnk

}∞k=1 and {σnk
}∞k=1 in place of {bn}

and {σn}. In fact a direct application of Theorem 2.2 shows the existence of a
weak solution of equation (2.1) with σ̃ in place of σ. Notice, however, that σσ∗ =

σ̃σ̃∗. Then it is well-known and easy to show (see, e.g., Lemma 10.4 from [13]) that
equation (2.1) with the given diffusion coefficient σ has a weak solution. We obtain

the second statement of Theorem 2.1 from Theorem 2.2 by taking the sequences
{bnk

}∞k=1 and {σk = σ}∞k=1 in place of {bn} and {σn}.
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