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Abstract. We prove that any complete bipartite graph Ka,b, where a, b are even integers,
can be decomposed into closed trails with prescribed even lengths.
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1. Introduction

In this paper we consider simple graphs only, and we use the standard notation of
the graph theory.
A graph is said to be even if the degrees of all its vertices are even. By Euler’s

theorem, a connected even graph is Eulerian, i.e. contains a closed trail (a circuit)
passing through all its edges (exactly once).
We denote by Lct(G) the set of all integers l such that there is a closed trail

of length l in G and by Sct(G) the set of all sequences (l1, l2, . . . , lp) such that

li ∈ Lct(G), i = 1, 2, . . . , p, and
p∑

i=1

li = |E(G)|. A connected even graph G is

said to be arbitrarily decomposable into closed trails (ADCT for short) if, for any
sequence (l1, l2, . . . , lp) ∈ Sct(G), G can be (edge-disjointly) decomposed into closed
trails T1, T2, . . . , Tp of lengths l1, l2, . . . , lp, respectively.
A sequence of integers (l1, l2, . . . , lp) ∈ Sct(G) is said to be realizable in G if G

can be (edge-disjointly) decomposed into closed trails T1, T2, . . . , Tp of lengths l1,

l2, . . . , lp, respectively.

A support of the Slovak grant VEGA 1/7647/20 is grategully acknowledged by the first
author. The second author was partially supported by AGH local grant.
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So, a connected even graph G is ADCT if each sequence in Sct(G) is realizable
in G.
The following theorem, in which M2k is a matching of K2k having k edges, is just

a reformulation of a theorem by Balister [1].

Theorem 1. If k is an integer, k > 2, then the graphs K2k−1 and K2k −M2k are
ADCT.

Remark. The motivation and application of Theorem 1 can be found in problems
concerning the vertex-distinguishing proper edge-colouring of a graph. This notion
was introduced and studied by Burris and Schelp in [5] and, independently (the
corresponding invariant is called there observability of a graph), by Černý, Horňák
and Soták in [6]. See also [2], [3], [4] for recent results in this area.

The aim of the present paper is to prove that complete bipartite even graphs are
arbitrarily decomposable into closed trails.

Theorem 2. If a, b are positive even integers, then the graph Ka,b is ADCT.

2. Auxiliary and partial results

Let a, b be positive even integers. Clearly, Lct(K2,b) = {4i : i = 1, 2, . . . , 1
2b} and,

if a, b > 4, then Lct(Ka,b) = {2i : i = 2, 3, . . . , 1
2 (ab− 4)} ∪ {ab}.

Proposition 3. If b is a positive even integer, then the graph K2,b is ADCT.
���������

. The result follows from the fact that K2,b can be decomposed into 1
2 b

cycles C4 which all share two common vertices. �

Lemma 4. Let a, b1, b2 be positive even integers, let b = b1 + b2 and let
a sequence Si = (li1, l

i
2, . . . , l

i
pi) ∈ Sct(Ka,bi) be realizable in Ka,bi , i = 1, 2.

Then the sequences S1 · S2 = (l11, l
1
2, . . . , l

1
p1 , l21, l

2
2, . . . , l

2
p2) and S1 + S2 = (l11 +

l21, l
1
2, l

1
3, . . . , l

1
p1 , l22, l

2
3, . . . , l

2
p2) are realizable in Ka,b.

���������
. Consider vertex-disjoint graphs Ka,b1 , Ka,b2 , a decomposition of Ka,bi

into closed trails corresponding to Si, i = 1, 2, and then identify (in an arbitrary
way) pairs of vertices of parts of cardinality a. We obtain a decomposition of Ka,b

into closed trails corresponding to the sequence S1 ·S2. If the identification is chosen
in such a way that trails T 1

1 in Ka,b1 of length l11 and T 2
1 in Ka,b2 of length l21 have a

common vertex, what results can also be regarded as a decomposition corresponding
to the sequence S1 + S2, because the union of T 1

1 and T 2
1 is a closed trail of length

l11 + l21—see Fig. 1. �
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Figure 1. The partition set having a vertices of the graphs Ka,b1 and Ka,b2 has been chosen

in such a way that the sets of vertices of T 11 and T 21 intersect.

Proposition 5. If a, b are even integers with a > 4, b > 4 and 6 | ab, then the
graph Ka,b can be decomposed into cycles C6.
���������

. Let the parts of the graph Ka,b be {x1, x2, . . . , xa} and {y1, y2, . . . , yb}.
A decomposition of the graph K6,b, b ∈ {4, 6}, is presented in a 6 × b matrix M6,b,
where the ith row and jth column entry indicates the number of the 6-cycle passing
through the edge xiyj :

M6,4 =




1 1 3 3
3 1 1 3
1 4 1 4
3 2 3 2
4 2 2 4
4 4 2 2




, M6,6 =




1 3 3 1 4 4
1 5 1 4 5 4
5 6 1 1 5 6
5 5 2 2 6 6
3 6 3 2 6 2
3 3 2 4 4 2




.

Since Kb,a is isomorphic to Ka,b, we may suppose that 6 | a. Thus, a = 6p and
b = 4q + 6r for appropriate integers p, q, r, r ∈ {0, 1}. Using Lemma 4 we obtain a
decomposition of K6,4q+6r or, equivalently, of K4q+6r,6 (note that any closed trail of
length 6 in a simple bipartite graph is in fact a cycle C6). By Lemma 4 again this
yields a decomposition of K4q+6r,6p and we are done. �

Theorem 6. The graphs K4,4, K4,6 and K6,6 are ADCT.
���������

. (1) If a sequence from Sct(K4,4) contains only terms divisible by 4, it
is realizable in K4,4 because of Proposition 3 and Lemma 4. There are two other
nondecreasing sequences in Sct(K4,4), namely (4,6,6) and (6,10). Consider a cycle C6

in K4,4. Evidently, the connected graph K4,4–C6 is even. It has 10 edges and is the
union of cycles C4 and C6.
(2) Consider a sequence S ∈ Sct(K4,6). With respect to (1), Proposition 3 and

Lemma 4, S is realizable in K4,6 if all terms of S are divisible by 4, if there are
terms in S whose sum is 8 or if S ∈ {(4, 6, 14), (4, 10, 10)}. For S = (6, 6, 6, 6)
use Proposition 5. Finally, S = (6, 18) is realizable in K4,6, because K4,6–C6 is a
connected even graph.
(3) Now let S = (l1, l2, . . . , lp) be a nondecreasing sequence in Sct(K6,6). Using 2,

Proposition 3 and Lemma 4 we see that S is realizable inK6,6 if the sum of terms of S
divisible by 4 is at least 8. Thus, we may suppose that if S has a term divisible by 4, it
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is only l1 = 4. If S = (6, 6, 6, 6, 6, 6), we are done by Proposition 5. So, suppose that

i is the smallest index such that li > 6. Then it is easy to see that s =
p∑

j=i

(li−6) > 8.

If s > 12, choose integers l′j such that 4 6 l′j 6 lj − 6, l′j ≡ 0 (mod 4), i 6 j 6 p,

and
p∑

j=i

l′j = 12. Because of (2) the graph K4,6 can be decomposed into closed trails

T1, T2, . . . , Tp with lengths l1, l2, . . . , li−1, li−l′i, li+1−l′i+1, . . . , lp−l′p. Since lj−l′j ≡ 2
(mod 4), i 6 j 6 p, and p+1−i 6 3, in each trail Tj , i 6 j 6 p, we can pick a distinct
vertex zj from the part containing 6 vertices (so that Tj → zj is an injection). Take
a decomposition of K2,6, sharing the part of 6 vertices with K4,6, into closed trails
T ′

i , T
′
i+1, . . . , T

′
p of lengths l′i, l

′
i+1, . . . , l

′
p in such a way that T

′
j contains the vertex zj ,

i 6 j 6 p. The union of Tj and T ′
j is then a closed trail of length lj , i 6 j 6 p, which

shows that S is realizable in K6,6.
If s = 8, then l1 = 4. We proceed as above with l′j = lj − 6, i 6 j 6 p, with a

decomposition of K4,6 into closed trails of lengths l2, l3, . . . , li−1 and a decomposition
of K2,6 into closed trails of lengths l1 and l′j , i 6 j 6 p. �

Proposition 7. If a ∈ {4, 6, 8}, then the sequences (4a− 2, 4a + 2) and (4, 4a−
2, 4a− 2) are realizable in the graph Ka,8.
���������

. Let the parts of the graph Ka,8 be {x1, x2, . . . , xa} and {y1, y2, . . . , y8}.
Consider a closed Eulerian trail in the subgraph of Ka,8 induced on the vertex set
{x1, x2, . . . , xa−2, y1, y2, y3, y4}. Joining it with a closed trail of length 6 on the
vertices x1, y5, x2, y6, x3, y7 results in a closed trail T of length 4a − 2. A closed
trail T ′ on the vertices xa−1, y1, xa, y2 is edge-disjoint with T . Deleting the edges
of T and T ′ (and possibly created isolated vertices) from Ka,8 we obtain a connected
even graph G with 4a− 2 edges and V (G)∩ V (T ′) 6= ∅. Thus, the remaining trail(s)
can be built up using T ′ and a closed Eulerian trail in G. �

Proposition 8. The sequences S6
4 = (4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6), S10

4 = (4, 10, 10,

10, 10, 10, 10) and S10
14 = (10, 10, 10, 10, 10, 14) are realizable in the graph K8,8.

���������
. Analogously as in the proof of Proposition 5 we present 8× 8 matrices

M l
4, l ∈ {6, 10}:

M6
4 =




1 1 7 5 7 5 3 3
9 1 1 8 9 3 3 8
1 9 1 5 9 3 5 3
9 9 7 1 1 5 5 7
0 6 6 1 1 8 0 8
4 6 4 0 6 2 0 2
0 4 4 0 7 2 2 7
4 4 6 8 6 8 2 2




, M10
4 =




1 1 4 4 5 5 2 2
1 1 1 4 4 2 2 1
6 5 1 1 5 2 6 2
1 2 3 1 1 2 3 1
1 2 3 6 1 2 3 6
3 5 3 5 4 4 6 6
6 3 3 5 6 4 4 5
3 3 4 6 6 5 4 5




.
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The matrix M l
4 describes a decomposition of K8,8 into closed trails with lengths

corresponding to Sl
4 in such a way that its ith row and jth column entry indicates

the number of either the l-trail (of length l) or the 4-trail (if that entry is bold)
passing through the edge xiyj ; in M6

4 0 stands instead of 10. The matrix M 10
4 yields

also the realizability of S10
14 : it is sufficient to join the (bold) 4-trail with one of

10-trails (note that no two trails described by M 10
4 are vertex-disjoint). �

Proposition 9. If a, b are even integers with a > 4, b > 4 and 10 | ab, then the
graph Ka,b can be decomposed into closed trails of length 10.
���������

. Without loss of generality we may suppose that 10 | a. By Theorem 6,
the sequence (6,10) is realizable in K4,4, (4,10,10) in K4,6 (and, equivalently, in K6,4)
and (6,10,10,10) in K6,6. Thus, using Lemma 4, we see that the graphs K4,10 and
K6,10 can be decomposed into closed trails of length 10. To conclude the proof we
can proceed as in the proof of Proposition 5, since a = 10p and b = 4q + 6r for
appropriate integers p, q, r, r ∈ {0, 1}. �

Lemma 10. Let a, b be even integers with b > a > 4 and b > 8. If for any
b′ ∈ {b− 8, b− 6, b− 4} with b′ > 4 the graph Ka,b′ is ADCT, so is the graph Ka,b.
���������

. Consider a nondecreasing sequence S = (l1, l2, . . . , lp) ∈ Sct(Ka,b). Put

s(j) :=
j∑

i=1

li for j = 0, 1, . . . , p, and let q ∈ {1, 2, . . . , p} be defined by inequalities
s(q − 1) < 4a and s(q) > 4a.
(1) If s(q) = 4a, then the sequence S1 = (l1, l2, . . . , lq) is realizable in Ka,4 and

the sequence S2 = (lq+1, lq+2, . . . , lp) in Ka,b−4. So, by Lemma 4, the sequence
S = S1 · S2 is realizable in Ka,b.
(2) If s(q) = 4a + 2, then clearly lq > 6 and s(q − 1) 6 4a− 4.
(21) If lp > lq+2, then the sequence S1 = (4a−s(q−1), l1, l2, . . . , lq−1) is realizable

in Ka,4 and S2 = (lp − lq + 2, lq, lq+1, . . . , lp−1) in Ka,b−4. Since 4a− s(q − 1) + lp −
lq +2 = lp, by Lemma 4 the sequence S1 + S2 = (lp, l1, l2, . . . , lp−1) ∼ S is realizable
in Ka,b. (We will write S′ ∼ S′′ for sequences S′ and S′′ if one of them can be
obtained from the other by permuting its terms.)
(22) lp = lq = l.
(221) If there is r ∈ {1, 2, . . . , q − 1} such that 6 6 lr 6 l − 2, then the sequence

S1 = (lr − 2, l1, l2, . . . , lr−1, lr+1, lr+2, . . . , lq) is realizable in Ka,4, S2 = (lq+1 − lr +
2, lr, lq+2, lq+3, . . . , lp) in Ka,b−4 and S ∼ S1 + S2 in Ka,b.
(222) If the assumption of (221) is not true, then li ∈ {4, l} for i = 1, 2, . . . , p, and,

clearly, l ≡ 2 (mod 4).
(2221) l2 = 4.
(22211) If l = 6, then the sequence S1 = (l3, l4, . . . , lq+1) is realizable in Ka,4,

S2 = (l1, l2, lq+2, lq+3, . . . , lp) in Ka,b−4 and S ∼ S1 · S2 in Ka,b.
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(22212) If l > 10, then the sequence S1 = (6, l3, l4, . . . , lq) is realizable in Ka,4,
S2 = (lq+1 − 6, l1, l2, lq+2, lq+3, . . . , lp) in Ka,b−4 and S ∼ S1 + S2 in Ka,b.
(2222) l2 = l.
(22221) l1 = 4.
(222211) If b = 8, then 4 + (p − 1)l = 8a and l | 8a − 4. Since a ∈ {4, 6, 8}, this

is possible only if either a ∈ {4, 6}, l = 4a− 2 and S = (4, 4a− 2, 4a− 2) or a = 8,
l ∈ {6, 10} and S = Sl

4 so that we can use Propositions 7 and 8.
(222212) b > 10.
(2222121) If l = 6, then the sequence S1 = (l2, l3, . . . , la+1) is realizable in Ka,6,

S2 = (l1, la+2, la+3, . . . , lp) in Ka,b−6 and S ∼ S1 · S2 in Ka,b.
(2222122) If l > 10, then s(q) = 4 + (q − 1)l = 4a + 2, q is even and (q − 2)l =

4a − 2 − l, so that tl = 6a − 3 − 1
2 l for t = q − 1 + 1

2 (q − 2). Thus, the sequence
S1 = ( 1

2 l−1, l1, l2, . . . , lt+1) is realizable in Ka,6, S2 = (lt+2− 1
2 l+1, lt+3, lt+4, . . . , lp)

in Ka,b−6 and S ∼ S1 + S2 in Ka,b.
(22222) If l1 = l, then pl = ab, l | ab, ql = 4a + 2, q is odd and tl = 6a + 3− 1

2 l for
t = q + 1

2 (q − 1).
(222221) If l ∈ {6, 10}, we are done by Propositions 5 and 9.
(222222) If l > 14, then b > 10 (8a for a ∈ {4, 6, 8} does not have an appropriate

divisor), the sequence S1 = ( 1
2 l − 3, l1, l2, . . . , lt) is realizable in Ka,6, S2 = (lt+1 −

1
2 l + 3, lt+2, lt+3, . . . , lp) in Ka,b−6 and S ∼ S1 + S2 in Ka,b.
(3) s(q) > 4a + 4.
(31) If s(q − 1) 6 4a− 4, then the sequence S1 = (4a− s(q − 1), l1, l2, . . . , lq−1) is

realizable in Ka,4, S2 = (s(q) − 4a, lq+1, lq+2, . . . , lp) in Ka,b−4 and S ∼ S1 + S2 in
Ka,b.
(32) s(q − 1) = 4a− 2.
(321) l = lp > lq−1 + 2.
(3211) If there is r ∈ {q, q+1, . . . , p} such that lr = lq−1+2, then the sequence S1 =

(l1, l2, . . . , lq−2, lr) is realizable in Ka,4, S2 = (lq−1, lq, . . . , lr−1, lr+1, lr+2, . . . , lp) in
Ka,b−4 and S ∼ S1 · S2 in Ka,b.
(3212) If lp > lq−1+6, then the sequence S1 = (lq−1+2, l1, l2, . . . , lq−2) is realizable

in Ka,4, S2 = (lp − lq−1 − 2, lq−1, lq , . . . , lp−1) in Ka,b−4 and S ∼ S1 + S2 in Ka,b.
(3213) If the assumptions of (3211) and (3212) are not fulfilled, then lq−1 = l− 4,

li ∈ {l− 4, l} for i = q, q + 1, . . . , p, and l > 10.
(32131) If l1 6 l − 6, then the sequence S1 = (l1 + 2, l2, l3, . . . , lq−1) is realizable

in Ka,4, S2 = (lp − l1 − 2, lq, lq+1, . . . , lp−1) in Ka,b−4 and S ∼ S1 + S2 in Ka,b.
(32132) If l1 = l − 4, then (q − 1)(l − 4) = 4a − 2, hence q is even and l ≡ 2

(mod 4).
(321321) If l2 = l − 4, then p > 3.
(3213211) If lp−1 = l, then the sequence S1 = (lp−1 − 6, lp, l3, l4, . . . , lq−1) is

realizable in Ka,4, S2 = (6, lq, lq+1, . . . , lp−2) in Ka,b−4 and S ∼ S1 + S2 in Ka,b.
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(3213212) If lp−1 = l− 4, then (p− 1)(l − 4) + l = ab and l − 4 | ab− 4.
(32132121) If b = 8, then l − 4 | 8a − 4. Since a ∈ {4, 6, 8} and p > 3, the only

possibility is a = 8, l = 14, S = S10
14 and we are done by Proposition 8.

(32132122) If b > 10, then t(l−4) = 6a−1− 1
2 l for t = q−1+ 1

2 (q−2), the sequence
S1 = ( 1

2 l + 1, l1, l2, . . . , lt) is realizable in Ka,6, S2 = (lt+1 − 1
2 l− 1, lt+2, lt+3, . . . , lp)

in Ka,b−6 and S ∼ S1 + S2 in Ka,b.
(321322) If l2 = l, then q = 2, l − 4 = 4a− 2, l − 4 + (p− 1)l = ab and l | ab + 4.
(3213221) If b = 8, then l | 8a + 4, which yields as possible just the pairs (a, l) =

(4, 18), (6, 26), (8, 34) and the sequence S = (4a − 2, 4a + 2). Thus, we are done by
Proposition 7.
(3213222) If b > 10, then the sequence S1 = (2a − 2, l2) is realizable in Ka,6,

S2 = (l3 − 2a + 2, l1, l4, l5, . . . , lp) in Ka,b−6 and S ∼ S1 + S2 in Ka,b.
(322) If l = lp = lq−1, then also lp−1 = l.
(3221) If there is r ∈ {1, 2, . . . , q− 2} such that lr = l− 2, then the sequence S1 =

(lp, l1, l2, . . . , lr−1, lr+1, lr+2, . . . , lq−1) is realizable in Ka,4, S2 = (lq , lq+1, . . . , lp−1)
in Ka,b−4 and S ∼ S1 · S2 in Ka,b.
(3222) If l1 6 l− 6, then the sequence S1 = (l1 + 2, l2, l3, . . . , lq−1) is realizable in

Ka,4, S2 = (lp − l1 − 2, lq, lq+1, . . . , lp−1) in Ka,b−4 and S ∼ S1 + S2 in Ka,b.
(3223) If the assumptions of (3221) and (3222) are not fulfilled, then li ∈ {l− 4, l}

for i = 1, 2, . . . , p, and consequently l ≡ 2 (mod 4).
(32231) If l1 = l − 4, then l > 10.
(322311) If l2 = l − 4, then the sequence S1 = (lp−1 − 6, lp, l3, l4, . . . , lq−1) is

realizable in Ka,4, S2 = (6, lq, lq+1, . . . , lp−2) in Ka,b−4 and S ∼ S1 + S2 in Ka,b.
(322312) If l2 = l, then l−4+(p−1)l = ab. Since 1 < q−1 < p, we have p > 3 and

so b > 10 (as in (3213221), the assumption b = 8 would lead to p = 2). Moreover,
l − 4 + (q − 2)l = 4a− 2, q is even and tl = 6a + 3− 1

2 l for t = q − 1 + 1
2 (q − 2).

(3223121) If l = 10, then b > 12 and 6 + 10(2q − 3) = 8a. So, the sequence
S1 = (l1, l2, . . . , l2q−2) is realizable in Ka,8, S2 = (l2q−1, l2q, . . . , lp) in Ka,b−8 and
S = S1 · S2 in Ka,b.
(3223122) If l > 14, then the sequence S1 = ( 1

2 l − 3, l1, l2, . . . , lt) is realizable in
Ka,6, S2 = (lt+1 − 1

2 l + 3, lt+2, lt+3, . . . , lp) in Ka,b−6 and S ∼ S1 + S2 in Ka,b.
(32232) If l1 = l, then pl = ab and l | ab.
(322321) If l ∈ {6, 10}, then we are done by Propositions 5 and 9.
(322322) If l > 14, then necessarily b > 10 (the assumption b = 8 would mean

8 | p and l 6 a 6 b). Moreover, (q − 1)l = 4a− 2, q is even and tl = 6a− 3− 1
2 l for

t = q − 1 + 1
2 (q − 2). Thus, the sequence S1 = ( 1

2 l + 3, l1, l2, . . . , lt) is realizable in
Ka,6, S2 = (lt+1 − 1

2 l − 3, lt+2, lt+3, . . . , lp) in Ka,b−6 and S ∼ S1 + S2 in Ka,b. �
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3. Proof of the main theorem

With respect to Proposition 3 it is sufficient to show that for any even integer
a > 4 the following statement S(a) is true: For any even integer b > 4 the graph
Ka,b is ADCT.
We proceed by induction on a. Because of Theorem 6 the graphs K4,4, K4,6, K6,4

and K6,6 are ADCT. Thus, by induction on b using Lemma 10, the statements S(4)
and S(6) are true.
So, suppose that a > 8 and S(a′) is true for every even integer a′ with 4 6 a′ 6

a − 2. If b is an even integer with 4 6 b 6 a − 2, then the graph Ka,b isomorphic
to Kb,a is ADCT by S(b). Now, assume that b is an even integer with b > a and
that for every even integer b′ with 4 6 b′ 6 b − 2 the graph Ka,b′ is ADCT. Then,
by Lemma 10, the graph Ka,b is ADCT, which shows that S(a) is true.
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