Czechoslovak Mathematical Journal

Janusz Konieczny
 Second centralizers of partial transformations

Czechoslovak Mathematical Journal, Vol. 51 (2001), No. 4, 873-888

Persistent URL: http://dml.cz/dmlcz/127692

Terms of use:

(C) Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml. cz

SECOND CENTRALIZERS OF PARTIAL TRANSFORMATIONS

Janusz Konieczny, Fredericksburg
(Received December 15, 1998)

Abstract. Second centralizers of partial transformations on a finite set are determined. In particular, it is shown that the second centralizer of any partial transformation α consists of partial transformations that are locally powers of α.

Keywords: partial transformation, second centralizer
MSC 2000: 20M20

1. Introduction

The semigroup $P T_{n}$ of partial transformations on the set $X=\{1, \ldots, n\}$ consists of the functions whose domain and range are included in X, with composition as the semigroup operation. For $\alpha \in P T_{n}$, the sets

$$
\begin{aligned}
C(\alpha) & =\left\{\gamma \in P T_{n}: \alpha \circ \gamma=\gamma \circ \alpha\right\} \text { and } \\
C^{2}(\alpha) & =\left\{\beta \in P T_{n}: \gamma \circ \beta=\beta \circ \gamma \text { for each } \gamma \in C(\alpha)\right\}
\end{aligned}
$$

are subsemigroups of $P T_{n}$, called the (first) centralizer of α and the second centralizer of α, respectively. Note that $C^{2}(\alpha) \subseteq C(\alpha)$.

The purpose of this paper is to determine the second centralizers in $P T_{n}$. The second centralizers in the semigroup T_{n} of full transformations on the set X are described in [7].

Obviously, every power $\alpha^{t}(t \geqslant 0)$ of $\alpha \in P T_{n}$ is an element of $C^{2}(\alpha)$. If α is not a nilpotent, then $\left\{\alpha^{t}: t \geqslant 0\right\}$ is a proper subset of $C^{2}(\alpha)$ since the zero (empty) transformation is in $C^{2}(\alpha) \backslash\left\{\alpha^{t}: t \geqslant 0\right\}$. Thus, in general, $C^{2}(\alpha)$ does not consist of just the powers of α. We show, however, that the elements of $C^{2}(\alpha)$ are locally powers of α.

More specifically, every $\alpha \in P T_{n}$ induces a partition $\left\{N, A_{1}, \ldots, A_{m}\right\}$ of the set $X=\{1, \ldots, n\} .\left(A_{1}, \ldots, A_{m}\right.$ correspond to the weakly connected components containing a cycle in the digraph representation of $\alpha ; N$ corresponds to the subgraph of the digraph representation obtained by removing all such components.)

Suppose that $\beta \in C^{2}(\alpha)$. We show that β restricted to N is equal to α^{t} restricted to N for some $t \geqslant 0$. Similarly, β restricted to $A_{i}(i=1, \ldots, m)$ is either 0 or is equal to $\alpha^{t_{i}}$ restricted to A_{i} for some $t_{i} \geqslant 0$. These necessary conditions are not sufficient for β to be in $C^{2}(\alpha)$. In addition, the exponents t, t_{1}, \ldots, t_{m} must be related in a certain way. We prove that the "local powers" requirement together with these relations completely determine $C^{2}(\alpha)$.

2. First centralizers

This section introduces the terminology used throughout the paper and describes the first centralizers of partial transformations. Centralizers in $P T_{n}$ have been studied in [3], [4], [5] and [6].

Let $\alpha \in P T_{n}$. The domain and range of α will be denoted by $\operatorname{dom} \alpha$ and $\operatorname{ran} \alpha$, respectively. If $\beta \in P T_{n}$ is such that $x \alpha=x \beta$ whenever $x \in \operatorname{dom} \alpha \cap \operatorname{dom} \beta$, we define the join $\alpha \beta$ of α and β as the partial transformation with $\operatorname{dom}(\alpha \beta)=\operatorname{dom} \alpha \cup \operatorname{dom} \beta$ that coincides with α on $\operatorname{dom} \alpha$ and with β on $\operatorname{dom} \beta$. Note that the join $\alpha \beta$ (which, if defined, is simply the union of α and β) is distinct from the product (composition) $\alpha \circ \beta$.

For $k \geqslant 1$, let $i_{1}, i_{2}, \ldots, i_{k}$ be distinct elements of X such that $i_{1} \alpha=i_{2}, i_{2} \alpha=$ $i_{3}, \ldots, i_{k-1} \alpha=i_{k}$. Then α restricted to the set $\left\{i_{1}, \ldots, i_{k-1}\right\}$ is called a chain in α of length k (or a k-chain in α) and denoted $\left(i_{1} i_{2} \ldots i_{k}\right]$. (Note that if $k=1$, then (i_{1}] is the zero transformation.) If, in addition, $i_{k} \alpha=i_{1}$ then α restricted to the set $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ is called a circuit in α of length k (or a k-circuit in α) and denoted $\left(i_{1} i_{2} \ldots i_{k}\right)$.

Let $\eta=\left(i_{1} \ldots i_{k}\right]$ be a chain in α. The set $\left\{i_{1}, \ldots, i_{k}\right\}$ is called the span of η and denoted span η. If $i_{1} \notin \operatorname{ran} \alpha$ and $i_{k} \notin \operatorname{dom} \alpha$, we say that η is a maximal chain in α. Note that $\left(i_{1}\right]$ is a maximal chain in α if and only if $i_{1} \notin \operatorname{dom} \alpha \cup \operatorname{ran} \alpha$.

If $\eta=\left(i_{1} \ldots i_{u} x_{r}\right.$] is a chain in α and $\varrho=\left(x_{0} \ldots x_{k-1}\right)$ is a circuit in $\alpha(u, k \geqslant 1)$ such that $i_{1} \notin \operatorname{ran} \alpha$ and $\left\{i_{1}, \ldots, i_{u}, x_{r}\right\} \cap\left\{x_{0}, \ldots, x_{k-1}\right\}=\left\{x_{r}\right\}$, we say that η is a cilium attached to ϱ at x_{r}. To distinguish cilia from maximal chains, we will use the right angle " " for the former and the right bracket "]" for the latter. If $\eta_{1}, \ldots, \eta_{s}$ are the cilia in α attached to ϱ, then the join $\lambda=\eta_{1} \ldots \eta_{s} \varrho$ is called a cell in α. Note that an isolated circuit (with no cilia) also forms a cell.

Every partial transformation $\alpha \in P T_{n}$ is a join

$$
\begin{equation*}
\eta_{1} \ldots \eta_{k} \lambda_{1} \ldots \lambda_{m} \tag{1}
\end{equation*}
$$

of its maximal chains $\eta_{1}, \ldots, \eta_{k}$ and its cells $\lambda_{1}, \ldots, \lambda_{m}$. Join (1) is called the chaincell decomposition of α.

If G is the digraph representation of α, then the maximal chains in α correspond to the simple maximal paths in G, and the cells in α correspond to the weakly connected components of G containing a cycle. For example, the transformation

$$
\alpha=\left(\begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
2 & 3 & - & 5 & 6 & - & 6 & 9 & 10 & 11 & 13 & 10 & 11 & 13 & 15 & -
\end{array}\right) \in P T_{16}
$$

has the digraph representation

and the chain-cell decomposition

If α is a full transformation on X, then there are no maximal chains in α and so $\alpha=\lambda_{1} \ldots \lambda_{m}$ is a join of its cells. (For applications of the digraph representation of full transformations on X, see [2] and [1, 6.2].) If α is a permutation on X, then α is a join of its circuits.

Let $\alpha, \gamma \in P T_{n}$. Suppose that $\eta=\left(i_{1} \ldots i_{u}\right]$ is a chain in α and $\varrho=\left(x_{0} \ldots x_{k-1}\right)$ is a circuit in α. If $\operatorname{dom} \gamma \cap \operatorname{span} \eta \neq \emptyset$, we say that γ meets η. Similarly, if $\operatorname{dom} \gamma \cap \operatorname{dom} \varrho \neq \emptyset$, we say that γ meets ϱ. If $\xi=\left(j_{1} \ldots j_{u}\right]$ is a chain in α such that $i_{1} \gamma=j_{1}, \ldots, i_{u} \gamma=j_{u}$, we say that γ maps η onto ξ.

The first centralizers in $P T_{n}$ are characterized in [4, Theorem 4] (also see [5, 58.8]).

Theorem 1. Let $\alpha, \gamma \in P T_{n}$. Then $\gamma \in C(\alpha)$ if and only if for every maximal chain $\eta=\left(i_{1} \ldots i_{u}\right]$ in α, every circuit $\varrho=\left(x_{0} \ldots x_{k-1}\right)$ in α, and every cilium $\xi=\left(j_{1} \ldots j_{v} x_{r}\right\rangle$ in α attached to ϱ, the following conditions are satisfied:
(1) If γ meets η, then there is a maximal chain $\tau=\left(k_{1} \ldots k_{w}\right]$ in α such that γ maps an initial segment $\left(i_{1} \ldots i_{p}\right]$ of $\eta(p \leqslant u)$ onto a terminal segment $\left(k_{w-p+1} \ldots k_{w}\right.$] of τ and γ does not meet $\left(i_{p+1} \ldots i_{u}\right]$;
(2) If γ meets ϱ, then there is a circuit $\delta=\left(y_{0} \ldots y_{m-1}\right)$ in α such that m divides k, γ maps the points $x_{0}, x_{1}, \ldots, x_{k-1}$ of dom ϱ to $y_{s}, y_{s} \alpha, \ldots, y_{s} \alpha^{k-1}$, and γ maps
the points $j_{1}, j_{2}, \ldots, j_{v}, x_{r}$ of $\operatorname{span} \xi$ to $z, z \alpha, \ldots, z \alpha^{v-1}, z \alpha^{v}$, where z is on δ or some cilium attached to δ;
(3) If γ does not meet ϱ but it meets ξ, then there is a maximal chain $\tau=\left(k_{1} \ldots k_{w}\right]$ in α such that γ maps an initial segment $\left(j_{1} \ldots j_{p}\right]$ of $\xi(p \leqslant v)$ onto a terminal segment $\left(k_{w-p+1} \ldots k_{w}\right)$ of τ and γ does not meet $\left(j_{p+1} \ldots j_{v}\right)$.

3. SECOND CENTRALIZERS

Let $\alpha \in P T_{n}$ and let λ be a cell in α. We define the radius of λ, written $r(\lambda)$, as the largest integer u such that $\left(i_{1} \ldots i_{u} x\right\rangle$ is a cilium in λ. If λ has no cilia, we define $r(\lambda)$ to be 0 . Let $\eta_{1} \ldots \eta_{k}$ be the join of all maximal chains in α and let $N=\operatorname{span} \eta_{1} \cup \ldots \cup \operatorname{span} \eta_{k}$. We define the diameter of N, written $d(N)$, as the largest integer u such that $\left(i_{1} \ldots i_{u}\right]$ is a maximal chain in α. If $N=\emptyset$ (that is, if α has no maximal chains), we define $d(N)$ to be 0 .
 $\{1,2,3\}, d(N)=2, r\left(\lambda_{1}\right)=2, r\left(\lambda_{2}\right)=1$, and $r\left(\lambda_{3}\right)=0$.

Let $\mathbb{N}=\{0,1,2, \ldots\}$ denote the set of nonnegative integers. We introduce an element $-\infty \notin \mathbb{N}$ and agree that for every $a \in \mathbb{N},-\infty<a$, and that for every $\beta \in P T_{n}, \beta^{-\infty}=0$, where 0 is the zero (empty) transformation. For $\beta \in P T_{n}$ and a subset A of $X, \beta \mid A$ will denote the restriction of β to A. Finally, the length of a circuit ϱ will be denoted by $\ell(\varrho)$.

The following theorem determines the second centralizers of partial transformations.

Theorem 2. Let $\alpha, \beta \in P T_{n}$, let $\alpha=\eta_{1} \ldots \eta_{k} \lambda_{1} \ldots \lambda_{m}$ be the chain-cell decomposition of α, let $N=\operatorname{span} \eta_{1} \cup \ldots \cup \operatorname{span} \eta_{k}$, and let ϱ_{i} be the circuit in the cell λ_{i}. Then $\beta \in C^{2}(\alpha)$ if and only if there are $t \in \mathbb{N}$ and $t_{1}, \ldots, t_{m} \in \mathbb{N} \cup\{-\infty\}$ such that for all $i, j \in\{1, \ldots, m\}$:
(1) $\beta\left|N=\alpha^{t}\right| N$;
(2) $\beta\left|\operatorname{dom} \lambda_{i}=\alpha^{t i}\right| \operatorname{dom} \lambda_{i}$;
(3) If either $t<\min \left\{d(N), r\left(\lambda_{i}\right)\right\}$ or $0 \leqslant t_{i}<\min \left\{d(N), r\left(\lambda_{i}\right)\right\}$, then $t_{i}=t$;
(4) If $\ell\left(\varrho_{i}\right)$ divides $\ell\left(\varrho_{j}\right)$, then:
a) If $t_{i} \geqslant 0$ and $t_{j} \geqslant 0$, then $t_{i} \equiv t_{j}\left(\bmod \ell\left(\varrho_{i}\right)\right)$;
b) If either t_{i} or t_{j} is less than $\min \left\{r\left(\lambda_{i}\right), r\left(\lambda_{j}\right)\right\}$, then $t_{i}=t_{j}$.

Note that (4b) and the convention $-\infty<a$ for every $a \in \mathbb{N}$ imply that if $\ell\left(\varrho_{i}\right)$ divides $\ell\left(\varrho_{j}\right)$, then $t_{i}=-\infty \Longleftrightarrow t_{j}=-\infty$. To illustrate Theorem 2, we consider
the following transformations in $P T_{12}$:

$$
\begin{aligned}
& \alpha=\eta_{1} \lambda_{1} \lambda_{2}=\left(\begin{array}{llllll}
1 & 2 & 3
\end{array}\right]\left(\begin{array}{lllll}
6 & 7 & 4\rangle
\end{array}\left(\begin{array}{llll}
4 & 5
\end{array}\right)\left(\begin{array}{llll}
12 & 8\rangle & (8 & 9
\end{array} 1011\right),\right. \\
& \beta_{1}=\left(\begin{array}{ll}
6 & 2
\end{array}\right]\left(\begin{array}{ll}
7 & 3
\end{array}\right] \text {, } \\
& \beta_{2}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right], \\
& \beta_{3}=\left(\begin{array}{ll}
6 & 4\rangle \\
(4)
\end{array}\right)\left(\begin{array}{ll}
7 & 5\rangle \\
(5)
\end{array}\right)\left(\begin{array}{lll}
12 & 8\rangle \\
\hline
\end{array}\left(\begin{array}{lll}
8 & 10 & 11
\end{array}\right),\right. \\
& \beta_{4}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left(\begin{array}{lll}
6 & 7 & 4\rangle \\
(4 & 5
\end{array}\right), \\
& \beta_{5}=(64\rangle(4)(75\rangle(5)(8)(9)(10)(11)(12), \\
& \beta_{6}=\left(\begin{array}{llll}
1 & 3
\end{array}\right]\left(\begin{array}{lll}
6 & 7 & 4\rangle(4
\end{array}\right)\left(\begin{array}{lll}
12 & 10\rangle(8 & 11 \\
10 & 9
\end{array}\right), \\
& \beta_{7}=\left(\begin{array}{ll}
1 & 3
\end{array}\right]\left(\begin{array}{lll}
6 & 5\rangle
\end{array}\right)\left(\begin{array}{lll}
7 & 4
\end{array}\right)\left(\begin{array}{llll}
4 & 5
\end{array}\right)\left(\begin{array}{llll}
12 & 8\rangle
\end{array}\left(\begin{array}{llll}
8 & 9 & 10 & 11
\end{array}\right) .\right.
\end{aligned}
$$

By Theorem 1, each β_{i} is in $C(\alpha)$. Note that $N=\{1,2,3\}, d(N)=3, \ell\left(\varrho_{1}\right)=2$, $\ell\left(\varrho_{2}\right)=4, r\left(\lambda_{1}\right)=2$, and $r\left(\lambda_{2}\right)=1$. We apply Theorem 2 to each β_{i}.
(1) $\beta_{1} \notin C^{2}(\alpha)$ since β_{1} restricted to dom λ_{1} is not equal to any power of α restricted to $\operatorname{dom} \lambda_{1}$.
(2) $\beta_{2}\left|N=\alpha^{1}\right| N, \beta_{2}\left|\operatorname{dom} \lambda_{1}=\alpha^{-\infty}\right| \operatorname{dom} \lambda_{1}$, and $\beta_{2}\left|\operatorname{dom} \lambda_{2}=\alpha^{-\infty}\right| \operatorname{dom} \lambda_{2}$, but $\beta_{2} \notin C^{2}(\alpha)$ since $1<\min \left\{d(N), r\left(\lambda_{1}\right)\right\}$ and $1 \neq-\infty$.
(3) $\beta_{3}\left|N=\alpha^{3}\right| N, \beta_{3}\left|\operatorname{dom} \lambda_{1}=\alpha^{2}\right| \operatorname{dom} \lambda_{1}$, and $\beta_{3}\left|\operatorname{dom} \lambda_{2}=\alpha^{1}\right| \operatorname{dom} \lambda_{2}$, but $\beta_{3} \notin C^{2}(\alpha)$ since $2 \not \equiv 1\left(\bmod \ell\left(\varrho_{1}\right)\right)$.
(4) $\beta_{4}\left|N=\alpha^{1}\right| N, \beta_{4}\left|\operatorname{dom} \lambda_{1}=\alpha^{1}\right| \operatorname{dom} \lambda_{1}$, and $\beta_{4}\left|\operatorname{dom} \lambda_{2}=\alpha^{-\infty}\right| \operatorname{dom} \lambda_{2}$, but $\beta_{4} \notin C^{2}(\alpha)$ since $-\infty<\min \left\{r\left(\lambda_{1}\right), r\left(\lambda_{2}\right)\right\}$ and $1 \neq-\infty$.
(5) $\beta_{5}\left|N=\alpha^{3}\right| N, \beta_{5}\left|\operatorname{dom} \lambda_{1}=\alpha^{2}\right| \operatorname{dom} \lambda_{1}, \beta_{5}\left|\operatorname{dom} \lambda_{2}=\alpha^{0}\right| \operatorname{dom} \lambda_{2}$, and $2 \equiv 0$ $\left(\bmod \ell\left(\varrho_{1}\right)\right)$, but $\beta_{5} \notin C^{2}(\alpha)$ since $0<\min \left\{r\left(\lambda_{1}\right), r\left(\lambda_{2}\right)\right\}$ and $2 \neq 0$.
(6) $\beta_{6}\left|N=\alpha^{2}\right| N, \beta_{6}\left|\operatorname{dom} \lambda_{1}=\alpha^{1}\right| \operatorname{dom} \lambda_{1}, \beta_{6}\left|\operatorname{dom} \lambda_{2}=\alpha^{3}\right| \operatorname{dom} \lambda_{2}$, and $3 \equiv 1$ $\left(\bmod \ell\left(\varrho_{1}\right)\right)$, but $\beta_{6} \notin C^{2}(\alpha)$ since $1<\min \left\{d(N), r\left(\lambda_{1}\right)\right\}$ and $1 \neq 3$.
(7) $\beta_{7}\left|N=\alpha^{2}\right| N, \beta_{7}\left|\operatorname{dom} \lambda_{1}=\alpha^{3}\right| \operatorname{dom} \lambda_{1}, \beta_{7}\left|\operatorname{dom} \lambda_{2}=\alpha^{1}\right| \operatorname{dom} \lambda_{2}$, and (3) and (4) of Theorem 2 are satisfied, so $\beta_{7} \in C^{2}(\alpha)$.

The remainder of the paper will be devoted to proving Theorem 2. It is convenient to lay out the proof of the "only if" part of the theorem as a series of lemmas.

The following two lemmas show that for $\alpha \in P T_{n}$ and $\beta \in C^{2}(\alpha), \beta$ restricted to N is equal to some power of α restricted to N. (In other words, such a β satisfies (1) of Theorem 2.)

Lemma 3. Let $\alpha, \beta \in P T_{n}$ be such that $\beta \in C^{2}(\alpha)$, and let $\eta=\left(i_{1} \ldots i_{u}\right]$ be a maximal chain in α. Then there is $t \in\{0, \ldots, u\}$ such that $\beta\left|\operatorname{span} \eta=\alpha^{t}\right| \operatorname{span} \eta$.

Proof. If $\operatorname{dom} \beta \cap \operatorname{span} \eta=\emptyset$, then $\beta\left|\operatorname{span} \eta=\alpha^{u}\right| \operatorname{span} \eta$. Otherwise, by Theorem $1, i_{1} \in \operatorname{dom} \beta$ and one of the following two cases holds.

Case 1. $i_{1} \beta=i_{p}$ for some $p \in\{1, \ldots, u\}$.

Then $\beta\left|\operatorname{span} \eta=\alpha^{p-1}\right| \operatorname{span} \eta$ by Theorem 1 .
Case 2. There is a maximal chain $\xi=\left(j_{1} \ldots j_{u}\right]$ in α such that for some $p \in$ $\{1, \ldots, v\}, j_{p} \notin\left\{i_{1}, \ldots, i_{u}\right\}$ and $i_{1} \beta=j_{p}$.

We will construct $\gamma \in C(\alpha)$ such that $i_{1} \notin \operatorname{dom} \gamma$ and $j_{p} \in \operatorname{dom} \gamma$. Set $\operatorname{dom} \gamma=$ $\left\{x \in \operatorname{dom} \alpha: x \alpha^{q}=j_{p}\right.$ for some $\left.q \geqslant 0\right\}$. Define the values of γ so that for every maximal chain $\mu=\left(m_{1} \ldots m_{d} j_{p} \ldots j_{v}\right](d \geqslant 0)$ in α whose span contains j_{p}, γ maps the initial segment $\left(m_{1} \ldots m_{d} j_{p}\right]$ of μ onto a terminal segment of μ. By Theorem 1 and the construction of γ, we have $\gamma \in C(\alpha), i_{1} \notin \operatorname{dom} \gamma$ (since $j_{p} \notin\left\{i_{1}, \ldots, i_{u}\right\}$), and $j_{p} \in \operatorname{dom} \gamma$. Thus $i_{1}(\beta \circ \gamma)=j_{p} \gamma$ is defined and $i_{1}(\gamma \circ \beta)$ is undefined. It follows that $\gamma \notin C(\beta)$, which is a contradiction.

Recall that for a circuit $\varrho, \ell(\varrho)$ denotes the length of ϱ. Similarly, for a chain η, $\ell(\eta)$ will denote the length of η.

Lemma 4. Let $\alpha, \beta \in P T_{n}$ be such that $\beta \in C^{2}(\alpha)$, and let $\eta=\left(i_{1} \ldots i_{u}\right]$ and $\xi=\left(j_{1} \ldots j_{v}\right]$ be maximal chains in α. Suppose that $t \in\{0, \ldots, u\}$ and $w \in\{0, \ldots, v\}$ are integers such that $\beta\left|\operatorname{span} \eta=\alpha^{t}\right| \operatorname{span} \eta$ and $\beta\left|\operatorname{span} \xi=\alpha^{w}\right| \operatorname{span} \xi$. If $t>w$, then $\beta\left|\operatorname{span} \xi=\alpha^{t}\right| \operatorname{span} \xi$.

Proof. Suppose $t>w$. Proceeding by induction on $\ell(\eta)+\ell(\xi)$, we assume that the lemma is true for all maximal chains η^{\prime} and ξ^{\prime} in α with $\ell\left(\eta^{\prime}\right)+\ell\left(\xi^{\prime}\right)>\ell(\eta)+\ell(\xi)$. We consider three cases.

Case 1. $w=0$.
Then $i_{u} \beta=i_{u} \alpha^{t}$ is undefined (since $t>w=0$) and $j_{1} \beta=j_{1} \alpha^{0}=j_{1}$. Define $\gamma \in P T_{n}$ by: $\operatorname{dom} \gamma=\left\{j_{1}\right\}$ and $j_{1} \gamma=i_{u}$. By Theorem 1, $\gamma \in C(\alpha)$. Since $j_{1}(\beta \circ \gamma)=j_{1} \gamma=i_{u}$ and $j_{1}(\gamma \circ \beta)=i_{u} \beta$ is undefined, $\gamma \notin C(\beta)$, which is a contradiction.

Case 2. $\quad w=v$.
Then $\beta|\operatorname{span} \xi=0| \operatorname{span} \xi=\alpha^{t} \mid \operatorname{span} \xi($ since $t>w)$.
Case 3. $1 \leqslant w<v$.
Then $j_{1} \beta=j_{w+1}$. Let $m=\min \{u, v\}$. Since $w<v$ and $w<t \leqslant u, w+1 \leqslant m$. Let $\tau=\left(k_{1} \ldots k_{b} j_{m} \ldots j_{v}\right](b \geqslant 0)$ be a longest maximal chain in α whose span contains j_{m}. We consider two cases.

Case 3.1. $\quad b \leqslant u-1$.
Then we can construct $\gamma \in C(\alpha)$ that maps the initial segment $\left(j_{1} \ldots j_{m}\right]$ of ξ onto a terminal segment of η. Set $\operatorname{dom} \gamma=\left\{x \in \operatorname{dom} \alpha: x \alpha^{q}=j_{m}\right.$ for some $\left.q \geqslant 0\right\}$. Let $\mu=\left(m_{1} \ldots m_{d} j_{m} \ldots j_{v}\right](d \geqslant 0)$ be any maximal chain in α whose span contains j_{m}. Since $\ell(\tau) \geqslant \ell(\mu)$ and $b \leqslant u-1$, we have $u-d \geqslant u-b \geqslant 1$ and so $u \geqslant d+1$. Thus we can define γ so that it maps $\left(m_{1} \ldots m_{d} j_{m}\right]$ onto a terminal segment of η. In particular, γ maps the initial segment $\left(j_{1} \ldots j_{m}\right]$ of ξ onto a terminal segment of η, say $\left(i_{r} \ldots i_{u}\right]$.

By Theorem 1 and the construction of γ, we have $\gamma \in C(\alpha), j_{1} \gamma=i_{r}$, and $j_{w+1} \gamma=i_{r+w}$. Since $i_{r} \beta=i_{r} \alpha^{t}$, either $i_{r} \beta$ is undefined or $i_{r} \beta=i_{r+t}$. Thus $j_{1}(\beta \circ \gamma)=j_{w+1} \gamma=i_{r+w}$ and either $j_{1}(\gamma \circ \beta)=i_{r} \beta$ is undefined or $j_{1}(\gamma \circ \beta)=i_{r} \beta=$ i_{r+t}. In either case, since $t>w$, it follows that $\gamma \notin C(\beta)$, which is a contradiction.

Case 3.2. $\quad b \geqslant u$.
Then $\ell(\tau)=b+v-m+1 \geqslant u+v-m+1 \geqslant m+v-m+1=v+1>\ell(\xi)$ and $\ell(\tau)=b+v-m+1 \geqslant u+v-m+1 \geqslant u+m-m+1=u+1>\ell(\eta)$. By Lemma $3, \beta\left|\operatorname{span} \tau=\alpha^{p}\right| \operatorname{span} \tau$ for some $p \in\{0, \ldots, \ell(\tau)\}$. Suppose $p>w$. Then, by the inductive hypothesis applied to τ and $\xi, \beta\left|\operatorname{span} \xi=\alpha^{p}\right| \operatorname{span} \xi$. It follows that $j_{1} \beta=j_{1} \alpha^{p} \neq j_{w+1}=j_{1} \beta$, which is a contradiction. Thus $p \leqslant w$. Then $t>p$ and so, by the inductive hypothesis applied to η and $\tau, \beta\left|\operatorname{span} \tau=\alpha^{t}\right| \operatorname{span} \tau$. Note that, since $\ell(\tau)>\ell(\eta)$ and $t \in\{0, \ldots, \ell(\eta)\}$, we also have $t \in\{0, \ldots, \ell(\tau)\}$. Now repeat the argument used in the case $p>w$ above (with p replaced by t) to obtain a contradiction. This concludes the proof.

The next three lemmas show that for $\alpha \in P T_{n}$ and $\beta \in C^{2}(\alpha), \beta$ restricted to the domain of a cell λ_{i} is equal to some power (possibly $-\infty$) of α restricted to that domain. (In other words, such a β satisfies (2) of Theorem 2.)

Lemma 5. Let $\alpha, \beta \in P T_{n}$ be such that $\beta \in C^{2}(\alpha)$, and let $\varrho=\left(x_{0} \ldots x_{k-1}\right)$ be a circuit in α. If $\operatorname{dom} \beta \cap \operatorname{dom} \varrho \neq \emptyset$, then there is $t \in\{0, \ldots, k-1\}$ such that $\beta\left|\operatorname{dom} \varrho=\alpha^{t}\right| \operatorname{dom} \varrho$.

Proof. By Theorem 1, $x_{0} \in \operatorname{dom} \beta$ and one of the following two cases holds.
Case 1. $x_{0} \beta=x_{t}$ for some $t \in\{0, \ldots, k-1\}$.
Then $\beta\left|\operatorname{dom} \varrho=\alpha^{t}\right| \operatorname{dom} \varrho$ by Theorem 1 .
Case 2. There is a circuit $\delta=\left(y_{0} \ldots y_{m-1}\right)$ in α such that $\delta \neq \varrho, m$ divides k, and $x_{0} \beta=y_{p}$ for some $p \in\{0, \ldots, m-1\}$.

Let λ be the cell in α that has δ as the circuit. Define $\gamma \in P T_{n}$ by $\operatorname{dom} \gamma=\operatorname{dom} \lambda$ and $y \gamma=y$ for every $y \in \operatorname{dom} \lambda$. By Theorem 1 and the construction of γ, we have $\gamma \in C(\alpha), x_{0} \notin \operatorname{dom} \gamma$, and $y_{p} \gamma=y_{p}$. Since $x_{0}(\beta \circ \gamma)=y_{p} \gamma=y_{p}$ and $x_{0}(\gamma \circ \beta)$ is undefined, $\gamma \notin C(\beta)$, which is a contradiction.

Lemma 6. Let $\alpha, \beta \in P T_{n}$ be such that $\beta \in C^{2}(\alpha)$, and let $\eta=\left(i_{1} \ldots i_{u} x_{0}\right\rangle$ be a cilium in α attached to a circuit $\varrho=\left(x_{0} \ldots x_{k-1}\right)$. If $\operatorname{dom} \beta \cap \operatorname{span} \eta \neq \emptyset$, then there is $t \in\{0, \ldots, u+k-1\}$ such that $\beta\left|\operatorname{span} \eta=\alpha^{t}\right| \operatorname{span} \eta$.

Proof. Let λ be the cell in α that has ϱ as the circuit. By Theorem 1 and Lemma $5, i_{1} \in \operatorname{dom} \beta$ and one of the following four cases holds.

Case 1. $i_{1} \beta=i_{p}$ for some $p \in\{1, \ldots, u\}$.
Then $\beta\left|\operatorname{span} \eta=\alpha^{p-1}\right| \operatorname{span} \eta$ by Theorem 1.

Case 2. $\quad i_{1} \beta=x_{p}$ for some $p \in\{0, \ldots, k-1\}$.
Then $\beta\left|\operatorname{span} \eta=\alpha^{u+p}\right| \operatorname{span} \eta$ by Theorem 1 .
Case 3. There is a cilium $\xi=\left(j_{1} \ldots j_{v} x_{s}\right\rangle$ in λ such that for some $p \in\{1, \ldots, v\}$, $i_{1} \beta=j_{p}$ and $j_{p} \notin\left\{i_{1}, \ldots, i_{u}\right\}$.

We consider two cases.
Case 3.1. $s \neq 0$, i.e., η and ξ meet ϱ at different points.
We will construct $\gamma \in C(\alpha)$ such that $i_{1} \gamma=i_{1}$ and $j_{p} \gamma \neq j_{p}$. Set $\operatorname{dom} \gamma=\operatorname{dom} \lambda$. Let $\mu=\left(m_{1} \ldots m_{d} x_{s}\right)$ be any cilium in λ attached to ϱ at x_{s} and let $x_{h} \in \operatorname{dom} \varrho$ be such that $x_{h} \alpha^{d}=x_{s}$. Define γ so that it maps the points $m_{1}, m_{2}, \ldots, m_{d}, x_{s}$ of $\operatorname{span} \mu$ to $x_{h}, x_{h} \alpha, \ldots, x_{h} \alpha^{d-1}, x_{h} \alpha^{d}=x_{s}$. If $y \in \operatorname{dom} \lambda$ is not in the span of any cilium attached to ϱ at x_{s}, define $y \gamma=y$. By Theorem 1 and the construction of γ, we have $\gamma \in C(\alpha), i_{1} \gamma=i_{1}$ (since η is not attached to ϱ at x_{s}), and $j_{p} \gamma \neq j_{p}$ (since ξ is attached to ϱ at x_{s} and so $j_{p} \gamma \in \operatorname{dom} \varrho$). Since $i_{1}(\beta \circ \gamma)=j_{p} \gamma \neq j_{p}$ and $i_{1}(\gamma \circ \beta)=i_{1} \beta=j_{p}, \gamma \notin C(\beta)$, which is a contradiction.

Case 3.2. $s=0$, i.e., η and ξ are attached to ϱ at the same point.
Since both η and ξ meet ϱ at x_{0} and $j_{p} \notin\{1, \ldots, u\}$, we have $\eta=\left(i_{1} \ldots i_{q} z \ldots\right\rangle$, $\xi=\left(j_{1} \ldots j_{p} \ldots j_{r} z \ldots\right\rangle(q \geqslant 1, r \geqslant p)$, and $\left\{i_{1}, \ldots, i_{q}\right\} \cap\left\{j_{1}, \ldots, j_{r}\right\}=\emptyset$. (Note that z may be equal to $\left.x_{0}.\right)$ Let $\tau=\left(k_{1} \ldots k_{b} j_{r} z \ldots\right\rangle(b \geqslant 0)$ be a longest cilium in λ whose span contains j_{r}. If $j_{p} \in \operatorname{span} \tau$, we may assume that $\xi=\tau$. We consider three cases.

Case 3.2.1. $\quad \tau \neq \xi$ (which implies $\left.j_{p} \notin \operatorname{span} \tau\right)$.
We will construct $\gamma \in C(\alpha)$ such that $i_{1} \gamma=i_{1}$ and $j_{p} \gamma \neq j_{p}$. Set $\operatorname{dom} \gamma=\operatorname{dom} \lambda$. Let $\mu=\left(m_{1} \ldots m_{d} x_{0}\right\rangle$ be any cilium in λ whose span contains j_{r}. Since $\ell(\tau) \geqslant \ell(\mu)$, we can define γ so that it maps μ onto a terminal segment of τ. If $y \in \operatorname{dom} \lambda$ is not in the span of any cilium in λ whose span contains j_{r}, define $y \gamma=y$. By Theorem 1 and the construction of γ, we have $\gamma \in C(\alpha), i_{1} \gamma=i_{1}$ (since $j_{r} \notin \operatorname{span} \eta$), and $j_{p} \gamma \neq j_{p}$ (since $j_{p} \gamma \in \operatorname{span} \tau$ and $j_{p} \notin \operatorname{span} \tau$), which leads to a contradiction as in Case 3.1.

Case 3.2.2. $\quad \tau=\xi$ and $\ell(\eta) \geqslant \ell(\xi)$.
Again, we will construct $\gamma \in C(\alpha)$ such that $i_{1} \gamma=i_{1}$ and $j_{p} \gamma \neq j_{p}$. Let $\mu=$ $\left(m_{1} \ldots m_{d} x_{0}\right)$ be any cilium in λ whose span contains j_{r}. Since $\ell(\eta) \geqslant \ell(\xi) \geqslant \ell(\mu)$, we can define γ so that it maps μ onto a terminal segment of η. If $y \in \operatorname{dom} \lambda$ is not in the span of any cilium in λ whose span contains j_{r}, define $y \gamma=y$. By Theorem 1 and the construction of γ, we have $\gamma \in C(\alpha), i_{1} \gamma=i_{1}$ (since $j_{r} \notin \operatorname{span} \eta$), and $j_{p} \gamma \neq j_{p}$ (since $j_{p} \gamma \in \operatorname{span} \eta$ and $j_{p} \notin \operatorname{span} \eta$), which leads to a contradiction as in Case 3.1.

Case 3.2.3. $\quad \tau=\xi$ and $\ell(\eta)<\ell(\xi)$.
We will construct $\gamma \in C(\alpha)$ such that $j_{1} \gamma=i_{1}$ and $j_{p} \notin \operatorname{ran} \gamma$. Set $\operatorname{dom} \gamma=\operatorname{dom} \lambda$. Let $a \in\{0, \ldots, k-1\}$ be such that $a \equiv v-u(\bmod k)$. Let $\mu=\left(m_{1} \ldots m_{d} x_{0}\right\rangle$ be any cilium in λ whose span contains j_{r} and let $c=v-d+1$. Since $\ell(\xi) \geqslant \ell(\mu)$, $c \geqslant 1$. If $c \leqslant u$, define γ so that it maps the points $m_{1}, m_{2}, \ldots, m_{d}, x_{0}$ of dom μ to
$i_{c}, i_{c} \alpha, \ldots, i_{c} \alpha^{d-1}, i_{c} \alpha^{d}$. Note that $i_{c} \alpha^{d}=x_{a}$. If $c>u$, select $x_{h} \in \operatorname{dom} \varrho$ so that $x_{h} \alpha^{d}=x_{a}$ and define γ so that it maps the points $m_{1}, m_{2}, \ldots, m_{d}, x_{0}$ of $\operatorname{dom} \mu$ to $x_{h}, x_{h} \alpha, \ldots, x_{h} \alpha^{d-1}, x_{h} \alpha^{d}=x_{a}$. Note that if $\mu=\xi$, then $c=v-d+1=v-v+1=1$ and $j_{1} \gamma=m_{1} \gamma=i_{c}=i_{1}$. If $y \in \operatorname{dom} \lambda$ is not in the span of any cilium whose span contains j_{r}, we define $y \gamma=y \alpha^{a}$.

By Theorem 1 and the construction of γ, we have $\gamma \in C(\alpha), j_{1} \gamma=i_{1}$, and $j_{p} \notin \operatorname{ran} \gamma$. (Indeed, let $y \in \operatorname{dom} \lambda$. If y is in the span of a cilium whose span contains j_{r}, then $y \gamma$ is in the set $\left\{i_{1}, \ldots, i_{u}\right\} \cup \operatorname{dom} \varrho$. Thus $y \gamma \neq j_{p}$ since j_{p} is not in that set. If y is not in the span of any such cilium, then $y \gamma=y \alpha^{a} \neq j_{p}$ since otherwise we would have $y \alpha^{a+r-p}=j_{r}$, which cannot happen if y is not in the span of a cilium whose span contains j_{r}. Hence $j_{p} \notin \operatorname{ran} \gamma$.) Since $\operatorname{ran}(\beta \circ \gamma) \subseteq \operatorname{ran} \gamma$, $j_{p} \notin \operatorname{ran}(\beta \circ \gamma)$. Since $j_{1}(\gamma \circ \beta)=i_{1} \beta=j_{p}, j_{p} \in \operatorname{ran}(\gamma \circ \beta)$. It follows that $\gamma \notin C(\beta)$, which is a contradiction.

Case 4. There is a maximal chain $\xi=\left(j_{1} \ldots j_{v}\right]$ in α such that $i_{1} \beta=j_{p}$ for some $p \in\{1, \ldots, v\}$.

Define $\gamma \in P T_{n}$ by: dom γ is the union of spans of all maximal chains in α, and $y \gamma=y$ for all $y \in \operatorname{dom} \gamma$. By Theorem 1 and the construction of γ, we have $\gamma \in C(\alpha)$, $j_{p} \in \operatorname{dom} \gamma$, and $i_{1} \notin \operatorname{dom} \gamma$. Since $i_{1}(\beta \circ \gamma)=j_{p} \gamma$ is defined and $i_{1}(\gamma \circ \beta)=\left(i_{1} \gamma\right) \beta$ is undefined, $\gamma \notin C(\beta)$, which is a contradiction.

Lemma 7. Let $\alpha, \beta \in P T_{n}$ be such that $\beta \in C^{2}(\alpha)$, and let $\eta=\left(i_{1} \ldots i_{u} x_{0}\right\rangle$ and $\xi=\left(j_{1} \ldots j_{v} x_{s}\right\rangle$ be cilia in α attached to a circuit $\varrho=\left(x_{0} \ldots x_{k-1}\right)$ such that $\beta\left|\operatorname{dom} \varrho=\alpha^{e}\right| \operatorname{dom} \varrho$ for some $e \in\{0, \ldots, k-1\}$. Suppose that $t \in\{0, \ldots, u+k-1\}$ and $w \in\{0, \ldots, v+k-1\}$ are integers such that $\beta\left|\operatorname{span} \eta=\alpha^{t}\right| \operatorname{span} \eta$ and $\beta \mid \operatorname{span} \xi=$ $\alpha^{w} \mid \operatorname{span} \xi$. If $t>w$, then $\beta\left|\operatorname{span} \xi=\alpha^{t}\right| \operatorname{span} \xi$.

Proof. Suppose $t>w$ and let λ be the cell in α that has ϱ as the circuit. Proceeding by induction on $\ell(\eta)+\ell(\xi)$, we assume that the lemma is true for all cilia η^{\prime} and ξ^{\prime} in λ with $\ell\left(\eta^{\prime}\right)+\ell\left(\xi^{\prime}\right)>\ell(\eta)+\ell(\xi)$.

Since $x_{0} \alpha^{t}=x_{0} \alpha^{e}$ and $x_{s} \alpha^{w}=x_{s} \alpha^{e}$, we have $t \equiv e(\bmod k)$ and $w \equiv e(\bmod k)$. Thus $t \equiv w(\bmod k)$ and so, since $t>w, t=w+l k$ for some $l \geqslant 1$. We consider three cases.

Case 1. $w=0$.
Then $i_{u} \beta=i_{u} \alpha^{l k}=x_{k-1}$ and $j_{1} \beta=j_{1} \alpha^{0}=j_{1}$. We will construct $\gamma \in C(\alpha)$ such that $j_{1} \gamma=i_{u}$. Set $\operatorname{dom} \gamma=\operatorname{dom} \lambda$. Select $q \in\{0, \ldots, k-1\}$ so that $q \equiv$ $v-1(\bmod k)$ and define γ so that it maps the points $j_{1}, j_{2}, \ldots, j_{v}, x_{s}$ of $\operatorname{span} \xi$ to $i_{u}, i_{u} \alpha=x_{0}, \ldots, i_{u} \alpha^{v-1}, i_{u} \alpha^{v}=x_{q}$. Let $a \in\{0, \ldots, k-1\}$ be such that $a \equiv q-s$ $(\bmod k)$. For any cilium $\mu=\left(m_{1} \ldots m_{d} x_{c}\right\rangle$ in λ with $\mu \neq \xi$, select $x_{h} \in \operatorname{dom} \varrho$ so that $x_{h} \alpha^{d}=x_{a+c}$ and define γ so that it maps the points $m_{1}, m_{2}, \ldots, m_{d}, x_{c}$ of $\operatorname{span} \mu$ to $x_{h}, x_{h} \alpha, \ldots, x_{h} \alpha^{d-1}, x_{h} \alpha^{d}=x_{a+c}$. By Theorem 1 and the construction of γ, we
have $\gamma \in C(\alpha)$ and $j_{1} \gamma=i_{u}$. Since $j_{1}(\beta \circ \gamma)=j_{1} \gamma=i_{u}$ and $j_{1}(\gamma \circ \beta)=i_{u} \beta=x_{k-1}$, $\gamma \notin C(\beta)$, which is a contradiction.

Case 2. $\quad w \geqslant v$.
Then for each $p \in\{1, \ldots, v\}, j_{p} \beta=j_{p} \alpha^{w}=x_{q}$ for some $q \in\{0, \ldots, k-1\}$. Thus $j_{p} \alpha^{t}=j_{p} \alpha^{w+l k}=\left(j_{p} \alpha^{w}\right) \alpha^{l k}=x_{q} \alpha^{l k}=x_{q}=j_{p} \beta$. Similarly, $x_{s} \alpha^{t}=x_{s} \beta$ and so $\beta\left|\operatorname{span} \xi=\alpha^{t}\right| \operatorname{span} \xi$.

Case 3. $1 \leqslant w<v$.
Then $j_{1} \beta=j_{1} \alpha^{w}=j_{w+1}$. Let $m=\min \{u, v\}$. Since $w<v$ and $w=t-l k \leqslant$ $u+k-1-l k=u-(l-1) k-1<u, w+1 \leqslant m$. Let $\tau=\left(k_{1} \ldots k_{b} j_{m} \ldots j_{v} x_{s}\right\rangle$ $(b \geqslant 0)$ be a longest cilium in λ whose span contains j_{m}. We consider two cases.

Case 3.1. $\quad b \leqslant u-1$.
Then we can construct $\gamma \in C(\alpha)$ that maps the initial segment $\left(j_{1} \ldots j_{m}\right]$ of ξ onto a terminal segment of $\left(i_{1} \ldots i_{u}\right]$. Set $\operatorname{dom} \gamma=\operatorname{dom} \lambda$. Select $q \in\{0, \ldots, k-1\}$ such that $q \equiv v-m(\bmod k)$. Let $\mu=\left(m_{1} \ldots m_{d} j_{m} \ldots j_{v} x_{s}\right\rangle(d \geqslant 0)$ be any cilium in λ whose span contains j_{m}. Since $\ell(\tau) \geqslant \ell(\mu)$ and $b \leqslant u-1$, we have $u \geqslant b+1 \geqslant d+1$. Thus we can define γ so that it maps the initial segment ($m_{1} \ldots m_{d} j_{m}$] of μ onto a terminal segment of $\left(i_{1} \ldots i_{u}\right]$ and the remaining points of $\operatorname{span} \mu, j_{m+1}, j_{m+2}, \ldots, j_{v}, x_{s}$, to $x_{0}, x_{0} \alpha, \ldots, x_{0} \alpha^{v-m-1}, x_{0} \alpha^{v-m}=x_{q}$. In particular, γ maps the initial segment $\left(j_{1} \ldots j_{m}\right]$ of ξ onto a terminal segment of $\left(i_{1} \ldots i_{u}\right]$, say $\left(i_{r} \ldots i_{u}\right]$. Let $\mu=\left(m_{1} \ldots m_{d} x_{c}\right)$ be any cilium in λ whose span does not contain j_{m}. Let $a \in\{0, \ldots, k-1\}$ be such that $a \equiv q-s(\bmod k)$. Select $x_{h} \in \operatorname{dom} \varrho$ so that $x_{h} \alpha^{d}=x_{c+a}$ and define γ so that it maps the points $m_{1}, m_{2}, \ldots, m_{d}, x_{c}$ of $\operatorname{span} \mu$ to $x_{h}, x_{h} \alpha, \ldots, x_{h} \alpha^{d-1}, x_{h} \alpha^{d}=x_{c+a}$.

By Theorem 1 and the construction of γ, we have $\gamma \in C(\alpha), j_{1} \gamma=i_{r}$, and $j_{w+1} \gamma=i_{r+w}$. Since $j_{1}(\beta \circ \gamma)=j_{w+1} \gamma=i_{r+w}$ and $j_{1}(\gamma \circ \beta)=i_{r} \beta=i_{r} \alpha^{t} \neq i_{r+w}$ (since $t>w), \gamma \notin C(\beta)$, which is a contradiction.

Case 3.2. $\quad b \geqslant u$.
Then $\ell(\tau)=b+v-m+2 \geqslant u+v-m+2 \geqslant m+v-m+2=v+2>\ell(\xi)$ and $\ell(\tau)=b+v-m+2 \geqslant u+v-m+2 \geqslant u+m-m+2=u+2>\ell(\eta)$. By Lemma 6 , $\beta\left|\operatorname{span} \tau=\alpha^{p}\right| \operatorname{span} \tau$ for some $p \in\{0, \ldots, \ell(\tau)+k-2\}$. Suppose $p>w$. Then, by the inductive hypothesis applied to τ and $\xi, \beta\left|\operatorname{span} \xi=\alpha^{p}\right| \operatorname{span} \xi$. It follows that $j_{1} \beta=j_{1} \alpha^{p} \neq j_{w+1}=j_{1} \beta$, which is a contradiction. Thus $p \leqslant w$. Then $t>p$ and so, by the inductive hypothesis applied to η and $\tau, \beta\left|\operatorname{span} \tau=\alpha^{t}\right| \operatorname{span} \tau$. Note that, since $\ell(\tau)>\ell(\eta)$ and $t \in\{0, \ldots, \ell(\eta)+k-2\}$, we also have $t \in\{0, \ldots, \ell(\tau)+k-2\}$. Now repeat the argument used in the case $p>w$ above (with p replaced by t) to obtain a contradiction. This concludes the proof.

Lemmas 3-7 imply that if $\alpha \in P T_{n}$ and $\beta \in C^{2}(\alpha)$, then β satisfies (1) and (2) of Theorem 2, that is, $\beta\left|N=\alpha^{t}\right| N$ and $\beta\left|\operatorname{dom} \lambda_{i}=\alpha^{t_{i}}\right| \operatorname{dom} \lambda_{i}$ for some $t \in \mathbb{N}$ and
$t_{i} \in \mathbb{N} \cup\{-\infty\}(i=1, \ldots, m)$. The next two lemmas show that the exponents t and t_{i} satisfy (3) of Theorem 2.

Lemma 8. Let $\alpha, \beta \in P T_{n}$ be such that $\beta \in C^{2}(\alpha)$, let $\eta=\left(i_{1} \ldots i_{u}\right]$ be a maximal chain in α, let $\varrho=\left(x_{0} \ldots x_{k-1}\right)$ be a circuit in α, and let $\xi=\left(j_{1} \ldots j_{v} x_{0}\right)$ be a longest cilium attached to ϱ. Suppose that t is a nonnegative integer such that $\beta\left|\operatorname{span} \eta=\alpha^{t}\right| \operatorname{span} \eta$. If $t<\min \{u, v\}$, then $\operatorname{dom} \beta \cap \operatorname{span} \xi \neq \emptyset$.

Proof. Let $t<\min \{u, v\}$. Suppose, by way of contradiction, that $\operatorname{dom} \beta \cap$ $\operatorname{span} \xi=\emptyset$. Let $m=\min \{u, v\}$. We will construct $\gamma \in C(\alpha)$ that maps the initial segment $\left(j_{1} \ldots j_{m}\right]$ of ξ onto a terminal segment of η. Let λ be the cell in α that has ϱ as the circuit. Set $\operatorname{dom} \gamma=\left\{x \in \operatorname{dom} \lambda: x \alpha^{q}=j_{m}\right.$ for some $\left.q \geqslant 0\right\}$. Let $\mu=\left(m_{1} \ldots m_{d} j_{m} \ldots j_{v} x_{0}\right\rangle(d \geqslant 0)$ be a cilium in λ whose span contains j_{m}. Since $\ell(\mu) \leqslant \ell(\xi), d+1 \leqslant m \leqslant u$. Thus we can define γ so that it maps the initial segment ($m_{1} \ldots m_{d} j_{m}$] of μ onto a terminal segment of η. In particular, γ maps the initial segment $\left(j_{1} \ldots j_{m}\right]$ of ξ onto a terminal segment of η, say $\left(i_{r} \ldots i_{u}\right]$.

By Theorem 1 and the construction of γ, we have $\gamma \in C(\alpha)$ and $j_{1} \gamma=i_{r}$. Since $j_{1}(\beta \circ \gamma)$ is undefined (since $j_{1} \notin \operatorname{dom} \beta$) and $j_{1}(\gamma \circ \beta)=i_{r} \beta=i_{r} \alpha^{t}=i_{r+t}$ (since $t<m), \gamma \notin C(\beta)$, which is a contradiction. Thus $\operatorname{dom} \beta \cap \operatorname{span} \xi \neq \emptyset$.

Lemma 9. Let $\alpha, \beta \in P T_{n}$ be such that $\beta \in C^{2}(\alpha)$, let $\eta=\left(i_{1} \ldots i_{u}\right]$ be a maximal chain in α, let $\varrho=\left(x_{0} \ldots x_{k-1}\right)$ be a circuit in α, and let $\xi=\left(j_{1} \ldots j_{v} x_{0}\right\rangle$ be a longest cilium attached to ϱ. Suppose that t and w are nonnegative integers such that $\beta\left|\operatorname{span} \eta=\alpha^{t}\right| \operatorname{span} \eta$ and $\beta\left|\operatorname{span} \xi=\alpha^{w}\right| \operatorname{span} \xi$. If either t or w is less than $\min \{u, v\}$, then $t=w$.

Proof. Let $m=\min \{u, v\}$. Let λ be the cell in α that has ϱ as the circuit. As in the proof of Lemma 8, we can construct $\gamma \in C(\alpha)$ such that dom $\gamma=\{x \in$ $\operatorname{dom} \lambda: x \alpha^{q}=j_{m}$ for some $\left.q \geqslant 0\right\}$ and γ maps the initial segment $\left(j_{1} \ldots j_{m}\right]$ of ξ onto a terminal segment of η, say $\left(i_{r} \ldots i_{u}\right]$. Then $j_{1}(\beta \circ \gamma)=\left(j_{1} \alpha^{w}\right) \gamma$ and $j_{1}(\gamma \circ \beta)=$ $i_{r} \beta=i_{r} \alpha^{t}$. Since $\gamma \in C(\beta),\left(j_{1} \alpha^{w}\right) \gamma=i_{r} \alpha^{t}$.

Suppose $t<m$. Then $i_{r} \alpha^{t}$ is defined and $i_{r} \alpha^{t}=i_{r+t}$. Thus w must be less than m (otherwise $j_{1} \alpha^{w}$ would not be in $\operatorname{dom} \gamma$) and so $\left(j_{1} \alpha^{w}\right) \gamma=j_{w+1} \gamma=i_{r+w}$. Hence $i_{r+t}=i_{r+w}$ and so $t=w$.

Suppose $w<m$. Then $\left(j_{1} \alpha^{w}\right) \gamma$ is defined and $\left(j_{1} \alpha^{w}\right) \gamma=j_{w+1} \gamma=i_{r+w}$. Thus t must be less than m (otherwise $i_{r} \alpha^{t}$ would be undefined) and so $i_{r} \alpha^{t}=i_{r+t}$. Hence $i_{r+t}=i_{r+w}$ and so $t=w$.

We already proved (Lemmas $5-7$) that if $\alpha \in P T_{n}$ and $\beta \in C^{2}(\alpha)$, then β satisfies (2) of Theorem 2, that is, $\beta\left|\operatorname{dom} \lambda_{i}=\alpha^{t_{i}}\right| \operatorname{dom} \lambda_{i}$ for some $t_{i} \in \mathbb{N} \cup\{-\infty\}$ $(i=1, \ldots, m)$. The next three lemmas show that the exponents t_{i} satisfy (4) of Theorem 2.

Lemma 10. Let $\alpha, \beta \in P T_{n}$ be such that $\beta \in C^{2}(\alpha)$, and let $\varrho=\left(x_{0} \ldots x_{k-1}\right)$ and $\delta=\left(y_{0} \ldots y_{m-1}\right)$ be circuits in α such that k divides m. Then $\operatorname{dom} \beta \cap \operatorname{dom} \varrho=\emptyset$ if and only if $\operatorname{dom} \beta \cap \operatorname{dom} \delta=\emptyset$.

Proof. We will construct $\gamma \in C(\alpha)$ such that $y_{0} \gamma=x_{0}$. Let λ be the cell in α that has δ as the circuit. Set $\operatorname{dom} \gamma=\operatorname{dom} \lambda$. Define γ so that it maps the points $y_{0}, y_{1}, \ldots, y_{m-1}$ of $\operatorname{dom} \delta$ to $x_{0}, x_{0} \alpha, \ldots, x_{0} \alpha^{m-1}$. Let $\xi=\left(j_{1} \ldots j_{v} y_{p}\right\rangle$ be any cilium in α attached to δ. Select $x_{h} \in \operatorname{dom} \varrho$ so that $x_{h} \alpha^{v}=x_{0} \alpha^{p}$ and define γ so that it maps the points $j_{1}, j_{2}, \ldots, j_{v}, y_{p}$ of $\operatorname{span} \xi$ to $x_{h}, x_{h} \alpha, \ldots, x_{h} \alpha^{v-1}, x_{h} \alpha^{v}$.

By Theorem 1 and the construction of γ, we have $\gamma \in C(\alpha)$ and $y_{0} \gamma=x_{0}$. Suppose $\operatorname{dom} \beta \cap \operatorname{dom} \varrho=\emptyset$ and $\operatorname{dom} \beta \cap \operatorname{dom} \delta \neq \emptyset$. Then $y_{0} \in \operatorname{dom} \beta$ and $y_{0} \beta \in \operatorname{dom} \delta$ (by Lemma 5). Thus $y_{0}(\beta \circ \gamma)$ is defined and $y_{0}(\gamma \circ \beta)=x_{0} \beta$ is undefined. Suppose $\operatorname{dom} \beta \cap \operatorname{dom} \delta=\emptyset$ and $\operatorname{dom} \beta \cap \operatorname{dom} \varrho \neq \emptyset$. Then $x_{0} \in \operatorname{dom} \beta$ (by Theorem 1). Thus $y_{0}(\beta \circ \gamma)$ is undefined and $y_{0}(\gamma \circ \beta)=x_{0} \beta$ is defined. In either case, $\gamma \notin C(\beta)$, which is a contradiction. The result follows.

Lemma 11. Let $\alpha, \beta \in P T_{n}$ be such that $\beta \in C^{2}(\alpha)$, and let $\varrho=\left(x_{0} \ldots x_{k-1}\right)$ and $\delta=\left(y_{0} \ldots y_{m-1}\right)$ be circuits in α such that k divides m. Suppose that t and w are nonnegative integers such that $\beta\left|\operatorname{dom} \varrho=\alpha^{t}\right| \operatorname{dom} \varrho$ and $\beta\left|\operatorname{dom} \delta=\alpha^{w}\right| \operatorname{dom} \delta$. Then $w \equiv t(\bmod k)$.

Proof. Let $t^{\prime} \in\{0,1, \ldots, k-1\}$ and $w^{\prime} \in\{0,1, \ldots, m-1\}$ be such that $t^{\prime} \equiv t$ $(\bmod k)$ and $w^{\prime} \equiv w(\bmod m)$. Note that $w^{\prime} \equiv w(\bmod k)($ since k divides $m)$, $x_{0} \beta=x_{t^{\prime}}$, and $y_{0} \beta=y_{w^{\prime}}$. As in the proof of Lemma 10, we can construct $\gamma \in C(\alpha)$ that maps $y_{0}, y_{1}, \ldots, y_{m-1}$ to $x_{0}, x_{0} \alpha, \ldots, x_{0} \alpha^{m-1}$. Note that $y_{w^{\prime}} \gamma=x_{w^{\prime \prime}}$, where $w^{\prime \prime} \in\{0,1, \ldots, k-1\}$ and $w^{\prime \prime} \equiv w^{\prime}(\bmod k)$. On the other hand, $y_{w^{\prime}} \gamma=y_{0}(\beta \circ \gamma)=$ $y_{0}(\gamma \circ \beta)=x_{0} \beta=x_{t^{\prime}}$. Hence $t^{\prime}=w^{\prime \prime}$ and so $t \equiv t^{\prime}=w^{\prime \prime} \equiv w^{\prime} \equiv w(\bmod k)$.

Lemma 12. Let $\alpha, \beta \in P T_{n}$ be such that $\beta \in C^{2}(\alpha)$, let $\varrho=\left(x_{0} \ldots x_{k-1}\right)$ and $\delta=\left(y_{0} \ldots y_{l-1}\right)$ be circuits in α such that k divides l, let $\eta=\left(i_{1} \ldots i_{u} x_{0}\right\rangle$ be a cilium attached to ϱ, and let $\xi=\left(j_{1} \ldots j_{v} y_{0}\right\rangle$ be a longest cilium attached to δ. Suppose that t and w are nonnegative integers such that $\beta\left|\operatorname{span} \eta=\alpha^{t}\right| \operatorname{span} \eta$ and $\beta\left|\operatorname{span} \xi=\alpha^{w}\right| \operatorname{span} \xi$. If either $t<\min \{u, v\}$ or $w<\min \{u, v\}$, then $w=t$.

Proof. Let $m=\min \{u, v\}$. We will construct $\gamma \in C(\alpha)$ that maps the initial segment $\left(j_{1} \ldots j_{m}\right]$ of ξ onto a terminal segment of $\left(i_{1} \ldots i_{u}\right]$. Set $\operatorname{dom} \gamma=\operatorname{dom} \lambda$, where λ is the cell in α that has δ as the circuit. Let $q \in\{0, \ldots, k-1\}$ be such that $q \equiv v-m(\bmod k)$.

Let $\mu=\left(m_{1} \ldots m_{d} j_{m} \ldots j_{v} y_{0}\right\rangle(d \geqslant 0)$ be any cilium in λ whose span contains j_{m}. Since $\ell(\xi) \geqslant \ell(\mu), m-1 \geqslant d$ and so $u \geqslant m \geqslant d+1$. Thus we can define γ so that it maps the initial segment $\left(m_{1} \ldots m_{d} j_{m}\right]$ of μ onto a terminal segment of $\left(i_{1} \ldots i_{u}\right.$]
and the remaining points of $\operatorname{span} \mu, j_{m+1}, j_{m+2}, \ldots, j_{v}, y_{0}$, to $x_{0}, x_{0} \alpha, \ldots, x_{0} \alpha^{v-m-1}$, $x_{0} \alpha^{v-m}=x_{q}$. In particular, γ maps the initial segment $\left(j_{1} \ldots j_{m}\right]$ of ξ onto a terminal segment of $\left(i_{1} \ldots i_{u}\right]$, say $\left(i_{r} \ldots i_{u}\right]$. Let $\mu=\left(m_{1} \ldots m_{d} y_{s}\right\rangle$ be any cilium in λ whose span does not contain j_{m}. Select $a \in\{0, \ldots, k-1\}$ such that $a \equiv q+s(\bmod k)$ and $x_{h} \in \operatorname{dom} \varrho$ such that $x_{h} \alpha^{d}=x_{a}$. Define γ so that it maps the points $m_{1}, m_{2}, \ldots, m_{d}$, y_{s} of $\operatorname{span} \mu$ to the points $x_{h}, x_{h} \alpha, \ldots, x_{h} \alpha^{d-1}, x_{h} \alpha^{d}=x_{a}$.

By Theorem 1 and the construction of $\gamma, \gamma \in C(\alpha)$ and it maps $\left(j_{1} \ldots j_{m}\right]$ onto ($\left.i_{r} \ldots i_{u}\right]$. (Note that this implies $u-r=m-1$ and so $r+m-1=u$.) Then $j_{1}(\beta \circ \gamma)=\left(j_{1} \alpha^{w}\right) \gamma$ and $j_{1}(\gamma \circ \beta)=i_{r} \beta=i_{r} \alpha^{t}$. Since $\gamma \in C(\beta),\left(j_{1} \alpha^{w}\right) \gamma=i_{r} \alpha^{t}$.

Suppose $t<m$. Then $r+t \leqslant r+m-1=u$ and so $i_{r} \alpha^{t}=i_{r+t}$. Thus w must be less than m (otherwise, by the construction of $\gamma,\left(j_{1} \alpha^{w}\right) \gamma$ would be in $\operatorname{dom} \varrho$ and so it could not be equal to i_{r+t}) and so $\left(j_{1} \alpha^{w}\right) \gamma=j_{w+1} \gamma=i_{r+w}$. Hence $i_{r+t}=i_{r+w}$ and so $t=w$.

Suppose $w<m$. Then $\left(j_{1} \alpha^{w}\right) \gamma=j_{w+1} \gamma=i_{r+w}$. Thus t must be less than m (otherwise $i_{r} \alpha^{t}$ would be in $\operatorname{dom} \varrho$ and so it could not be equal to i_{r+w}) and so $i_{r} \alpha^{t}=i_{r+t}$. Hence $i_{r+t}=i_{r+w}$ and so $t=w$.

Now we are in a position to prove Theorem 2.
Proof of Theorem 2. Suppose that $\beta \in C^{2}(\alpha)$. Suppose that $k \geqslant 1$, that is, α has at least one maximal chain. Let $i \in\{1, \ldots, k\}$. By Lemma 3, $\beta \mid \operatorname{span} \eta_{i}=$ $\alpha^{w_{i}} \mid \operatorname{span} \eta_{i}$ for some $w_{i} \in\left\{0, \ldots, \ell\left(\eta_{i}\right)\right\}$. Let $t=\max \left\{w_{1}, \ldots, w_{k}\right\}$. By Lemma 4, $\beta\left|\operatorname{span} \eta_{i}=\alpha^{t}\right| \operatorname{span} \eta_{i}$ for each $i \in\{1, \ldots, k\}$. Since $N=\operatorname{span} \eta_{1} \cup \ldots \cup \operatorname{span} \eta_{k}$, $\beta\left|N=\alpha^{t}\right| N$. If $k=0$, that is, $N=\emptyset$, then $\beta\left|N=\alpha^{0}\right| N$. Thus, in any case, there is an integer t that satisfies condition (1).

Let $i \in\{1, \ldots, m\}$. By Lemma 5, $\beta\left|\operatorname{dom} \varrho_{i}=\alpha^{w}\right| \operatorname{dom} \varrho_{i}$ for some $w \in$ $\left\{0, \ldots, \ell\left(\varrho_{i}\right)-1\right\} \cup\{-\infty\}$. If $\lambda_{i}=\varrho_{i}$, that is, if ϱ_{i} is an isolated circuit, take $t_{i}=w$. Suppose that $\lambda_{i} \neq \varrho_{i}$, that is, λ_{i} has at least one cilium. Let $\eta_{1}, \ldots, \eta_{b}$ be the cilia in λ_{i}. Suppose $w=-\infty$, that is, $\operatorname{dom} \beta \cap \operatorname{dom} \varrho_{i}=\emptyset$. Then $\operatorname{dom} \beta \cap \operatorname{dom} \eta_{p}=\emptyset$ for each $p \in\{1, \ldots, b\}$ (by Lemma 6), and so $\beta \mid \operatorname{dom} \lambda_{i}=\alpha^{w}$. Thus if $w=-\infty$, take $t_{i}=w$. Suppose $w \neq-\infty$. Then, by Lemma 6, for each $p \in\{1, \ldots, b\}$, there is $w_{p} \in\left\{0, \ldots, \ell\left(\eta_{p}\right)+\ell\left(\varrho_{i}\right)-2\right\}$ such that $\beta\left|\operatorname{span} \eta_{p}=\alpha^{w_{p}}\right| \operatorname{span} \eta_{p}$. Let $t_{i}=\max \left\{w_{1}, \ldots, w_{b}\right\}$. By Lemma $7, \beta\left|\operatorname{span} \eta_{p}=\alpha^{t_{i}}\right| \operatorname{span} \eta_{p}$ for each $p \in\{1, \ldots, b\}$. Let y be the point at which η_{1} meets ϱ_{i}. Then $y \alpha^{w}=y \beta=y \alpha^{t_{i}}$, which implies $t_{i} \equiv w\left(\bmod \ell\left(\varrho_{i}\right)\right)$. Let $x \in \operatorname{dom} \lambda_{i}$. If $x \in \operatorname{span} \eta_{p}$ for some $p \in\{1, \ldots, b\}$, then $x \beta=x \alpha^{t_{i}}$. If $x \in \operatorname{dom} \varrho_{i}$, then $x \beta=x \alpha^{w}=x \alpha^{t_{i}}\left(\right.$ since $\left.t_{i} \equiv w\left(\bmod \ell\left(\varrho_{i}\right)\right)\right)$. Since $\operatorname{dom} \lambda_{i}=\operatorname{span} \eta_{1} \cup \ldots \cup \operatorname{span} \eta_{b} \cup \operatorname{dom} \varrho_{i}, \beta\left|\operatorname{dom} \lambda_{i}=\alpha^{t_{i}}\right| \operatorname{dom} \lambda_{i}$. Thus for each $i \in\{1, \ldots, m\}$, there is $t_{i} \in \mathbb{N} \cup\{-\infty\}$ that satisfies condition (2). Moreover, it follows from Lemma 8 and Lemma 9 that for each $i \in\{1, \ldots, m\}, t$ and t_{i} satisfy condition (3), and it follows from Lemma 10, Lemma 11, and Lemma 12 that for all $i, j \in\{1, \ldots, m\}, t_{i}$ and t_{j} satisfy condition (4).

Conversely, suppose that there are $t \in \mathbb{N}$ and $t_{1}, \ldots, t_{m} \in \mathbb{N} \cup\{-\infty\}$ such that conditions (1)-(4) are satisfied for all $i, j \in\{1, \ldots, m\}$. Let $\gamma \in C(\alpha)$. We need to prove that $\beta \circ \gamma=\gamma \circ \beta$. Let $x \in X$ and consider four cases.

Case 1. $\quad x \in N$ and $x \in \operatorname{dom}(\gamma \circ \beta)$.
Then $x \in \operatorname{dom} \gamma$ and $x \gamma \in \operatorname{dom} \beta$. Since $x \gamma \in N$ (by Theorem 1), $x \gamma \in \operatorname{dom} \alpha^{t}$ (by (1)). Thus $x \in \operatorname{dom}\left(\gamma \circ \alpha^{t}\right)$ and so, since γ commutes with $\alpha^{t}, x \in \operatorname{dom}\left(\alpha^{t} \circ \gamma\right)$. Thus, since $\beta\left|N=\alpha^{t}\right| N, x \in \operatorname{dom}(\beta \circ \gamma)$ and $x(\beta \circ \gamma)=(x \beta) \gamma=\left(x \alpha^{t}\right) \gamma=x\left(\alpha^{t} \circ \gamma\right)=$ $x\left(\gamma \circ \alpha^{t}\right)=(x \gamma) \alpha^{t}=(x \gamma) \beta=x(\gamma \circ \beta)$.

Case 2. $\quad x \in N$ and $x \in \operatorname{dom}(\beta \circ \gamma)$.
By an argument similar to that used in Case $1, x \in \operatorname{dom}(\gamma \circ \beta)$ and $x(\beta \circ \gamma)=$ $x(\gamma \circ \beta)$.

Case 3. $\quad x \in \operatorname{dom} \lambda_{j}$ for some $j \in\{1, \ldots, m\}$ and $x \in \operatorname{dom}(\gamma \circ \beta)$.
Then $x \in \operatorname{dom} \gamma$ and $x \gamma \in \operatorname{dom} \beta$. By Theorem 1, one of the following two cases holds.

Case 3.1. $\quad x \gamma \in \operatorname{dom} \lambda_{i}$ for some $i \in\{1, \ldots, m\}$.
Then, by Theorem 1, $\ell\left(\varrho_{i}\right)$ divides $\ell\left(\varrho_{j}\right)$ and $\operatorname{dom} \lambda_{j} \subseteq \operatorname{dom} \gamma$. Since $\beta \mid \operatorname{dom} \lambda_{i}=$ $\alpha^{t_{i}} \mid \operatorname{dom} \lambda_{i}$ (by (2)) and $x \gamma \in \operatorname{dom} \beta, t_{i}$ cannot be $-\infty$. Thus $t_{j} \neq-\infty$ by (4b). It follows that $x \in \operatorname{dom}\left(\alpha^{t_{j}} \circ \gamma\right)$ and so, since $\beta\left|\operatorname{dom} \lambda_{j}=\alpha^{t_{j}}\right| \operatorname{dom} \lambda_{j}, x \in \operatorname{dom}(\beta \circ \gamma)$.

Since $x \gamma \in \operatorname{dom} \lambda_{i}, x(\gamma \circ \beta)=(x \gamma) \beta=(x \gamma) \alpha^{t_{i}} \in \operatorname{dom} \lambda_{i}$. Since $x \in \operatorname{dom} \lambda_{j}$, $x(\beta \circ \gamma)=(x \beta) \gamma=\left(x \alpha^{t_{j}}\right) \gamma \in \operatorname{dom} \lambda_{i}$. Thus $x \gamma, x(\gamma \circ \beta)$, and $x(\beta \circ \gamma)$ are all in $\operatorname{dom} \lambda_{i}$. Let $\varrho_{i}=\left(x_{0} \ldots x_{a-1}\right)$, let $\varrho_{j}=\left(y_{0} \ldots y_{b-1}\right)$, and consider two cases.

Case 3.1.1. $\quad x(\gamma \circ \beta) \in \operatorname{dom} \varrho_{i}$.
We claim that $x(\beta \circ \gamma)$ is also in dom ϱ_{i}. Suppose, by way of contradiction, that $x(\beta \circ \gamma) \notin \operatorname{dom} \varrho_{i}$. Then $x \notin \operatorname{dom} \varrho_{j}$ since otherwise $x \beta=x \alpha^{t_{j}}$ would be in dom ϱ_{j} and so $x(\beta \circ \gamma)=(x \beta) \gamma$ would be in dom ϱ_{i} (by Theorem 1). Thus there is a cilium $\xi=\left(m_{1} \ldots m_{v} y_{r}\right\rangle$ in λ_{j} such that $x=m_{p}$ for some $p \in\{1, \ldots, v\}$. We observed in the foregoing argument that $m_{p} \beta=x \beta$ cannot be in dom ϱ_{j}. It follows that $p+t_{j} \leqslant v$ and $m_{p} \beta=m_{p} \alpha^{t_{j}}=m_{p+t_{j}}$. Since $p+t_{j} \leqslant v, t_{j} \leqslant v-p<v$. Since $m_{p+t_{j}} \gamma=\left(m_{p} \beta\right) \gamma=m_{p}(\beta \circ \gamma)=x(\beta \circ \gamma) \notin \operatorname{dom} \varrho_{i}$, it follows by Theorem 1 that there is a cilium $\eta=\left(k_{1} \ldots k_{u} x_{s}\right\rangle$ in λ_{i} such that for some $q \in\{1, \ldots, u\}, m_{p} \gamma=k_{q}$, $q+t_{j} \leqslant u$, and $m_{p+t_{j}} \gamma=k_{q+t_{j}}$. Since $q+t_{j} \leqslant u, t_{j} \leqslant u-q<u$. Hence $t_{j}<\min \{u, v\} \leqslant \min \left\{r\left(\lambda_{i}\right), r\left(\lambda_{j}\right)\right\}$ and so $t_{i}=t_{j}$ by (4b). But then $x(\gamma \circ \beta)=$ $\left(m_{p} \gamma\right) \beta=k_{q} \beta=k_{q} \alpha^{t_{i}}=k_{q} \alpha^{t_{j}}=k_{q+t_{j}} \notin \operatorname{dom} \varrho_{i}$, which is a contradiction.

Thus both $x(\gamma \circ \beta)$ and $x(\beta \circ \gamma)$ are in dom ϱ_{i} and so $x(\gamma \circ \beta)=x_{p}$ and $x(\beta \circ \gamma)=x_{q}$ for some $p, q \in\{0, \ldots, a-1\}$. By $(4 \mathrm{a}), t_{i} \equiv t_{j}(\bmod a)$ and so there is an integer $l \geqslant 0$ such that either $t_{i}=t_{j}+l k$ or $t_{j}=t_{i}+l k$. In the former case, we have:

$$
\begin{aligned}
x_{p} & =x(\gamma \circ \beta)=(x \gamma) \beta=(x \gamma) \alpha^{t_{i}}=x\left(\gamma \circ \alpha^{t_{j}} \circ \alpha^{l k}\right)=x\left(\alpha^{t_{j}} \circ \gamma \circ \alpha^{l k}\right) \\
& =\left(x \alpha^{t_{j}}\right)\left(\gamma \circ \alpha^{l k}\right)=(x \beta)\left(\gamma \circ \alpha^{l k}\right)=(x(\beta \circ \gamma)) \alpha^{l k}=x_{q} \alpha^{l k}=x_{q} .
\end{aligned}
$$

And in the latter case, we have:

$$
\begin{gathered}
x_{q}=x(\beta \circ \gamma)=(x \beta) \gamma=\left(x \alpha^{t_{j}}\right) \gamma=x\left(\alpha^{t_{j}} \circ \gamma\right)=x\left(\gamma \circ \alpha^{t_{j}}\right)=x\left(\gamma \circ \alpha^{t_{i}} \circ \alpha^{l k}\right) \\
=\left((x \gamma) \alpha^{t_{i}}\right) \alpha^{l k}=((x \gamma) \beta) \alpha^{l k}=(x(\gamma \circ \beta)) \alpha^{l k}=x_{p} \alpha^{l k}=x_{p} .
\end{gathered}
$$

Thus $x(\gamma \circ \beta)=x_{p}=x_{q}=x(\beta \circ \gamma)$.
Case 3.1.2. $\quad x(\gamma \circ \beta) \notin \operatorname{dom} \varrho_{i}$.
Then $x \notin \operatorname{dom} \varrho_{j}$ since otherwise $x \gamma$ would be in dom ϱ_{i} (by Theorem 1) and so $x(\gamma \circ \beta)=(x \gamma) \beta=(x \gamma) \alpha^{t_{i}}$ would also be in dom ϱ_{i}. Thus there is a cilium $\xi=\left(m_{1} \ldots m_{v} y_{r}\right\rangle$ in λ_{j} such that $x=m_{p}$ for some $p \in\{1, \ldots, v\}$. We observed in the foregoing argument that $x \gamma$ cannot be in dom ϱ_{i}. It follows that there is a cilium $\eta=\left(k_{1} \ldots k_{u} x_{s}\right\rangle$ in λ_{i} such that $x \gamma=m_{p} \gamma=k_{q}$ for some $q \in\{1, \ldots, u\}$. Since $k_{q} \alpha^{t_{i}}=k_{q} \beta=\left(m_{p} \gamma\right) \beta=m_{p}(\gamma \circ \beta) \notin \operatorname{dom} \varrho_{i}$, we must have $q+t_{i} \leqslant u$ and $m_{p}(\gamma \circ \beta)=k_{q} \alpha^{t_{i}}=k_{q+t_{i}}$. Since $q+t_{i} \leqslant u, t_{i} \leqslant u-q<u$. Since (by Theorem 1) either $m_{v} \gamma=k_{u}$ or $m_{v} \gamma \in \operatorname{dom} \varrho_{i}$, the fact that $m_{p} \gamma=k_{q}$ coupled with Theorem 1 implies that $u-q \leqslant v-p$. Thus $t_{i} \leqslant u-q \leqslant v-p<v$. Hence $t_{i}<\min \{u, v\}$ and so $t_{i}=t_{j}$ by (4b). Thus

$$
\begin{gathered}
x(\beta \circ \gamma)=(x \beta) \gamma=\left(x \alpha^{t_{j}}\right) \gamma=x\left(\alpha^{t_{j}} \circ \gamma\right)=x\left(\gamma \circ \alpha^{t_{j}}\right)=(x \gamma) \alpha^{t_{j}}=(x \gamma) \alpha^{t_{i}} \\
=(x \gamma) \beta=x(\gamma \circ \beta) .
\end{gathered}
$$

Case 3.2. $\quad x \gamma \in N$.
Then, by Theorem 1, there is a cilium $\xi=\left(m_{1} \ldots m_{v} y_{r}\right\rangle$ in λ_{j} and a maximal chain $\eta_{i}=\left(k_{1} \ldots k_{u}\right]$ in α such that for some $p \in\{1, \ldots, v\}, x=m_{p}$ and γ maps an initial segment $\left(m_{1} \ldots m_{p} \ldots\right]$ of $\left(m_{1} \ldots m_{v}\right]$ onto a terminal segment of η_{i}. Let $m_{p} \gamma=k_{q}$ $(q \in\{1, \ldots, u\})$. Since $k_{q}=m_{p} \gamma=x \gamma \in \operatorname{dom} \beta$ and $\beta\left|N=\alpha^{t}\right| N, k_{q} \in \operatorname{dom} \alpha^{t}$, which implies $q+t \leqslant u$ and $k_{q} \beta=k_{q} \alpha^{t}=k_{q+t}$. Since γ maps an initial segment of $\left(m_{1} \ldots m_{v}\right)$ onto a terminal segment of $\left(k_{1} \ldots k_{u}\right], m_{p} \gamma=k_{q}$ and $q+t \leqslant u$ imply that $p+t \leqslant v$ and $m_{p+t} \in \operatorname{dom} \gamma$. Thus $t<\min \{u, v\} \leqslant \min \left\{d(N), r\left(\lambda_{j}\right)\right\}$ and so $t=t_{j}$ (by (3)). Hence $x \in \operatorname{dom} \beta$ (since $t_{j}=t \geqslant 0$ and $\beta\left|\operatorname{dom} \lambda_{j}=\alpha^{t_{j}}\right| \operatorname{dom} \lambda_{j}$) and $x \beta=m_{p} \beta=m_{p} \alpha^{t_{j}}=m_{p} \alpha^{t}=m_{p+t} \in \operatorname{dom} \gamma$. Thus $x \in \operatorname{dom}(\beta \circ \gamma)$ and, since γ commutes with $\alpha^{t}, x(\beta \circ \gamma)=(x \beta) \gamma=\left(x \alpha^{t_{j}}\right) \gamma=\left(x \alpha^{t}\right) \gamma=x\left(\alpha^{t} \circ \gamma\right)=x\left(\gamma \circ \alpha^{t}\right)=$ $(x \gamma) \alpha^{t}=(x \gamma) \beta=x(\gamma \circ \beta)$.

Case 4. $\quad x \in \operatorname{dom} \lambda_{j}$ for some $j \in\{1, \ldots, m\}$ and $x \in \operatorname{dom}(\beta \circ \gamma)$.
Then $x \in \operatorname{dom} \beta$ and $y=x \beta \in \operatorname{dom} \gamma$. Since, by (2), $\beta\left|\operatorname{dom} \lambda_{j}=\alpha^{t_{j}}\right| \operatorname{dom} \lambda_{j}$, $t_{j} \geqslant 0$ and $y \in \operatorname{dom} \lambda_{j}$. By Theorem 1, one of the following two cases holds.

Case 4.1. $y \gamma \in \operatorname{dom} \lambda_{i}$ for some $i \in\{1, \ldots, m\}$.
Then, by Theorem $1, \ell\left(\varrho_{i}\right)$ divides $\ell\left(\varrho_{j}\right)$, $\operatorname{dom} \lambda_{j} \subseteq \operatorname{dom} \gamma$, and $x \gamma \in \operatorname{dom} \lambda_{i}$. Since $t_{j} \neq-\infty, t_{i} \neq-\infty$ by (4b). Thus, since $\beta\left|\operatorname{dom} \lambda_{i}=\alpha^{t_{i}}\right| \operatorname{dom} \lambda_{i}, \operatorname{dom} \lambda_{i} \subseteq \operatorname{dom} \beta$.

Hence $x \in \operatorname{dom} \lambda_{j} \subseteq \operatorname{dom} \gamma$ and $x \gamma \in \operatorname{dom} \lambda_{i} \subseteq \operatorname{dom} \beta$, which implies $x \in \operatorname{dom}(\gamma \circ \beta)$. It follows by Case 3 that $x(\beta \circ \gamma)=x(\gamma \circ \beta)$.

Case 4.2. $y \gamma \in N$.
Then, by Theorem 1, $y \notin \operatorname{dom} \varrho_{j}$. Thus, since $y=x \beta=x \alpha^{t_{j}}$, there is a cilium $\xi=\left(m_{1} \ldots m_{v} y_{r}\right\rangle$ in λ_{j} such that for some $p \in\{1, \ldots, v\}, y=m_{p}, p-t_{j} \geqslant 1$, and $x=m_{p-t_{j}}$. Since $y \gamma \in N$, it follows by Theorem 1 that there is a maximal chain $\eta_{i}=\left(k_{1} \ldots k_{u}\right]$ in α such that γ maps an initial segment $\left(m_{1} \ldots m_{p-t_{j}} \ldots m_{p} \ldots\right.$) of $\left(m_{1} \ldots m_{v}\right]$ onto a terminal segment of η_{i}. Let $m_{p} \gamma=k_{q}(q \in\{1, \ldots, u\})$. Then, since γ maps an initial segment of $\left(m_{1} \ldots m_{v}\right.$] onto a terminal segment of $\eta_{i}, q-$ $t_{j} \geqslant 1$ and $m_{p-t_{j}} \gamma=k_{q-t_{j}}$. Since $q-t_{j} \geqslant 1$ and $p-t_{j} \geqslant 1, t_{j}<\min \{q, p\} \leqslant$ $\min \{u, v\} \leqslant \min \left\{d(N), r\left(\lambda_{j}\right)\right\}$. Thus, by (3), $t_{j}=t$ and so $k_{q-t_{j}}=k_{q-t} \in \operatorname{dom} \beta$ (since $k_{q-t} \alpha^{t}=k_{q}$ and $\operatorname{dom} \beta\left|N=\operatorname{dom} \alpha^{t}\right| N$). Hence $x=m_{p-t_{j}} \in \operatorname{dom} \gamma$ and $x \gamma=m_{p-t_{j}} \gamma=k_{q-t_{j}} \in \operatorname{dom} \beta$, which implies $x \in \operatorname{dom}(\gamma \circ \beta)$. It follows by Case 3 that $x(\beta \circ \gamma)=x(\gamma \circ \beta)$.

This concludes the proof.

References

[1] P. M. Higgins: Techniques of Semigroup Theory. Oxford University Press, New York, 1992.
[2] P. M. Higgins: Digraphs and the semigroup of all functions on a finite set. Glasgow Math. J. 30 (1988), 41-57.
[3] J. Konieczny: Green's relations and regularity in centralizers of permutations. Glasgow Math. J. 41 (1999), 45-57.
[4] J. Konieczny and S. Lipscomb: Centralizers in the semigroup of partial transformations. Math. Japon. 48 (1998), 367-376.
[5] S. Lipscomb: Symmetric Inverse Semigroups. Mathematical Surveys and Monographs, Vol. 46, American Mathematical Society, Providence, RI, 1996.
[6] S. Lipscomb and J. Konieczny: Centralizers of permutations in the partial transformation semigroup. Pure Math. Appl. 6 (1995), 349-354.
[7] V. A. Liskovec and V. Z. Feĭnberg: On the permutability of mappings. Dokl. Akad. Nauk Belarusi 7 (1963), 366-369. (In Russian.)

Author's address: Department of Mathematics, Mary Washington College, Fredericksburg, VA 22401, U.S.A., e-mail: jkoniecz@mwc.edu.

