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SOME FIXED POINT THEOREMS IN METRIC SPACES

BY ALTERING DISTANCES
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Abstract. A generalization is obtained for some of the fixed point theorems of Khan,
Swaleh and Sessa, Pathak and Rekha Sharma, and Sastry and Babu for a self-map on a
metric space, which involve the idea of alteration of distances between points.
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The famous Banach contraction principle has been generalized by several authors

in several ways. A comprehensive literature on the generalizations of the same for
self-maps on a metric space can be found in Rhoades [4] and Tasković [9]. Khan,

Swaleh and Sessa [1] obtained generalizations of the same for a self-map on a metric
space by altering distances between points through the use of certain control func-

tions. Sastry and Babu [5], [6] and [7] continued the study in this direction. It was
further pursued by Naidu [2]. In an attempt to unify Theorem 2 of Khan, Swaleh

and Sessa [1] and that of Pathak and Rekha Sharma [3], Sastry and Babu obtained
a partial generalization (Theorem 2.1 of [5]). Here our aim is to unify all the three

results.

Throughout this paper, unless otherwise stated, (X, d) is a metric space, f is a
self-map on X , � is the set of all positive integers, � + is the set of all nonnegative

real numbers, ϕ : � + → � + is a monotonically increasing function with ϕ(t+) < t

∀t ∈ (0,∞), θ : � + → [0, 1] is a monotonically decreasing function with θ(t) < 1
∀t ∈ (0,∞), ζ : � + → [ 12 , 1) is continuous at zero, % is a nonnegative real valued
function on X ×X with the following two properties:

(i) {%(xn, yn)}∞n=1 is convergent whenever {xn}∞n=1 and {yn}∞n=1 are sequences in X
such that {d(xn, yn)}∞n=1 is convergent,
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(ii) for any sequences {xn}∞n=1 and {yn}∞n=1inX , the sequence {%(xn, yn)}∞n=1 con-

verges to zero iff the sequence {d(xn, yn)}∞n=1 converges to zero;
K is a nonnegative real number, and for x, y ∈ X we have

α(x, y) = (max{%(x, y), %(x, fx), %(y, fy)}) +K[%(x, fy)%(fx, y)]1/2,

β(x, y) = (max{%(x, y), [%(x, fy)%(fx, y)]1/2}) + max{%(x, fx), %(y, fy)},
β0(x, y) = (max{%(x, y), [%(x, fy)%(fx, y)]1/2})

+ (min{max{%(x, fx), %(y, fy)}, ζ(d(x, y))[%(x, fx) + %(y, fy)]}),
γ(x, y) = min{α(x, y), β(x, y)} and
γ0(x, y) = min{α(x, y), β0(x, y)}.

From property (i) of % we note that % is symmetric and that {%(xn, yn)}∞n=1

converges to %(x, y) whenever {xn}∞n=1 and {yn}∞n=1 are sequences in X such that

{d(xn, yn)}∞n=1 converges to d(x, y). From property (ii) of % we note that %(x, y) = 0
iff x = y.

Theorem 1. Suppose that

(1) %(fx, fy) 6 max{ϕ(γ(x, y)), θ(d(x, y))γ(x, y)}

for all x, y ∈ X . Then f has at most one fixed point in X and for any x ∈ X , {fnx}
is Cauchy.
�����
���

. From inequality (1) we have

%(fx, fy) 6 max{ϕ(α(x, y)), θ(d(x, y))α(x, y)}

for all x, y ∈ X . Hence

%(fx, f2x) 6 max{ϕ(max{%(x, fx), %(fx, f 2x)}),(2)

θ(d(x, fx)) max{%(x, fx), %(fx, f 2x)}}.

Suppose that fx 6= x. Then θ(d(x, fx)) < 1 and %(x, fx) > 0. Hence from inequal-
ity (2) and the fact that ϕ(t) 6 ϕ(t+) < t ∀t ∈ (0,∞) it follows that

(3) %(fx, f2x) 6 max{ϕ(%(x, fx)), θ(d(x, fx))%(x, fx)}.

We note that inequality (3) remains valid even if fx = x. Replacing x with fn−1x

in inequality (3) we obtain

(4) %(fnx, fn+1x) 6 max{ϕ(%(fn−1x, fnx)), θ(d(fn−1x, fnx))%(fn−1x, fnx)}
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for all n ∈ � . Since ϕ(t) 6 t and θ(t) 6 1 ∀t ∈ � + , from inequality (4) we have

%(fnx, fn+1x) 6 %(fn−1x, fnx)

for all n ∈ � . Consequently, {%(fnx, fn+1x)}∞n=0 is a monotonically decreasing

sequence of nonnegative real numbers. Hence it converges to a nonnegative real
number s. First, suppose that s > 0. Then from property (ii) of % it follows
that {d(fnx, fn+1x)}∞n=0 is a sequence of positive real numbers bounded below by

a positive real number δ. Since θ is a monotonically decreasing function on � + , it
follows that θ(d(fn−1x, fnx)) 6 θ(δ) ∀n ∈ � . Hence from inequality (4) we have

%(fnx, fn+1x) 6 max{ϕ(%(fn−1x, fnx)), θ(δ)%(fn−1x, fnx)}

for all n ∈ � . Taking limit superiors on both sides of the above inequality as
n→ +∞, we obtain

s 6 max{ϕ(s+), θ(δ)s}.

Since ϕ(t+) < t ∀t ∈ (0,∞), s > 0 and θ(δ) < 1, from the above inequality we
have s < s, which is absurd. Hence s = 0. Hence property (ii) of % yields that
{d(fnx, fn+1x)}∞n=0 converges to zero.

Now, suppose that {fnx} is not Cauchy. Then there exists a positive real
number ε such that for given N ∈ � ∃ m,n ∈ � such that m > n > N and

d(fnx, fmx) > ε. Since {d(fnx, fn+1x)}∞n=0 converges to zero, it follows that there
exist strictly increasing sequences {nk}∞k=1 and {mk}∞k=1 of positive integers such

that 1 < nk < mk, d(fnkx, fmk−1x) < ε and d(fnkx, fmkx) > ε ∀k ∈ � . Using the
triangle inequality and the fact that {d(fnx, fn+1x)}∞n=0 converges to zero it can be

shown that {d(fnkx, fmkx)}∞k=1, {d(fnkx, fmk−1x)}∞k=1, {d(fnk−1x, fmkx)}∞k=1 and
{d(fnk−1x, fmk−1x)}∞k=1 all converge to ε. Hence from property (i) of % it follows that

the sequences {%(fnkx, fmkx)}∞k=1, {%(fnkx, fmk−1x)}∞k=1, {%(fnk−1x, fmkx)}∞k=1

and {%(fnk−1x, fmk−1x)}∞k=1 all converge to the same limit b for some nonnega-

tive real number b. Since ε > 0, from property (ii) of % it follows that b > 0.
We note that {β(fnk−1x, fmk−1x)}∞k=1 converges to b. Since ϕ is monotoni-

cally increasing on � + , we have lim sup
k→+∞

ϕ(β(fnk−1x, fmk−1x)) 6 ϕ(b+). Since

θ is monotonically decreasing on � + and {d(fnk−1x, fmk−1x)}∞k=1 converges to ε,

lim sup
k→+∞

θ(d(fnk−1x, fmk−1x)) 6 θ(ε−). Since θ is monotonically decreasing on � +

and θ(t) < 1 ∀t ∈ (0,∞), it follows that θ(t−) < 1 ∀t ∈ (0,∞). From inequality (1)
we have

(5) %(fx, fy) 6 max{ϕ(β(x, y)), θ(d(x, y))β(x, y)}
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for all x, y ∈ X . Taking fnk−1x and fmk−1x istead of x and y in the above inequality

and then taking limit superiors on both sides as k → +∞ we obtain

b 6 max{ϕ(b+), θ(ε−)b}.

Since ϕ(t+) < t and θ(t−) < 1 ∀t ∈ (0,∞), b > 0 and ε > 0, from the above
inequality we obtain b < b which is a contradiction. Hence {fnx} is Cauchy.
If x, y are fixed points of f in X , then β(x, y) = %(x, y) and hence from inequal-

ity (5) we obtain

%(x, y) 6 max{ϕ(%(x, y), θ(d(x, y))%(x, y)}.

Since ϕ(t) < t and θ(t) < 1 ∀t ∈ (0,∞), from the above inequality we have %(x, y) =
0. Hence x = y. Hence f has at most one fixed point in X . �

Remark 1. Theorem 1 remains valid if inequality (1) is replaced with inequali-
ties (3) and (5).

Theorem 2. Suppose that

(6) %(fx, fy) 6 max{ϕ(γ(x, y)), θ(d(x, y))γ0(x, y)}

for all x, y ∈ X . Then for any x ∈ X , {fnx} is Cauchy. For any x0 ∈ X , the limit

of {fnx0}, if it exists, is the unique fixed point of f .
�����
���

. Since the validity of inequality (6) implies that of inequality (1), it fol-

lows from Theorem 1 that f has at most one fixed point in X and that for any x ∈ X ,
{fnx} is Cauchy. Let x0 ∈ X . Suppose that {fnx0} converges to an element z of X .
Since ζ is continuous at zero, {ζ(d(fnx0, z))} converges to ζ(0). From the properties
of % we note that the sequences {%(fnx0, fz)}, {%(fn+1x0, fz)} converge to %(z, fz)
and that the sequences {%(fnx0, z)}, {%(fn+1x0, z)} and {%(fnx0, f

n+1x0)} con-
verge to zero. Hence {β(fnx0, z)} converges to %(z, fz) and {β0(fnx0, z)} converges
to ζ(0)%(z, fz). From inequality (6) we have

(7) %(fx, fy) 6 max{ϕ(β(x, y)), θ(d(x, y))β0(x, y)}

for all x, y ∈ X . Taking x = fnx0 and y = z in inequality (7) and then taking limit

superiors on both sides as n→ +∞ we obtain

%(z, fz) 6 max{ϕ(%(z, fz)+), θ(0)ζ(0)%(z, fz)}.

Since ϕ(t+) < t ∀t ∈ (0,∞), θ(0) 6 1 and ζ(0) < 1, from the above inequality we
have %(z, fz) = 0. Hence fz = z. �
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Remark 2. Theorem 2 remains valid if inequality (6) is replaced with inequali-
ties (3) and (7).

From Theorem 2 we have the following

Corollary 1. Suppose that

%(fx, fy) 6 θ(d(x, y))γ0(x, y)

for all x, y ∈ X . Then for any x ∈ X , {fnx} is Cauchy. For any x0 ∈ X , the limit

of {fnx0}, if it exists, is the unique fixed point of f .
From Corollary 1 we have

Corollary 2. Suppose that

%(fx, fy) 6 θ(d(x, y)) max
{
%(x, y), 1

2 [%(x, fx) + %(y, fy)], [%(x, fy)%(fx, y)]
1
2
}

for all x, y ∈ X . Then for any x ∈ X , {fnx} is Cauchy. For any x0 ∈ X , the limit

of {fnx0}, if it exists, is the unique fixed point of f .
Remark 3. In Corollary 2 the conclusion about the existence of a fixed point

fails if the expression 1
2 [%(x, fx) + %(y, fy)] in its governing inequality is replaced

with max{%(x, fx), %(y, fy)}. Example 1 shows that this is so even when (X, d) is a
finite metric space and % = d. In particular, the hypothesis of Theorem 1 does not
ensure the existence of a fixed point for f .

Example 1 (Example 4 of [8]). Let X = [0, 1] with the usual metric. Define
f : X → X as f(x) = x/2 if 0 < x 6 1 and f(0) = 1. Define θ : � + → [0, 1] as
θ(t) = 1− t/2 if 0 6 t 6 1 and θ(t) = 1

2 if 1 < t < +∞. Then θ is a monotonically
decreasing continuous function on � + , θ(t) < 1 ∀t ∈ (0,∞) and

|fx− fy| 6 θ|x− y|max{|x− y|, |x− fx|, |y − fy|}

for all x, y ∈ X . Nonetheless, f has no fixed point in X .

Corollary 3 (Theorem 2 of [1]). Suppose that (X, d) is complete, ψ : � + → � +

is a monotonically increasing continuous function with ψ(t) = 0 iff t = 0, a, b, c are
monotonically decreasing functions from (0,∞) into [0, 1) with a(t) + b(t) + c(t) < 1
∀t ∈ (0,∞), and

ψ(d(fx, fy)) 6 a(d(x, y))ψ(d(x, y)) + 1
2b(d(x, y))[ψ(d(x, fx)) + ψ(d(y, fy))]

+ c(d(x, y)) min{ψ(d(x, fy)), ψ(d(fx, y))}

for all distinct x, y ∈ X . Then f has a unique fixed point in X .
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�����
���
. Let % = ψ ◦ d. Define θ : � + → [0, 1] as θ(t) = a(t) + b(t) + c(t) if

t 6= 0 and θ(0) = 1. Then % is a nonnegative real valued function on X ×X having
properties (i) and (ii), θ is a monotonically decreasing function on � + with θ(t) < 1
∀t ∈ (0,∞) and

%(fx, fy) 6 θ(d(x, y)) max
{
%(x, y), 1

2 [%(x, fx) + %(y, fy)],min{%(x, fy), %(fx, y)}
}

6 θ(d(x, y)) max
{
%(x, y), 1

2 [%(x, fx) + %(y, fy)], [%(x, fy)%(fx, y)]
1
2
}

for all x, y ∈ X . Hence Corollary 3 follows from Corollary 2. �

Corollary 4 (Theorem 2 of [3]). Suppose that (X, d) is complete, ψ : � + → � +

is a monotonically increasing continuous function with ψ(t) = 0 iff t = 0, a, b
are monotonically decreasing functions from (0,∞) into [0, 1) with a(t) + b(t) < 1

2

∀t ∈ (0,∞), c is a constant in [0, 1] such that a(t)(1 + c) < 1 ∀t ∈ (0,∞), and

ψ(d(fx, fy)) 6 a(d(x, y))[ψ(d(x, y)) + c[ψ(d(x, fy))ψ(d(fx, y))]
1
2 ]

+ b(d(x, y))[ψ(d(x, fx)) + ψ(d(y, fy))]

for all distinct x, y ∈ X . Then f has a unique fixed point in X .
�����
���

. Let % = ψ ◦ d. Define θ : � + → [0, 1] as θ(t) = 2[a(t)+ b(t)] if t 6= 0 and
θ(0) = 1. Then % is a nonnegative real valued function onX×X having properties (i)
and (ii), θ is a monotonically decreasing function on � + with θ(t) < 1 ∀t ∈ (0,∞)
and

%(fx, fy) 6 θ(d(x, y)) max
{

1
2 [%(x, y) + c[%(x, fy)%(fx, y)]

1
2 ], 1

2 [%(x, fx) + %(y, fy)]
}

6 θ(d(x, y)) max
{
%(x, y), c[%(x, fy)%(fx, y)]

1
2 , 1

2 [%(x, fx) + %(y, fy)]
}

6 θ(d(x, y)) max
{
%(x, y), 1

2 [%(x, fx) + %(y, fy)], [%(x, fy)%(fx, y)]
1
2
}

for all x, y ∈ X . Hence Corollary 4 follows from Corollary 2. �

Remark 4. As observed by Sastry and Babu [5], in Theorem 2 of Pathak and
Rekha Sharma [3] the condition ‘a(t)(1 + c) < 1 ∀t ∈ (0,∞)’ is redundant in view of
the hypothesis on the functions a and b, and the condition ‘c 6 1’.

From Theorem 2 we have

Corollary 5. Suppose that

%(fx, fy) 6 ϕ(γ(x, y))
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for all x, y ∈ X . Then for any x ∈ X , {fnx} is Cauchy. For any x0 ∈ X , the limit

of {fnx0}, if it exists, is the unique fixed point of f .

Corollary 6 (Theorem 2.1 of [5]). Suppose that (X, d) is complete, ψ : � + → � +

is a monotonically increasing continuous function with ψ(t) = 0 iff t = 0, a, b, c are
nonnegative constants with a+ b < 1 and a+ c < 1, and

ψ(d(fx, fy)) 6 aψ(d(x, y)) + 1
2b[ψ(d(x, fx)) + ψ(d(y, fy))]

+ c[ψ(d(x, fy))ψ(d(fx, y))]
1
2

for all x, y ∈ X . Then f has a unique fixed point in X .
�����
���

. Let % = ψ ◦ d. Define ϕ : � + → � + as ϕ(t) = µt, where µ = max{a+
b, a+c}. Then % is a nonnegative real valued function on X×X having properties (i)
and (ii), ϕ is a monotonically increasing function on � + with ϕ(t+) < t ∀t ∈ (0,∞)
and

%(fx, fy)

6 a%(x, y) + 1
2b[%(x, fx) + %(y, fy)] + c[%(x, fy)%(fx, y)]

1
2

6 min{(a+ b)(max{%(x, y), %(x, fx), %(y, fy)}) + c[%(x, fy)%(fx, y)]
1
2 ,

(a+ c)(max{%(x, y), [%(x, fy)%(fx, y)] 1
2 }) + 1

2b[%(x, fx) + %(y, fy)]}
6 min{(max{a+ b, c})[(max{%(x, y), %(x, fx), %(y, fy)}) + [%(x, fy)%(fx, y)]

1
2 ],

(max{a+ c, b})[(max{%(x, y), [%(x, fy)%(fx, y)] 1
2 }) + 1

2 [%(x, fx) + %(y, fy)]]}
6 min{(max{a+ b, c})α(x, y), (max{a+ c, b})β0(x, y)}
6 min{µα(x, y), µβ0(x, y)}
= µγ0(x, y) 6 µγ(x, y) = ϕ(γ(x, y))

for all x, y ∈ X , where we have taken K = 1 in the definition of α(x, y). Hence
Corollary 6 follows from Corollary 5. �

Corollary 7. Suppose that a, b, c are nonnegative monotonically decreasing
functions on (0,∞) with a(t) + b(t) < 1 and a(t) + c(t) < 1 ∀t ∈ (0,∞), and

%(fx, fy) 6 a(d(x, y))%(x, y) + 1
2b(d(x, y))[%(x, fx) + %(y, fy)]

+ c (d(x, y))[%(x, fy)%(fx, y)]
1
2

for all distinct x, y ∈ X . Then for any x ∈ X , {fnx} is Cauchy. For any x0 ∈ X ,

the limit of {fnx0}, if it exists, is the unique fixed point of f .
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�����
���
. Define θ : � + → � + as θ(t) = max{a(t) + b(t), a(t) + c(t)} if t 6= 0

and θ(0) = 1. Then θ is a monotonically decreasing function on � + with θ(t) < 1
∀t ∈ (0,∞). Proceeding as in the proof of Corollary 6 it can be shown that

%(fx, fy) 6 θ(d(x, y))γ0(x, y)

for all x, y ∈ X , with K = 1 in the definition of α(x, y). Hence Corollary 7 follows
from Corollary 1. �

Remark. Corollary 7 is also a generalization of Corollaries 3, 4 and 6. Corol-
lary 7 shows that in Theorem 2 of Pathak and Rekha Sharma [3] the condition
‘a(t) + b(t) < 1

2 ∀t ∈ (0,∞)’ can be replaced by the weaker conditions ‘2a(t) < 1 and
a(t) + 2b(t) < 1 ∀t ∈ (0,∞)’.
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