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Abstract. Second centralizers of partial transformations on a finite set are determined. In
particular, it is shown that the second centralizer of any partial transformation α consists
of partial transformations that are locally powers of α.
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1. Introduction

The semigroup PTn of partial transformations on the set X = {1, . . . , n} consists
of the functions whose domain and range are included in X , with composition as the
semigroup operation. For α ∈ PTn, the sets

C(α) = {γ ∈ PTn : α ◦ γ = γ ◦ α} and
C2(α) = {β ∈ PTn : γ ◦ β = β ◦ γ for each γ ∈ C(α)}

are subsemigroups of PTn, called the (first) centralizer of α and the second centralizer
of α, respectively. Note that C2(α) ⊆ C(α).
The purpose of this paper is to determine the second centralizers in PTn. The

second centralizers in the semigroup Tn of full transformations on the set X are
described in [7].
Obviously, every power αt (t � 0) of α ∈ PTn is an element of C2(α). If α is

not a nilpotent, then {αt : t � 0} is a proper subset of C2(α) since the zero (empty)
transformation is in C2(α) \ {αt : t � 0}. Thus, in general, C2(α) does not consist
of just the powers of α. We show, however, that the elements of C2(α) are locally
powers of α.
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More specifically, every α ∈ PTn induces a partition {N, A1, . . . , Am} of the set
X = {1, . . . , n}. (A1, . . . , Am correspond to the weakly connected components con-
taining a cycle in the digraph representation of α; N corresponds to the subgraph of
the digraph representation obtained by removing all such components.)
Suppose that β ∈ C2(α). We show that β restricted to N is equal to αt restricted

to N for some t � 0. Similarly, β restricted to Ai (i = 1, . . . , m) is either 0 or is equal
to αti restricted to Ai for some ti � 0. These necessary conditions are not sufficient
for β to be in C2(α). In addition, the exponents t, t1, . . . , tm must be related in
a certain way. We prove that the “local powers” requirement together with these
relations completely determine C2(α).

2. First centralizers

This section introduces the terminology used throughout the paper and describes
the first centralizers of partial transformations. Centralizers in PTn have been stud-
ied in [3], [4], [5] and [6].
Let α ∈ PTn. The domain and range of α will be denoted by domα and ranα,

respectively. If β ∈ PTn is such that xα = xβ whenever x ∈ domα∩dom β, we define
the join αβ of α and β as the partial transformation with dom(αβ) = domα∪domβ

that coincides with α on domα and with β on domβ. Note that the join αβ (which,
if defined, is simply the union of α and β) is distinct from the product (composition)
α ◦ β.
For k � 1, let i1, i2, . . . , ik be distinct elements of X such that i1α = i2, i2α =

i3, . . ., ik−1α = ik. Then α restricted to the set {i1, . . . , ik−1} is called a chain in α

of length k (or a k-chain in α) and denoted (i1i2 . . . ik]. (Note that if k = 1, then
(i1] is the zero transformation.) If, in addition, ikα = i1 then α restricted to the set
{i1, i2, . . . , ik} is called a circuit in α of length k (or a k-circuit in α) and denoted
(i1i2 . . . ik).
Let η = (i1 . . . ik] be a chain in α. The set {i1, . . . , ik} is called the span of η and

denoted span η. If i1 /∈ ranα and ik /∈ domα, we say that η is a maximal chain in α.
Note that (i1] is a maximal chain in α if and only if i1 /∈ domα ∪ ranα.
If η = (i1 . . . iuxr] is a chain in α and � = (x0 . . . xk−1) is a circuit in α (u, k � 1)

such that i1 /∈ ranα and {i1, . . . , iu, xr} ∩ {x0, . . . , xk−1} = {xr}, we say that η is a
cilium attached to � at xr. To distinguish cilia from maximal chains, we will use the
right angle “〉” for the former and the right bracket “]” for the latter. If η1, . . . , ηs

are the cilia in α attached to �, then the join λ = η1 . . . ηs� is called a cell in α. Note
that an isolated circuit (with no cilia) also forms a cell.
Every partial transformation α ∈ PTn is a join

(1) η1 . . . ηkλ1 . . . λm
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of its maximal chains η1, . . . , ηk and its cells λ1, . . . , λm. Join (1) is called the chain-
cell decomposition of α.
If G is the digraph representation of α, then the maximal chains in α correspond

to the simple maximal paths in G, and the cells in α correspond to the weakly
connected components of G containing a cycle. For example, the transformation

α =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 − 5 6 − 6 9 10 11 13 10 11 13 15 −

)
∈ PT16

has the digraph representation
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and the chain-cell decomposition

α = (1 2 3]︸ ︷︷ ︸
η1

(4 5 6]︸ ︷︷ ︸
η2

(7 6]︸ ︷︷ ︸
η3

(16]︸︷︷︸
η4

(8 9 10 11〉(12 10 11〉(14 13〉(11 13)︸ ︷︷ ︸
λ1

(15)︸︷︷︸
λ2

.

If α is a full transformation on X , then there are no maximal chains in α and so
α = λ1 . . . λm is a join of its cells. (For applications of the digraph representation of
full transformations on X , see [2] and [1, 6.2].) If α is a permutation on X , then α

is a join of its circuits.
Let α, γ ∈ PTn. Suppose that η = (i1 . . . iu] is a chain in α and � = (x0 . . . xk−1)

is a circuit in α. If dom γ ∩ span η �= ∅, we say that γ meets η. Similarly, if
dom γ ∩ dom � �= ∅, we say that γ meets �. If ξ = (j1 . . . ju] is a chain in α such that
i1γ = j1, . . . , iuγ = ju, we say that γ maps η onto ξ.
The first centralizers in PTn are characterized in [4, Theorem 4] (also see [5, 58.8]).

Theorem 1. Let α, γ ∈ PTn. Then γ ∈ C(α) if and only if for every maximal
chain η = (i1 . . . iu] in α, every circuit � = (x0 . . . xk−1) in α, and every cilium
ξ = (j1 . . . jvxr〉 in α attached to �, the following conditions are satisfied:
(1) If γ meets η, then there is a maximal chain τ = (k1 . . . kw] in α such that γ maps
an initial segment (i1 . . . ip] of η (p � u) onto a terminal segment (kw−p+1 . . . kw]
of τ and γ does not meet (ip+1 . . . iu];

(2) If γ meets �, then there is a circuit δ = (y0 . . . ym−1) in α such that m divides k,
γ maps the points x0, x1, . . . , xk−1 of dom� to ys, ysα, . . . , ysα

k−1, and γ maps
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the points j1, j2, . . . , jv, xr of span ξ to z, zα, . . . , zαv−1, zαv, where z is on δ or
some cilium attached to δ;

(3) If γ does not meet � but it meets ξ, then there is a maximal chain τ = (k1 . . . kw]
in α such that γ maps an initial segment (j1 . . . jp] of ξ (p � v) onto a terminal
segment (kw−p+1 . . . kw] of τ and γ does not meet (jp+1 . . . jv].

3. Second centralizers

Let α ∈ PTn and let λ be a cell in α. We define the radius of λ, written r(λ),
as the largest integer u such that (i1 . . . iux〉 is a cilium in λ. If λ has no cilia, we
define r(λ) to be 0. Let η1 . . . ηk be the join of all maximal chains in α and let
N = span η1 ∪ . . . ∪ span ηk. We define the diameter of N , written d(N), as the
largest integer u such that (i1 . . . iu] is a maximal chain in α. If N = ∅ (that is, if
α has no maximal chains), we define d(N) to be 0.

For example, for α = (1 2]︸ ︷︷ ︸
η1

(3]︸︷︷︸
η2

(6 7 4〉(8 4〉(4 5)︸ ︷︷ ︸
λ1

(10 9〉(9)︸ ︷︷ ︸
λ2

(11 12)︸ ︷︷ ︸
λ3

, we have N =

{1, 2, 3}, d(N) = 2, r(λ1) = 2, r(λ2) = 1, and r(λ3) = 0.

Let � = {0, 1, 2, . . .} denote the set of nonnegative integers. We introduce an
element −∞ /∈ � and agree that for every a ∈ �, −∞ < a, and that for every
β ∈ PTn, β−∞ = 0, where 0 is the zero (empty) transformation. For β ∈ PTn and
a subset A of X , β

∣∣A will denote the restriction of β to A. Finally, the length of a
circuit � will be denoted by 
(�).

The following theorem determines the second centralizers of partial transforma-
tions.

Theorem 2. Let α, β ∈ PTn, let α = η1 . . . ηkλ1 . . . λm be the chain-cell decom-
position of α, let N = span η1 ∪ . . . ∪ span ηk, and let �i be the circuit in the cell λi.
Then β ∈ C2(α) if and only if there are t ∈ � and t1, . . . , tm ∈ � ∪ {−∞} such that
for all i, j ∈ {1, . . . , m}:
(1) β

∣∣N = αt
∣∣N ;

(2) β
∣∣ domλi = αti

∣∣ domλi;

(3) If either t < min{d(N), r(λi)} or 0 � ti < min{d(N), r(λi)}, then ti = t;

(4) If 
(�i) divides 
(�j), then:

a) If ti � 0 and tj � 0, then ti ≡ tj (mod 
(�i));

b) If either ti or tj is less than min{r(λi), r(λj)}, then ti = tj .

Note that (4b) and the convention −∞ < a for every a ∈ � imply that if 
(�i)
divides 
(�j), then ti = −∞ ⇐⇒ tj = −∞. To illustrate Theorem 2, we consider
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the following transformations in PT12:

α = η1λ1λ2 = (1 2 3](6 7 4〉(4 5)(12 8〉(8 9 10 11),
β1 = (6 2](7 3],

β2 = (1 2 3],

β3 = (6 4〉(4)(7 5〉(5)(12 8〉(8 9 10 11),
β4 = (1 2 3](6 7 4〉(4 5),
β5 = (6 4〉(4)(7 5〉(5)(8)(9)(10)(11)(12),
β6 = (1 3](6 7 4〉(4 5)(12 10〉(8 11 10 9),
β7 = (1 3](6 5〉(7 4〉(4 5)(12 8〉(8 9 10 11).

By Theorem 1, each βi is in C(α). Note that N = {1, 2, 3}, d(N) = 3, 
(�1) = 2,

(�2) = 4, r(λ1) = 2, and r(λ2) = 1. We apply Theorem 2 to each βi.
(1) β1 /∈ C2(α) since β1 restricted to domλ1 is not equal to any power of α restricted
to domλ1.

(2) β2
∣∣N = α1

∣∣N , β2
∣∣ domλ1 = α−∞

∣∣domλ1, and β2
∣∣ domλ2 = α−∞

∣∣domλ2, but
β2 /∈ C2(α) since 1 < min{d(N), r(λ1)} and 1 �= −∞.

(3) β3
∣∣N = α3

∣∣N , β3
∣∣ domλ1 = α2

∣∣ domλ1, and β3
∣∣domλ2 = α1

∣∣domλ2, but
β3 /∈ C2(α) since 2 �≡ 1 (mod 
(�1)).

(4) β4
∣∣N = α1

∣∣N , β4
∣∣domλ1 = α1

∣∣ domλ1, and β4
∣∣ domλ2 = α−∞

∣∣ domλ2, but
β4 /∈ C2(α) since −∞ < min{r(λ1), r(λ2)} and 1 �= −∞.

(5) β5
∣∣N = α3

∣∣N , β5
∣∣domλ1 = α2

∣∣ domλ1, β5
∣∣domλ2 = α0

∣∣ domλ2, and 2 ≡ 0
(mod 
(�1)), but β5 /∈ C2(α) since 0 < min{r(λ1), r(λ2)} and 2 �= 0.

(6) β6
∣∣N = α2

∣∣N , β6
∣∣domλ1 = α1

∣∣ domλ1, β6
∣∣domλ2 = α3

∣∣ domλ2, and 3 ≡ 1
(mod 
(�1)), but β6 /∈ C2(α) since 1 < min{d(N), r(λ1)} and 1 �= 3.

(7) β7
∣∣N = α2

∣∣N , β7
∣∣ domλ1 = α3

∣∣ domλ1, β7
∣∣ domλ2 = α1

∣∣domλ2, and (3) and
(4) of Theorem 2 are satisfied, so β7 ∈ C2(α).

The remainder of the paper will be devoted to proving Theorem 2. It is convenient
to lay out the proof of the “only if” part of the theorem as a series of lemmas.
The following two lemmas show that for α ∈ PTn and β ∈ C2(α), β restricted to N

is equal to some power of α restricted to N . (In other words, such a β satisfies (1)
of Theorem 2.)

Lemma 3. Let α, β ∈ PTn be such that β ∈ C2(α), and let η = (i1 . . . iu] be a
maximal chain in α. Then there is t ∈ {0, . . . , u} such that β

∣∣ span η = αt
∣∣ span η.

�����. If domβ ∩ span η = ∅, then β
∣∣ span η = αu

∣∣ span η. Otherwise, by
Theorem 1, i1 ∈ domβ and one of the following two cases holds.
Case 1. i1β = ip for some p ∈ {1, . . . , u}.
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Then β
∣∣ span η = αp−1∣∣ span η by Theorem 1.

Case 2. There is a maximal chain ξ = (j1 . . . ju] in α such that for some p ∈
{1, . . . , v}, jp /∈ {i1, . . . , iu} and i1β = jp.
We will construct γ ∈ C(α) such that i1 /∈ domγ and jp ∈ domγ. Set domγ =

{x ∈ domα : xαq = jp for some q � 0}. Define the values of γ so that for every
maximal chain µ = (m1 . . . mdjp . . . jv] (d � 0) in α whose span contains jp, γ maps
the initial segment (m1 . . .mdjp] of µ onto a terminal segment of µ. By Theorem 1
and the construction of γ, we have γ ∈ C(α), i1 /∈ domγ (since jp /∈ {i1, . . . , iu}),
and jp ∈ domγ. Thus i1(β ◦ γ) = jpγ is defined and i1(γ ◦β) is undefined. It follows
that γ /∈ C(β), which is a contradiction. �

Recall that for a circuit �, 
(�) denotes the length of �. Similarly, for a chain η,

(η) will denote the length of η.

Lemma 4. Let α, β ∈ PTn be such that β ∈ C2(α), and let η = (i1 . . . iu] and
ξ = (j1 . . . jv] be maximal chains in α. Suppose that t ∈ {0, . . . , u} and w ∈ {0, . . . , v}
are integers such that β

∣∣ span η = αt
∣∣ span η and β

∣∣ span ξ = αw
∣∣ span ξ. If t > w,

then β
∣∣ span ξ = αt

∣∣ span ξ.

�����. Suppose t > w. Proceeding by induction on 
(η)+ 
(ξ), we assume that
the lemma is true for all maximal chains η′ and ξ′ in α with 
(η′)+
(ξ′) > 
(η)+
(ξ).
We consider three cases.
Case 1. w = 0.
Then iuβ = iuαt is undefined (since t > w = 0) and j1β = j1α

0 = j1. Define
γ ∈ PTn by: dom γ = {j1} and j1γ = iu. By Theorem 1, γ ∈ C(α). Since
j1(β ◦ γ) = j1γ = iu and j1(γ ◦ β) = iuβ is undefined, γ /∈ C(β), which is a
contradiction.
Case 2. w = v.
Then β

∣∣ span ξ = 0
∣∣ span ξ = αt

∣∣ span ξ (since t > w).
Case 3. 1 � w < v.
Then j1β = jw+1. Let m = min{u, v}. Since w < v and w < t � u, w + 1 � m.

Let τ = (k1 . . . kbjm . . . jv] (b � 0) be a longest maximal chain in α whose span
contains jm. We consider two cases.
Case 3.1. b � u− 1.
Then we can construct γ ∈ C(α) that maps the initial segment (j1 . . . jm] of ξ onto

a terminal segment of η. Set dom γ = {x ∈ domα : xαq = jm for some q � 0}. Let
µ = (m1 . . . mdjm . . . jv] (d � 0) be any maximal chain in α whose span contains jm.
Since 
(τ) � 
(µ) and b � u − 1, we have u − d � u − b � 1 and so u � d + 1.
Thus we can define γ so that it maps (m1 . . . mdjm] onto a terminal segment of η. In
particular, γ maps the initial segment (j1 . . . jm] of ξ onto a terminal segment of η,
say (ir . . . iu].
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By Theorem 1 and the construction of γ, we have γ ∈ C(α), j1γ = ir, and
jw+1γ = ir+w. Since irβ = irα

t, either irβ is undefined or irβ = ir+t. Thus
j1(β ◦γ) = jw+1γ = ir+w and either j1(γ ◦β) = irβ is undefined or j1(γ ◦β) = irβ =
ir+t. In either case, since t > w, it follows that γ /∈ C(β), which is a contradiction.
Case 3.2. b � u.

Then 
(τ) = b + v − m + 1 � u + v − m + 1 � m + v − m + 1 = v + 1 > 
(ξ)
and 
(τ) = b + v − m + 1 � u + v − m + 1 � u +m −m + 1 = u + 1 > 
(η). By
Lemma 3, β

∣∣ span τ = αp
∣∣ span τ for some p ∈ {0, . . . , 
(τ)}. Suppose p > w. Then,

by the inductive hypothesis applied to τ and ξ, β
∣∣ span ξ = αp

∣∣ span ξ. It follows
that j1β = j1α

p �= jw+1 = j1β, which is a contradiction. Thus p � w. Then t > p

and so, by the inductive hypothesis applied to η and τ , β
∣∣ span τ = αt

∣∣ span τ . Note
that, since 
(τ) > 
(η) and t ∈ {0, . . . , 
(η)}, we also have t ∈ {0, . . . , 
(τ)}. Now
repeat the argument used in the case p > w above (with p replaced by t) to obtain
a contradiction. This concludes the proof. �

The next three lemmas show that for α ∈ PTn and β ∈ C2(α), β restricted to
the domain of a cell λi is equal to some power (possibly −∞) of α restricted to that
domain. (In other words, such a β satisfies (2) of Theorem 2.)

Lemma 5. Let α, β ∈ PTn be such that β ∈ C2(α), and let � = (x0 . . . xk−1)
be a circuit in α. If domβ ∩ dom� �= ∅, then there is t ∈ {0, . . . , k − 1} such that
β
∣∣ dom � = αt

∣∣dom �.

�����. By Theorem 1, x0 ∈ domβ and one of the following two cases holds.

Case 1. x0β = xt for some t ∈ {0, . . . , k − 1}.
Then β

∣∣dom � = αt
∣∣ dom � by Theorem 1.

Case 2. There is a circuit δ = (y0 . . . ym−1) in α such that δ �= �, m divides k,
and x0β = yp for some p ∈ {0, . . . , m− 1}.
Let λ be the cell in α that has δ as the circuit. Define γ ∈ PTn by dom γ = domλ

and yγ = y for every y ∈ domλ. By Theorem 1 and the construction of γ, we have
γ ∈ C(α), x0 �∈ domγ, and ypγ = yp. Since x0(β ◦ γ) = ypγ = yp and x0(γ ◦ β) is
undefined, γ /∈ C(β), which is a contradiction. �

Lemma 6. Let α, β ∈ PTn be such that β ∈ C2(α), and let η = (i1 . . . iux0〉 be a
cilium in α attached to a circuit � = (x0 . . . xk−1). If domβ ∩ span η �= ∅, then there
is t ∈ {0, . . . , u+ k − 1} such that β

∣∣ span η = αt
∣∣ span η.

�����. Let λ be the cell in α that has � as the circuit. By Theorem 1 and
Lemma 5, i1 ∈ domβ and one of the following four cases holds.
Case 1. i1β = ip for some p ∈ {1, . . . , u}.
Then β

∣∣ span η = αp−1∣∣ span η by Theorem 1.
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Case 2. i1β = xp for some p ∈ {0, . . . , k − 1}.
Then β

∣∣ span η = αu+p
∣∣ span η by Theorem 1.

Case 3. There is a cilium ξ = (j1 . . . jvxs〉 in λ such that for some p ∈ {1, . . . , v},
i1β = jp and jp /∈ {i1, . . . , iu}.
We consider two cases.

Case 3.1. s �= 0, i.e., η and ξ meet � at different points.

We will construct γ ∈ C(α) such that i1γ = i1 and jpγ �= jp. Set dom γ = domλ.
Let µ = (m1 . . . mdxs〉 be any cilium in λ attached to � at xs and let xh ∈ dom�

be such that xhαd = xs. Define γ so that it maps the points m1, m2, . . . , md, xs

of spanµ to xh, xhα, . . . , xhαd−1, xhαd = xs. If y ∈ domλ is not in the span of
any cilium attached to � at xs, define yγ = y. By Theorem 1 and the construction
of γ, we have γ ∈ C(α), i1γ = i1 (since η is not attached to � at xs), and jpγ �= jp

(since ξ is attached to � at xs and so jpγ ∈ dom �). Since i1(β ◦ γ) = jpγ �= jp and
i1(γ ◦ β) = i1β = jp, γ /∈ C(β), which is a contradiction.

Case 3.2. s = 0, i.e., η and ξ are attached to � at the same point.

Since both η and ξ meet � at x0 and jp /∈ {1, . . . , u}, we have η = (i1 . . . iqz . . .〉,
ξ = (j1 . . . jp . . . jrz . . .〉 (q � 1, r � p), and {i1, . . . , iq}∩ {j1, . . . , jr} = ∅. (Note that
z may be equal to x0.) Let τ = (k1 . . . kbjrz . . .〉 (b � 0) be a longest cilium in λ

whose span contains jr. If jp ∈ span τ , we may assume that ξ = τ . We consider
three cases.

Case 3.2.1. τ �= ξ (which implies jp /∈ span τ).

We will construct γ ∈ C(α) such that i1γ = i1 and jpγ �= jp. Set dom γ = domλ.
Let µ = (m1 . . . mdx0〉 be any cilium in λ whose span contains jr. Since 
(τ) � 
(µ),
we can define γ so that it maps µ onto a terminal segment of τ . If y ∈ domλ is not in
the span of any cilium in λ whose span contains jr, define yγ = y. By Theorem 1 and
the construction of γ, we have γ ∈ C(α), i1γ = i1 (since jr /∈ span η), and jpγ �= jp

(since jpγ ∈ span τ and jp /∈ span τ), which leads to a contradiction as in Case 3.1.

Case 3.2.2. τ = ξ and 
(η) � 
(ξ).

Again, we will construct γ ∈ C(α) such that i1γ = i1 and jpγ �= jp. Let µ =
(m1 . . . mdx0〉 be any cilium in λ whose span contains jr. Since 
(η) � 
(ξ) � 
(µ),
we can define γ so that it maps µ onto a terminal segment of η. If y ∈ domλ is not in
the span of any cilium in λ whose span contains jr, define yγ = y. By Theorem 1 and
the construction of γ, we have γ ∈ C(α), i1γ = i1 (since jr /∈ span η), and jpγ �= jp

(since jpγ ∈ span η and jp /∈ span η), which leads to a contradiction as in Case 3.1.

Case 3.2.3. τ = ξ and 
(η) < 
(ξ).

We will construct γ ∈ C(α) such that j1γ = i1 and jp /∈ ranγ. Set dom γ = domλ.
Let a ∈ {0, . . . , k − 1} be such that a ≡ v − u (mod k). Let µ = (m1 . . . mdx0〉 be
any cilium in λ whose span contains jr and let c = v − d + 1. Since 
(ξ) � 
(µ),
c � 1. If c � u, define γ so that it maps the points m1, m2, . . . , md, x0 of domµ to
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ic, icα, . . . , icα
d−1, icαd. Note that icα

d = xa. If c > u, select xh ∈ dom � so that
xhαd = xa and define γ so that it maps the points m1, m2, . . . , md, x0 of domµ to
xh, xhα, . . . , xhαd−1, xhαd = xa. Note that if µ = ξ, then c = v−d+1 = v−v+1 = 1
and j1γ = m1γ = ic = i1. If y ∈ domλ is not in the span of any cilium whose span
contains jr, we define yγ = yαa.
By Theorem 1 and the construction of γ, we have γ ∈ C(α), j1γ = i1, and

jp /∈ ranγ. (Indeed, let y ∈ domλ. If y is in the span of a cilium whose span
contains jr, then yγ is in the set {i1, . . . , iu} ∪ dom�. Thus yγ �= jp since jp is not
in that set. If y is not in the span of any such cilium, then yγ = yαa �= jp since
otherwise we would have yαa+r−p = jr, which cannot happen if y is not in the span
of a cilium whose span contains jr. Hence jp /∈ ranγ.) Since ran(β ◦ γ) ⊆ ranγ,
jp /∈ ran(β ◦ γ). Since j1(γ ◦ β) = i1β = jp, jp ∈ ran(γ ◦ β). It follows that γ /∈ C(β),
which is a contradiction.

Case 4. There is a maximal chain ξ = (j1 . . . jv] in α such that i1β = jp for some
p ∈ {1, . . . , v}.
Define γ ∈ PTn by: dom γ is the union of spans of all maximal chains in α, and

yγ = y for all y ∈ domγ. By Theorem 1 and the construction of γ, we have γ ∈ C(α),
jp ∈ dom γ, and i1 /∈ domγ. Since i1(β ◦ γ) = jpγ is defined and i1(γ ◦ β) = (i1γ)β
is undefined, γ /∈ C(β), which is a contradiction. �

Lemma 7. Let α, β ∈ PTn be such that β ∈ C2(α), and let η = (i1 . . . iux0〉
and ξ = (j1 . . . jvxs〉 be cilia in α attached to a circuit � = (x0 . . . xk−1) such that
β
∣∣ dom � = αe

∣∣ dom� for some e ∈ {0, . . . , k−1}. Suppose that t ∈ {0, . . . , u+k−1}
and w ∈ {0, . . . , v+k−1} are integers such that β

∣∣ span η = αt
∣∣ span η and β

∣∣ span ξ =
αw

∣∣ span ξ. If t > w, then β
∣∣ span ξ = αt

∣∣ span ξ.

�����. Suppose t > w and let λ be the cell in α that has � as the circuit.
Proceeding by induction on 
(η) + 
(ξ), we assume that the lemma is true for all
cilia η′ and ξ′ in λ with 
(η′) + 
(ξ′) > 
(η) + 
(ξ).
Since x0α

t = x0α
e and xsα

w = xsα
e, we have t ≡ e (mod k) and w ≡ e (mod k).

Thus t ≡ w (mod k) and so, since t > w, t = w + lk for some l � 1. We consider
three cases.
Case 1. w = 0.

Then iuβ = iuαlk = xk−1 and j1β = j1α
0 = j1. We will construct γ ∈ C(α)

such that j1γ = iu. Set domγ = domλ. Select q ∈ {0, . . . , k − 1} so that q ≡
v − 1 (mod k) and define γ so that it maps the points j1, j2, . . . , jv, xs of span ξ to
iu, iuα = x0, . . . , iuαv−1, iuαv = xq. Let a ∈ {0, . . . , k − 1} be such that a ≡ q − s

(mod k). For any cilium µ = (m1 . . . mdxc〉 in λ with µ �= ξ, select xh ∈ dom � so that
xhαd = xa+c and define γ so that it maps the points m1, m2, . . . , md, xc of spanµ

to xh, xhα, . . . , xhαd−1, xhαd = xa+c. By Theorem 1 and the construction of γ, we
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have γ ∈ C(α) and j1γ = iu. Since j1(β ◦ γ) = j1γ = iu and j1(γ ◦ β) = iuβ = xk−1,
γ /∈ C(β), which is a contradiction.

Case 2. w � v.

Then for each p ∈ {1, . . . , v}, jpβ = jpα
w = xq for some q ∈ {0, . . . , k − 1}. Thus

jpα
t = jpα

w+lk = (jpα
w)αlk = xqα

lk = xq = jpβ. Similarly, xsα
t = xsβ and so

β
∣∣ span ξ = αt

∣∣ span ξ.

Case 3. 1 � w < v.

Then j1β = j1α
w = jw+1. Let m = min{u, v}. Since w < v and w = t − lk �

u + k − 1 − lk = u − (l − 1)k − 1 < u, w + 1 � m. Let τ = (k1 . . . kbjm . . . jvxs〉
(b � 0) be a longest cilium in λ whose span contains jm. We consider two cases.

Case 3.1. b � u− 1.
Then we can construct γ ∈ C(α) that maps the initial segment (j1 . . . jm] of ξ

onto a terminal segment of (i1 . . . iu]. Set dom γ = domλ. Select q ∈ {0, . . . , k − 1}
such that q ≡ v − m (mod k). Let µ = (m1 . . .mdjm . . . jvxs〉 (d � 0) be any
cilium in λ whose span contains jm. Since 
(τ) � 
(µ) and b � u − 1, we have
u � b + 1 � d + 1. Thus we can define γ so that it maps the initial segment
(m1 . . . mdjm] of µ onto a terminal segment of (i1 . . . iu] and the remaining points of
spanµ, jm+1, jm+2, . . . , jv, xs, to x0, x0α, . . . , x0α

v−m−1, x0αv−m = xq . In particu-
lar, γ maps the initial segment (j1 . . . jm] of ξ onto a terminal segment of (i1 . . . iu],
say (ir . . . iu]. Let µ = (m1 . . . mdxc〉 be any cilium in λ whose span does not contain
jm. Let a ∈ {0, . . . , k−1} be such that a ≡ q−s (mod k). Select xh ∈ dom � so that
xhαd = xc+a and define γ so that it maps the points m1, m2, . . . , md, xc of spanµ to
xh, xhα, . . . , xhαd−1, xhαd = xc+a.

By Theorem 1 and the construction of γ, we have γ ∈ C(α), j1γ = ir, and
jw+1γ = ir+w. Since j1(β ◦ γ) = jw+1γ = ir+w and j1(γ ◦ β) = irβ = irα

t �= ir+w

(since t > w), γ �∈ C(β), which is a contradiction.

Case 3.2. b � u.

Then 
(τ) = b+ v −m+ 2 � u+ v −m+ 2 � m+ v −m+ 2 = v + 2 > 
(ξ) and

(τ) = b+ v−m+2 � u+ v−m+2 � u+m−m+2 = u+2 > 
(η). By Lemma 6,
β
∣∣ span τ = αp

∣∣ span τ for some p ∈ {0, . . . , 
(τ) + k − 2}. Suppose p > w. Then, by
the inductive hypothesis applied to τ and ξ, β

∣∣ span ξ = αp
∣∣ span ξ. It follows that

j1β = j1α
p �= jw+1 = j1β, which is a contradiction. Thus p � w. Then t > p and so,

by the inductive hypothesis applied to η and τ , β
∣∣ span τ = αt

∣∣ span τ . Note that,
since 
(τ) > 
(η) and t ∈ {0, . . . , 
(η)+ k− 2}, we also have t ∈ {0, . . . , 
(τ)+ k− 2}.
Now repeat the argument used in the case p > w above (with p replaced by t) to
obtain a contradiction. This concludes the proof. �

Lemmas 3–7 imply that if α ∈ PTn and β ∈ C2(α), then β satisfies (1) and (2)
of Theorem 2, that is, β

∣∣N = αt
∣∣N and β

∣∣ domλi = αti
∣∣domλi for some t ∈ � and
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ti ∈ � ∪ {−∞} (i = 1, . . . , m). The next two lemmas show that the exponents t and
ti satisfy (3) of Theorem 2.

Lemma 8. Let α, β ∈ PTn be such that β ∈ C2(α), let η = (i1 . . . iu] be a
maximal chain in α, let � = (x0 . . . xk−1) be a circuit in α, and let ξ = (j1 . . . jvx0〉
be a longest cilium attached to �. Suppose that t is a nonnegative integer such that
β
∣∣ span η = αt

∣∣ span η. If t < min{u, v}, then domβ ∩ span ξ �= ∅.
�����. Let t < min{u, v}. Suppose, by way of contradiction, that domβ ∩

span ξ = ∅. Let m = min{u, v}. We will construct γ ∈ C(α) that maps the initial
segment (j1 . . . jm] of ξ onto a terminal segment of η. Let λ be the cell in α that
has � as the circuit. Set dom γ = {x ∈ domλ : xαq = jm for some q � 0}. Let
µ = (m1 . . . mdjm . . . jvx0〉 (d � 0) be a cilium in λ whose span contains jm. Since

(µ) � 
(ξ), d+1 � m � u. Thus we can define γ so that it maps the initial segment
(m1 . . . mdjm] of µ onto a terminal segment of η. In particular, γ maps the initial
segment (j1 . . . jm] of ξ onto a terminal segment of η, say (ir . . . iu].
By Theorem 1 and the construction of γ, we have γ ∈ C(α) and j1γ = ir. Since

j1(β ◦ γ) is undefined (since j1 /∈ domβ) and j1(γ ◦ β) = irβ = irα
t = ir+t (since

t < m), γ /∈ C(β), which is a contradiction. Thus domβ ∩ span ξ �= ∅. �

Lemma 9. Let α, β ∈ PTn be such that β ∈ C2(α), let η = (i1 . . . iu] be a
maximal chain in α, let � = (x0 . . . xk−1) be a circuit in α, and let ξ = (j1 . . . jvx0〉
be a longest cilium attached to �. Suppose that t and w are nonnegative integers
such that β

∣∣ span η = αt
∣∣ span η and β

∣∣ span ξ = αw
∣∣ span ξ. If either t or w is less

than min{u, v}, then t = w.

�����. Let m = min{u, v}. Let λ be the cell in α that has � as the circuit.
As in the proof of Lemma 8, we can construct γ ∈ C(α) such that domγ = {x ∈
domλ : xαq = jm for some q � 0} and γ maps the initial segment (j1 . . . jm] of ξ

onto a terminal segment of η, say (ir . . . iu]. Then j1(β◦γ) = (j1αw)γ and j1(γ◦β) =
irβ = irα

t. Since γ ∈ C(β), (j1αw)γ = irα
t.

Suppose t < m. Then irα
t is defined and irα

t = ir+t. Thus w must be less thanm

(otherwise j1α
w would not be in domγ) and so (j1αw)γ = jw+1γ = ir+w. Hence

ir+t = ir+w and so t = w.
Suppose w < m. Then (j1αw)γ is defined and (j1αw)γ = jw+1γ = ir+w. Thus t

must be less than m (otherwise irα
t would be undefined) and so irα

t = ir+t. Hence
ir+t = ir+w and so t = w. �

We already proved (Lemmas 5–7) that if α ∈ PTn and β ∈ C2(α), then β sat-
isfies (2) of Theorem 2, that is, β

∣∣ domλi = αti
∣∣domλi for some ti ∈ � ∪ {−∞}

(i = 1, . . . , m). The next three lemmas show that the exponents ti satisfy (4) of
Theorem 2.
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Lemma 10. Let α, β ∈ PTn be such that β ∈ C2(α), and let � = (x0 . . . xk−1)
and δ = (y0 . . . ym−1) be circuits in α such that k divides m. Then domβ∩dom � = ∅
if and only if domβ ∩ dom δ = ∅.

�����. We will construct γ ∈ C(α) such that y0γ = x0. Let λ be the cell in α

that has δ as the circuit. Set dom γ = domλ. Define γ so that it maps the points
y0, y1, . . . , ym−1 of dom δ to x0, x0α, . . . , x0α

m−1. Let ξ = (j1 . . . jvyp〉 be any cilium
in α attached to δ. Select xh ∈ dom� so that xhαv = x0α

p and define γ so that it
maps the points j1, j2, . . . , jv, yp of span ξ to xh, xhα, . . . , xhαv−1, xhαv.

By Theorem 1 and the construction of γ, we have γ ∈ C(α) and y0γ = x0. Suppose
domβ ∩ dom � = ∅ and domβ ∩ dom δ �= ∅. Then y0 ∈ domβ and y0β ∈ dom δ (by
Lemma 5). Thus y0(β ◦ γ) is defined and y0(γ ◦ β) = x0β is undefined. Suppose
domβ ∩dom δ = ∅ and domβ ∩dom � �= ∅. Then x0 ∈ domβ (by Theorem 1). Thus
y0(β ◦γ) is undefined and y0(γ ◦β) = x0β is defined. In either case, γ /∈ C(β), which
is a contradiction. The result follows. �

Lemma 11. Let α, β ∈ PTn be such that β ∈ C2(α), and let � = (x0 . . . xk−1)
and δ = (y0 . . . ym−1) be circuits in α such that k divides m. Suppose that t and w

are nonnegative integers such that β
∣∣ dom� = αt

∣∣ dom� and β
∣∣ dom δ = αw

∣∣dom δ.
Then w ≡ t (mod k).

�����. Let t′ ∈ {0, 1, . . . , k − 1} and w′ ∈ {0, 1, . . . , m− 1} be such that t′ ≡ t

(mod k) and w′ ≡ w (mod m). Note that w′ ≡ w (mod k) (since k divides m),
x0β = xt′ , and y0β = yw′ . As in the proof of Lemma 10, we can construct γ ∈ C(α)
that maps y0, y1, . . . , ym−1 to x0, x0α, . . . , x0α

m−1. Note that yw′γ = xw′′ , where
w′′ ∈ {0, 1, . . . , k− 1} and w′′ ≡ w′ (mod k). On the other hand, yw′γ = y0(β ◦ γ) =
y0(γ ◦ β) = x0β = xt′ . Hence t′ = w′′ and so t ≡ t′ = w′′ ≡ w′ ≡ w (mod k). �

Lemma 12. Let α, β ∈ PTn be such that β ∈ C2(α), let � = (x0 . . . xk−1) and
δ = (y0 . . . yl−1) be circuits in α such that k divides l, let η = (i1 . . . iux0〉 be a
cilium attached to �, and let ξ = (j1 . . . jvy0〉 be a longest cilium attached to δ.
Suppose that t and w are nonnegative integers such that β

∣∣ span η = αt
∣∣ span η and

β
∣∣ span ξ = αw

∣∣ span ξ. If either t < min{u, v} or w < min{u, v}, then w = t.

�����. Let m = min{u, v}. We will construct γ ∈ C(α) that maps the initial
segment (j1 . . . jm] of ξ onto a terminal segment of (i1 . . . iu]. Set dom γ = domλ,
where λ is the cell in α that has δ as the circuit. Let q ∈ {0, . . . , k− 1} be such that
q ≡ v −m (mod k).

Let µ = (m1 . . . mdjm . . . jvy0〉 (d � 0) be any cilium in λ whose span contains jm.
Since 
(ξ) � 
(µ), m − 1 � d and so u � m � d + 1. Thus we can define γ so that
it maps the initial segment (m1 . . .mdjm] of µ onto a terminal segment of (i1 . . . iu]
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and the remaining points of spanµ, jm+1, jm+2, . . . , jv, y0, to x0, x0α, . . . , x0α
v−m−1,

x0α
v−m = xq. In particular, γ maps the initial segment (j1 . . . jm] of ξ onto a terminal

segment of (i1 . . . iu], say (ir . . . iu]. Let µ = (m1 . . .mdys〉 be any cilium in λ whose
span does not contain jm. Select a ∈ {0, . . . , k− 1} such that a ≡ q+ s (mod k) and
xh ∈ dom � such that xhαd = xa. Define γ so that it maps the pointsm1, m2, . . . , md,
ys of spanµ to the points xh, xhα, . . . , xhαd−1, xhαd = xa.
By Theorem 1 and the construction of γ, γ ∈ C(α) and it maps (j1 . . . jm] onto

(ir . . . iu]. (Note that this implies u − r = m − 1 and so r + m − 1 = u.) Then
j1(β ◦ γ) = (j1αw)γ and j1(γ ◦ β) = irβ = irα

t. Since γ ∈ C(β), (j1αw)γ = irα
t.

Suppose t < m. Then r + t � r +m− 1 = u and so irα
t = ir+t. Thus w must be

less than m (otherwise, by the construction of γ, (j1αw)γ would be in dom � and so
it could not be equal to ir+t) and so (j1αw)γ = jw+1γ = ir+w. Hence ir+t = ir+w

and so t = w.
Suppose w < m. Then (j1αw)γ = jw+1γ = ir+w. Thus t must be less than m

(otherwise irα
t would be in dom� and so it could not be equal to ir+w) and so

irα
t = ir+t. Hence ir+t = ir+w and so t = w. �

Now we are in a position to prove Theorem 2.

����� of Theorem 2. Suppose that β ∈ C2(α). Suppose that k � 1, that is,
α has at least one maximal chain. Let i ∈ {1, . . . , k}. By Lemma 3, β

∣∣ span ηi =
αwi

∣∣ span ηi for some wi ∈ {0, . . . , 
(ηi)}. Let t = max{w1, . . . , wk}. By Lemma 4,
β
∣∣ span ηi = αt

∣∣ span ηi for each i ∈ {1, . . . , k}. Since N = span η1 ∪ . . . ∪ span ηk,
β
∣∣N = αt

∣∣N . If k = 0, that is, N = ∅, then β
∣∣N = α0

∣∣N . Thus, in any case, there
is an integer t that satisfies condition (1).
Let i ∈ {1, . . . , m}. By Lemma 5, β

∣∣ dom �i = αw
∣∣ dom�i for some w ∈

{0, . . . , 
(�i)− 1}∪ {−∞}. If λi = �i, that is, if �i is an isolated circuit, take ti = w.
Suppose that λi �= �i, that is, λi has at least one cilium. Let η1, . . . , ηb be the cilia
in λi. Suppose w = −∞, that is, domβ ∩ dom �i = ∅. Then domβ ∩ dom ηp = ∅
for each p ∈ {1, . . . , b} (by Lemma 6), and so β

∣∣ domλi = αw. Thus if w = −∞,
take ti = w. Suppose w �= −∞. Then, by Lemma 6, for each p ∈ {1, . . . , b},
there is wp ∈ {0, . . . , 
(ηp) + 
(�i) − 2} such that β

∣∣ span ηp = αwp
∣∣ span ηp. Let

ti = max{w1, . . . , wb}. By Lemma 7, β
∣∣ span ηp = αti

∣∣ span ηp for each p ∈ {1, . . . , b}.
Let y be the point at which η1 meets �i. Then yαw = yβ = yαti , which implies
ti ≡ w (mod 
(�i)). Let x ∈ domλi. If x ∈ span ηp for some p ∈ {1, . . . , b}, then
xβ = xαti . If x ∈ dom �i, then xβ = xαw = xαti (since ti ≡ w (mod 
(�i))). Since
domλi = span η1 ∪ . . . ∪ span ηb ∪ dom �i, β

∣∣ domλi = αti
∣∣domλi. Thus for each

i ∈ {1, . . . , m}, there is ti ∈ � ∪ {−∞} that satisfies condition (2). Moreover, it
follows from Lemma 8 and Lemma 9 that for each i ∈ {1, . . . , m}, t and ti satisfy
condition (3), and it follows from Lemma 10, Lemma 11, and Lemma 12 that for all
i, j ∈ {1, . . . , m}, ti and tj satisfy condition (4).
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Conversely, suppose that there are t ∈ � and t1, . . . , tm ∈ � ∪ {−∞} such that
conditions (1)–(4) are satisfied for all i, j ∈ {1, . . . , m}. Let γ ∈ C(α). We need to
prove that β ◦ γ = γ ◦ β. Let x ∈ X and consider four cases.

Case 1. x ∈ N and x ∈ dom(γ ◦ β).

Then x ∈ domγ and xγ ∈ domβ. Since xγ ∈ N (by Theorem 1), xγ ∈ domαt

(by (1)). Thus x ∈ dom(γ ◦ αt) and so, since γ commutes with αt, x ∈ dom(αt ◦ γ).
Thus, since β

∣∣N = αt
∣∣N , x ∈ dom(β◦γ) and x(β◦γ) = (xβ)γ = (xαt)γ = x(αt◦γ) =

x(γ ◦ αt) = (xγ)αt = (xγ)β = x(γ ◦ β).

Case 2. x ∈ N and x ∈ dom(β ◦ γ).

By an argument similar to that used in Case 1, x ∈ dom(γ ◦ β) and x(β ◦ γ) =
x(γ ◦ β).

Case 3. x ∈ domλj for some j ∈ {1, . . . , m} and x ∈ dom(γ ◦ β).

Then x ∈ dom γ and xγ ∈ domβ. By Theorem 1, one of the following two cases
holds.

Case 3.1. xγ ∈ domλi for some i ∈ {1, . . . , m}.
Then, by Theorem 1, 
(�i) divides 
(�j) and domλj ⊆ dom γ. Since β

∣∣ domλi =
αti

∣∣domλi (by (2)) and xγ ∈ domβ, ti cannot be −∞. Thus tj �= −∞ by (4b). It
follows that x ∈ dom(αtj ◦ γ) and so, since β

∣∣ domλj = αtj
∣∣ domλj , x ∈ dom(β ◦ γ).

Since xγ ∈ domλi, x(γ ◦ β) = (xγ)β = (xγ)αti ∈ domλi. Since x ∈ domλj ,
x(β ◦ γ) = (xβ)γ = (xαtj )γ ∈ domλi. Thus xγ, x(γ ◦ β), and x(β ◦ γ) are all in
domλi. Let �i = (x0 . . . xa−1), let �j = (y0 . . . yb−1), and consider two cases.

Case 3.1.1. x(γ ◦ β) ∈ dom �i.

We claim that x(β ◦ γ) is also in dom �i. Suppose, by way of contradiction, that
x(β ◦ γ) /∈ dom�i. Then x /∈ dom �j since otherwise xβ = xαtj would be in dom�j

and so x(β ◦ γ) = (xβ)γ would be in dom �i (by Theorem 1). Thus there is a cilium
ξ = (m1 . . . mvyr〉 in λj such that x = mp for some p ∈ {1, . . . , v}. We observed
in the foregoing argument that mpβ = xβ cannot be in dom�j . It follows that
p + tj � v and mpβ = mpα

tj = mp+tj . Since p + tj � v, tj � v − p < v. Since
mp+tj γ = (mpβ)γ = mp(β ◦ γ) = x(β ◦ γ) /∈ dom �i, it follows by Theorem 1 that
there is a cilium η = (k1 . . . kuxs〉 in λi such that for some q ∈ {1, . . . , u}, mpγ = kq,
q + tj � u, and mp+tj γ = kq+tj . Since q + tj � u, tj � u − q < u. Hence
tj < min{u, v} � min{r(λi), r(λj)} and so ti = tj by (4b). But then x(γ ◦ β) =
(mpγ)β = kqβ = kqα

ti = kqα
tj = kq+tj /∈ dom�i, which is a contradiction.

Thus both x(γ◦β) and x(β◦γ) are in dom �i and so x(γ◦β) = xp and x(β◦γ) = xq

for some p, q ∈ {0, . . . , a − 1}. By (4a), ti ≡ tj (mod a) and so there is an integer
l � 0 such that either ti = tj + lk or tj = ti + lk. In the former case, we have:

xp = x(γ ◦ β) = (xγ)β = (xγ)αti = x(γ ◦ αtj ◦ αlk) = x(αtj ◦ γ ◦ αlk)

= (xαtj )(γ ◦ αlk) = (xβ)(γ ◦ αlk) = (x(β ◦ γ))αlk = xqα
lk = xq.
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And in the latter case, we have:

xq = x(β ◦ γ) = (xβ)γ = (xαtj )γ = x(αtj ◦ γ) = x(γ ◦ αtj ) = x(γ ◦ αti ◦ αlk)

= ((xγ)αti)αlk = ((xγ)β)αlk = (x(γ ◦ β))αlk = xpα
lk = xp.

Thus x(γ ◦ β) = xp = xq = x(β ◦ γ).

Case 3.1.2. x(γ ◦ β) /∈ dom �i.

Then x /∈ dom �j since otherwise xγ would be in dom�i (by Theorem 1) and
so x(γ ◦ β) = (xγ)β = (xγ)αti would also be in dom �i. Thus there is a cilium
ξ = (m1 . . . mvyr〉 in λj such that x = mp for some p ∈ {1, . . . , v}. We observed
in the foregoing argument that xγ cannot be in dom �i. It follows that there is a
cilium η = (k1 . . . kuxs〉 in λi such that xγ = mpγ = kq for some q ∈ {1, . . . , u}.
Since kqα

ti = kqβ = (mpγ)β = mp(γ ◦ β) /∈ dom�i, we must have q + ti � u and
mp(γ ◦ β) = kqα

ti = kq+ti . Since q + ti � u, ti � u− q < u. Since (by Theorem 1)
either mvγ = ku or mvγ ∈ dom �i, the fact that mpγ = kq coupled with Theorem 1
implies that u − q � v − p. Thus ti � u− q � v − p < v. Hence ti < min{u, v} and
so ti = tj by (4b). Thus

x(β ◦ γ) = (xβ)γ = (xαtj )γ = x(αtj ◦ γ) = x(γ ◦ αtj ) = (xγ)αtj = (xγ)αti

= (xγ)β = x(γ ◦ β).

Case 3.2. xγ ∈ N .

Then, by Theorem 1, there is a cilium ξ = (m1 . . .mvyr〉 in λj and a maximal chain
ηi = (k1 . . . ku] in α such that for some p ∈ {1, . . . , v}, x = mp and γ maps an initial
segment (m1 . . .mp . . .] of (m1 . . .mv] onto a terminal segment of ηi. Let mpγ = kq

(q ∈ {1, . . . , u}). Since kq = mpγ = xγ ∈ domβ and β
∣∣N = αt

∣∣N , kq ∈ domαt,
which implies q + t � u and kqβ = kqα

t = kq+t. Since γ maps an initial segment
of (m1 . . . mv] onto a terminal segment of (k1 . . . ku], mpγ = kq and q + t � u imply
that p + t � v and mp+t ∈ dom γ. Thus t < min{u, v} � min{d(N), r(λj)} and so
t = tj (by (3)). Hence x ∈ domβ (since tj = t � 0 and β

∣∣domλj = αtj
∣∣ domλj)

and xβ = mpβ = mpα
tj = mpα

t = mp+t ∈ dom γ. Thus x ∈ dom(β ◦ γ) and, since
γ commutes with αt, x(β ◦γ) = (xβ)γ = (xαtj )γ = (xαt)γ = x(αt ◦γ) = x(γ ◦αt) =
(xγ)αt = (xγ)β = x(γ ◦ β).

Case 4. x ∈ domλj for some j ∈ {1, . . . , m} and x ∈ dom(β ◦ γ).

Then x ∈ domβ and y = xβ ∈ domγ. Since, by (2), β
∣∣ domλj = αtj

∣∣ domλj ,
tj � 0 and y ∈ domλj . By Theorem 1, one of the following two cases holds.

Case 4.1. yγ ∈ domλi for some i ∈ {1, . . . , m}.
Then, by Theorem 1, 
(�i) divides 
(�j), domλj ⊆ domγ, and xγ ∈ domλi. Since

tj �= −∞, ti �= −∞ by (4b). Thus, since β
∣∣ domλi = αti

∣∣domλi, domλi ⊆ domβ.
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Hence x ∈ domλj ⊆ domγ and xγ ∈ domλi ⊆ domβ, which implies x ∈ dom(γ ◦β).
It follows by Case 3 that x(β ◦ γ) = x(γ ◦ β).
Case 4.2. yγ ∈ N .
Then, by Theorem 1, y /∈ dom �j . Thus, since y = xβ = xαtj , there is a cilium

ξ = (m1 . . . mvyr〉 in λj such that for some p ∈ {1, . . . , v}, y = mp, p − tj � 1, and
x = mp−tj . Since yγ ∈ N , it follows by Theorem 1 that there is a maximal chain
ηi = (k1 . . . ku] in α such that γ maps an initial segment (m1 . . .mp−tj . . . mp . . .] of
(m1 . . . mv] onto a terminal segment of ηi. Let mpγ = kq (q ∈ {1, . . . , u}). Then,
since γ maps an initial segment of (m1 . . . mv] onto a terminal segment of ηi, q −
tj � 1 and mp−tj γ = kq−tj . Since q − tj � 1 and p − tj � 1, tj < min{q, p} �
min{u, v} � min{d(N), r(λj)}. Thus, by (3), tj = t and so kq−tj = kq−t ∈ domβ

(since kq−tα
t = kq and domβ

∣∣N = domαt
∣∣N). Hence x = mp−tj ∈ dom γ and

xγ = mp−tj γ = kq−tj ∈ domβ, which implies x ∈ dom(γ ◦ β). It follows by Case 3
that x(β ◦ γ) = x(γ ◦ β).
This concludes the proof. �
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