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ON KOROVKIN TYPE THEOREM IN THE SPACE

OF LOCALLY INTEGRABLE FUNCTIONS
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Abstract. It is shown that a Korovkin type theorem for a sequence of linear positive
operators acting in weighted space Lp,w(loc) does not hold in all this space and is satisfied
only on some subspace.
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1.

A Korovkin type theorem for linear positive operators acting from Lp(a, b) to
Lp(a, b) was studied in [4] and then some new results in this direction were estab-
lished. We refer to the papers [1], [2], [3], [8], [10], [11], [12] [13]. Note that all the
results just mentioned are devoted to the case of a finite interval [a, b].
We consider the space of locally integrable functions on the entire real axis, and

the sequences of linear positive operators defined in this space.

For w(x) = 1+x2, −∞ < x < ∞ and any fixed h > 0, we will denote by Lp,w(loc)
the space of measurable functions f satisfying the inequality

(1)

(
1
2h

∫ x+h

x−h

|f(t)|p dt

)1
p

6 Mfw(x), −∞ < x < ∞,

where p > 1 and Mf is a positive constant which depends on the function f . Obvi-
ously, Lp,w(loc) is a linear normed space with norm

‖f‖p,w = sup
−∞<x<∞

(
1
2h

∫ x+h

x−h |f(t)|p dt
)1

p

w(x)
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(‖f‖p,w may depend also on h). To simplify notation, we need the following. For

any finite real numbers a and b put

‖f ; Lp(a, b)‖ =
(

1
b− a

∫ b

a

|f(t)|p dt

)1
p

,(2)

‖f ; Lp,w(a, b)‖ = sup
a6x6b

‖f ; Lp(x− h, x + h)‖
w(x)

,(3)

‖f ; Lp,w(|x| > a)‖ = sup
|x|>a

‖f ; Lp(x− h, x + h)‖
w(x)

.(4)

It follows that the norm in Lp,w(loc) may be written in the form

‖f‖p,w = sup
−∞<x<∞

‖f ; Lp(x− h, x + h)‖
w(x)

.

Let Lk
p,w(loc) be the subspace of all functions f ∈ Lp,w(loc) for which there exists a

constant kf such that

(5) lim
|x|→∞

‖f − kf w; Lp(x− h, x + h)‖
w(x)

= 0.

In the case of kf = 0 we will write L0
p,w(loc). Korovkin type theorems for sequence

of linear positive operators acting in weighted space of continuous functions, defined
on the entire real line, were studied in [5]1, [6]. We will study these theorems in

the space Lp,w(loc). The set of all linear positive operators acting from Lp,w(loc) to
Lp,w(loc) will be denoted by (Lp,w(loc) → Lp,w(loc))+.

2.

We shall deal with the following problem.

Let the sequence of operators Ln ∈ (Lp,w(loc) → Lp,w(loc))+ satisfy the condi-
tions:

i) The norms of these operators are uniformly bounded, that is,

(6) ‖Ln‖ 6 C < ∞,

where C is a constant independent of n;

1A.D. Gadjiev = A.D. Gadžiev (also in other translation papers A.D. Gadzhiev,
A.D. Gadziev).
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ii) For m = 0, 1, 2

(7) lim
n→∞

‖Ln(tm; x)− xm‖p,w = 0,

where Ln(tm; x) := Ln(tm)(x).
Is it possible to assert then that for each function f ∈ Lp,w(loc)

lim
n→∞

‖Ln(f ; x)− f(x)‖p,w = 0?

We show that the answer to this question is negative.
Our main result is the following.

Theorem 1. There exists a sequence of operatorsLn ∈ (Lp,w(loc) → Lp,w(loc))+

satisfying conditions (6), (7) and there exists a function f ∗ in Lp,w(loc) for which

lim
n→∞

‖Lnf∗ − f∗‖p,w > 21− 1
p .

� �"!#!%$
. We define a sequence of operators Ln by the formulas

Ln(f ; x) =





x2

(x + h)2
f(x + h) for (2n− 2)h 6 x 6 (2n + 1)h,

f(x) otherwise.

It is easy to see that
‖Lnf‖p,w 6 4‖f‖p,w,

that is, Ln are bounded operators belonging to (Lp,w(loc) → Lp,w(loc))+ and
(6) holds.
Now, for m = 0, 1,

‖Ln(tm; x)− xm‖p,w 6 sup
(2n−1)h6x62nh

(x + h)m

1 + x2
6 (2n + 1)mhm

1 + 4h2(2n− 1)2

and therefore

lim
n→∞

‖Ln(tm; x)− xm‖p,w = 0, m = 0, 1.

Also, since Ln(t2; x) = x2, the conditions (7) hold.

Consider the function

f∗(x) =





x2 if x ∈
∞⋃

k=1

[(2k − 1)h, 2kh),

−x2 if x ∈
∞⋃

k=0

(2kh, (2k + 1)h],

0 if x < 0.
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Then f∗ ∈ Lp,w(loc) and we get

‖Lnf∗ − f∗‖p,w = sup
(2n−1)h<x<(2n+1)h

‖Lnf∗ − f∗; Lp((2n− 1)h, (2n + 1)h)‖
w(x)

> 1
w(2nh)

(
1
2h

∫ 2nh

(2n−1)h

∣∣∣∣
y2

(y + h)2
f∗(y + h)− f∗(y)

∣∣∣∣
p

dy

)1
p

> 21− 1
p
(2n− 1)2h2

1 + 4n2h2
.

The theorem is proved. �

3.

Now we show that the above mentioned problem has a positive solution in the
subset Lk

p,w(loc). First we give the following simple proposition.

Lemma. Let the sequence of operators An ∈ (Lp,w(loc) → Lp,w(loc))+ satisfy
the three conditions:

lim
n→∞

‖An(tm; x)− xm‖p,w = 0 (m = 0, 1, 2).

Then, for any continuous and bounded function f on the real axis,

lim
n→∞

‖Anf − f ; Lp,w(a, b)‖ = 0

holds, where a and b are any real numbers.

The proof of this Lemma is conducted in the same way as in the case of the space
C(a, b).
Since f is uniformly continuous function on any closed interval, given ε > 0 there

exists a positive δ = δ(ε) such that

|f(t)− f(x)| < ε if |t− x| < δ, x ∈ [a, b], t ∈ & .

Also, setting M = sup
x∈ ' |f(x)|, we can write

|f(t)− f(x)| < 2M if |t− x| > δ x ∈ [a, b], t ∈ & .

Therefore, from the basic inequality

|f(t)− f(x)| < ε +
2M

δ2
(t− x)2,
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where −∞ < t < ∞, x ∈ [a, b], it follows that

‖Anf − f ; Lp,w(a, b)‖ 6 ε + M‖An(1; x)− 1; Lp,w(a, b)‖

+
2M

δ2
‖An((t− x)2; x); Lp,w(a, b)‖

and the last two terms tend to zero as n →∞ by the conditions of the Lemma.

Theorem 2. If An ∈ (Lp,w(loc) → Lp,w(loc))+ is a sequence of operators
satisfying the conditions (6) and (7), then

lim
n→∞

‖Anf − f‖p,w = 0

for each function f ∈ Lk
p,w(loc).

� �"!#!%$
. Since f ∈ Lk

p,w(loc) implies that f−kf , w ∈ L0
p,w(loc), it is sufficient to

prove the theorem for the function f ∈ L0
p,w(loc). For ε > 0, there exists a point x0

such that the inequality

(8)

(
1
2h

∫ x+h

x−h

|f(t)|p dt

)1
p

< εw(x)

holds for all x, |x| > x0.

By the well known Luzin Theorem (see, for example [7]), there exists a continuous
function ϕ on the finite interval [−x0 − h, x0 + h] such that the inequality

(9) ‖f − ϕ; Lp(−x0, x0)‖ < ε

is fulfilled. Setting

(10) δ < min
{

2hεp

Mp(x0)
, h

}
,

where M(x0) = max
{

max
|x|6x0+h

|ϕ(x)|, 1
}
, we can construct a continuous function g

by the formulas

g(x) =





ϕ(x) if |x| 6 x0 + h,

0 if |x| > x0 + h + δ,

linear otherwise.
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Then, by (8), (9), (10) and the Minkowski inequality, we obtain

‖f − g‖p,w 6 ‖f − g; Lp,w(−x0, x0)‖+ ‖f − g; Lp,w(|x| > x0 + h + δ)‖
+ ‖f − g; Lp,w(x0, x0 + h + δ)‖
+ ‖f − g; Lp,w(−x0 − h− δ,−x0)‖

< 2ε + ‖f − g; Lp(x0 − h, x0 + h)‖+
1

w(x0)
‖f ; Lp(x0 + h, x0 + 2h + δ)‖

+ ‖g; Lp(x0 + h, x0 + 2h + δ)‖+
1

w(x0)
‖f ; Lp(−x0 − 2h− δ,−x0 − h)‖

+ ‖g; Lp(−x0 − h− δ,−x0 − h)‖
+ ‖f ; Lp(−x0 − h,−x0 + h)‖

< 4ε + 2M(x0)
( δ

2h

)1
p

+
1

w(x0)
‖f ; Lp(x0 + h, x0 + 3h)‖

+
1

w(x0)
‖f ; Lp(−x0 − 3h,−x0 − h)‖

and, on using the inequality (1),

‖f − g‖p,w 6 6ε + 2ε
w(x0 + 2h)

w(x0)
< C1ε,

where C1 = 6 + 2(1 + 2h)2, since w(x) = 1 + x2.
Consequently, for each f ∈ L0

p,w(loc), there exists a continuous and bounded
function g such that

(11) ‖f − g‖p,w < C1ε

for any ε > 0.
Now we can find a point x1 > x0 such that

(12) w(x1) >
M(x0)

ε
and g(x) = 0 for |x| > x1,

where M(x0) is defined above. Then, by (6), (11) and the Lemma (cf., e.g., [9],
pp. 28, 29),

‖Lnf − f‖p,w 6 ‖Ln(f − g)‖p,w + ‖Lng − g‖p,w + ‖f − g‖p,w

6 (C + 1)‖f − g‖p,w + ‖Lng − g‖p,w

6 (C + 1)ε + ‖Lng − g; Lp,w(−x1, x1)‖+ ‖Lng; Lp,w(|x| > x1)‖
6 (C + 2)ε + ‖Lng; Lp,w(|x| > x1)‖.
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Since |g(x)| 6 M(x0) for all x ∈ & , we can write

‖Lng; Lp,w(|x| > x1)‖ 6 M(x0)‖Ln1; Lp,w(|x| > x1)‖
6 M(x0)‖Ln1− 1‖p,w + M(x0)‖1; Lp,w(|x| > x1).

Therefore

‖Lnf − f‖p,w 6 (C + 2)ε + M(x0)‖Ln1− 1‖p,w +
M(x0)
w(x1)

.

In view of (7) and (12), the proof is completed. �

4.

Theorem 2 gives a way of approximating all functions in Lp(loc). Namely, we have
the following result.

Theorem 3. Let a sequence of linear operators An ∈ (Lp,w(loc) → Lp,w(loc))+

satisfy the conditions i) and ii). Then, for all functions f ∈ Lp,w(loc),

lim
n→∞

sup
−∞<x<∞

‖Anf − f ; Lp(x− h, x + h)‖
1 + |x|2−ε

= 0,

where ε > 0 is any positive number (ε cannot be zero).
� �"!#!%$

. By the condition (6) for any fixed x0

an = sup
|x|>x0

‖Anf − f ; Lp(x− h, x + h)‖
1 + x2

is bounded, if f ∈ Lp,w(loc).
Also by the Lemma for any fixed x0,

bn = sup
|x|6x0

‖Anf − f ; Lp(x− h, x + h)‖
1 + x2

tends to zero as n → ∞. Indeed, by the Luzin Theorem there exists a continuous
function ϕ1 on the interval [−x0 − h, x0 + h] such that the inequality

(13) ‖f − ϕ1; Lp(−x0 − h, x0 + h)‖ < ε
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is fulfilled. Moreover, setting

ϕ1(x) = ϕ1(−x0 − h) if x 6 x0 − h,

ϕ1(x) = ϕ1(x0 + h) if x > x0 + h,

we see that ϕ1 is continuous and bounded function on the whole real axis, for which

the Lemma holds. Now,

bn 6 ‖Anf − f ; Lp(−x0 − h, x0 + h)‖
6 (1 + ‖An‖)‖f − ϕ1; Lp(−x0 − h, x0 + h)‖+ ‖Anϕ1 − ϕ1; Lp(−x0 − h, x0 + h)‖

and lim
n→∞

bn = 0 by (6), (13) and the Lemma.
All that remains to see is that

sup
−∞<x<∞

‖Anf − f ; Lp(x− h, x + h)‖
1 + |x|2+ε

6 (1 + x2
0)bn + an sup

|x|>x0

1 + x2

1 + |x|2+ε

and the proof is completed since the last statement concerning ε follows from Theo-
rem 1.
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