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Abstract. We describe the extension of the multiplication on a not-necessarily-discrete
topological monoid to its flow compactification. We offer two applications. The first is a
nondiscrete version of Hindman’s Theorem, and the second is a characterization of the pro-
jective minimal and elementary flows in terms of idempotents of the flow compactification
of the monoid.
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1. Introduction

Suppose a discrete monoid T is colored with finitely many colors. A beautiful

theorem of Hindman [9] says that for one of the colors, say green, there is a sequence
of green points all of whose ordered products are green. Now let us color an arbitrary

topological monoid T with finitely many colors, subject only to the requirement that
the set of points of each color is an open set in T . We seek a color, say green, such
that the set of green points contains a sequence of pairwise disjoint nonempty open

sets, all of whose ordered products are green. However, no such sequence may exist,
as Example 4.6 below demonstrates. Nevertheless we show in Theorem 4.5 that,

under weak conditions on T , such a sequence can always be found if we ask only that
all ordered products be “near” green points.

A preliminary version of these results was presented to the seminar of B. Balcar and P. Si-
mon of Charles University. The first author would like to express his deep appreciation
for the hospitality extended to him during his 1997–98 sabbatical year in Prague.
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Our approach is to exploit the properties of the flow compactification X̂ of a flowX

with action monoid T . (See Section 2 for careful definitions.) We show that the
resulting flow compactification T̂ of T inherits an associative multiplication from T

and that T̂ , with this operation, is a semitopological monoid. From this we show

that many properties which arise in topological dynamics, most notably recurrent
and uniformly recurrent points, can be described most naturally by considering T̂ ,

and that existence of nontrivial idempotent points in T̂ can be determined from
natural conditions on T .

After developing this machinery, we use it to generalize Hindman’s theorem in Sec-
tion 4. This leads to a straightforward proof of the classical result, Corollary 4.12.

In the final section, we study small projective flows and use the machinery on idem-
potents to characterize elementary and minimal projective compact flows.

The existence and uniqueness of T̂ is due to deVries [15] in case T is a topolog-
ical group. Aside from the additional generality of our treatment for topological

monoids T , what distinguishes our development of T̂ is that it is entirely topological.
Our approach gives, for example, proofs of quite general versions of Hindman’s The-

orem which never mention a formula for the multiplication in T̂ . Thus our original
aim in writing this article was to replace the combinatorial complexity of the existing

proofs of Hindman’s Theorem with appeals to the simplest underlying topological
features of the situation. The reader will have to judge the success of our efforts.

All topological spaces are assumed to be Tychonoff. An encyclopedic reference to
topics in topological dynamics may be found in [14].

2. Flows and the flow compactification

Let T be a fixed monoid. We reserve the letters t and s, sometimes adorned with

primes and subscripts, for its elements. An action of T on a space X is a map
e : T ×X → X such that, writing e(t, x) as tx, we have

1x = x and (t1t2)x = t1(t2x)

for all ti ∈ T . We say that T acts on X if there is an action of T on X . Now suppose
T is a topological monoid. A flow is a pair (X, eX), where eX is a continuous action

of T on X . A flow map f : (X, eX) → (Y, eY ) is a continuous function f : X → Y

which commutes with the actions, i.e., f(tx) = tf(x) for all x ∈ X and t ∈ T .

An important type of flow is a left ideal of T , i.e., a subset S ⊆ T for which ts ∈ S

for all s ∈ S and t ∈ T . The action on left ideals is always by left multiplication.

Definition. Suppose T acts on a space X . A real-valued function g : X → �
is T -uniformly continuous if it is bounded, continuous, and satisfies the following
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condition. For all t ∈ T and ε > 0 there is some Tt ∈ Nt (the open neighborhoods

of t) such that for all t′ ∈ Tt and x ∈ X we have

|g(tx)− g(t′x)| < ε.

We use CT (X) to designate the set of T -uniformly continuous functions on X .

Routine calculation establishes the following result, which is important for our
purposes.

2.1. Theorem. Suppose T acts on a space X . Then CT (X) is a subring and
vector sublattice of C(X) which is uniformly closed. And if X is compact then

CT (X) = C(X).

For every flow X there is a compact flow X̂ which is analogous to the Stone-Čech
compactification of X in the sense that all T -uniformly continuous functions on X

extend to X̂. This result is due to de Vries [15] in the case that T is a topological
group. A self contained proof, which includes the case where T is a monoid, may be

found in [3].

2.2. Proposition. Let Y be a flow. Then there exists Ŷ with the following

properties.

(1) Ŷ is a compact flow.

(2) There is a flow map i : Y → Ŷ with dense range.

(3) For every compact flow X and flow map g : Y → X there exists a unique flow

map f : Ŷ → X such that f ◦ i = g.

(4) CT (Y ) = CT (Ŷ ) = C(Ŷ ). More precisely, every T -uniformly continuous func-

tion f on Y extends uniquely to a continuous function f̂ on Ŷ which satisfies

f = f̂ ◦ i.

We are especially interested in the compact flow T̂ which results by taking Y = T

in Proposition 2.2, where T acts on itself by left multiplication. We state explicitly
the properties of T̂ and then use them to show that T̂ is itself a semitopological

monoid.

2.3. Corollary. Let T be a topological monoid. Then there exists T̂ with the

following properties:

(1) T̂ is a compact flow.

(2) There is a flow map i : T → T̂ with dense range.
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(3) For every compact flow X and flow map g : T → X there exists a unique flow

map f : T̂ → X such that the diagram

T̂

��

f

??
??

??
??

T

OO

i

//g
X

commutes. That is, f ◦ i = g.

(4) CT (T ) = CT (T̂ ) = C(T̂ ). More precisely, every T -uniformly continuous func-

tion f on T extends uniquely to a continuous function f̂ on T̂ which satisfies

f = f̂ ◦ i.

We say that a flow Y is compactifiable if the mapping i from Proposition 2.2 (2)
is a homeomorphic embedding. It is known [13] that every topological group, acting

on itself by left multiplication, is compactifiable. Also, every flow with a locally
compact group of actions is compactifiable [15]. But there are Tychonoff flows acted

on by a topological group which are not compactifiable [11]. Here is an example of
a nontrivial monoid T with T̂ a singleton.

2.4. Example. Let T = {t ∈ � � : ∃m ∀n > m (tn = n)}. Topologize T by

neighborhoods of t ∈ T of the form

T (t, m) = {t′ ∈ T : ∀n 6 m (t′n = tn)}.

In [3] it is shown that T̂ is a singleton and that the only T -uniformly continuous
functions on T are the constant functions.

Now let X be a compact flow and let x ∈ X . Then the map x̃ : T → X given by

x̃(t) = tx is a flow map, and by (3) of Corollary 2.3 has a unique extension to a map
x̂ : T̂ → X , as summarized in the following commuting diagram.

T̂

��

x̂

??
??

??
??

T

OO

i

//x̃
X

This leads to a map ê : T̂ × X → X defined by ê(p, x) = x̂(p). For simplicity and
consistency of notation, we denote ê(p, x) by px. This map extends the action of T

on X since

ê(i(t), x) = x̂(i(t)) = x̃(t) = tx = e(t, x).
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If x ∈ X is fixed, then this shows that the map p 7−→ px is continuous. But if p ∈ T̂

is fixed then the map x 7−→ px is not in general continuous. Also, when X = T̂ we
get a binary operation on T̂ defined by pq = q̂(p). We proceed to show that T̂ has a
monoid structure and that the map ê gives an action of T̂ on X .

2.5. Proposition. Let X be a compact flow and p, q ∈ T̂ . Then for all x ∈ X

(pq)x = p(qx).

������� �
. First we unwind the definitions of the left and the right sides, respec-

tively.

(pq)x = x̂(pq) = x̂(q̂(p))

and

p(qx) = ˆ(qx)(p) =
!
(x̂(q))(p).

Now both x̂ ◦ q̂ and
!
(x̂(q)) are continuous flow maps from T̂ into X , so to show they

are equal it is enough to show that they agree on the dense subset i(T ) ⊆ T̂ , i.e., that

x̂ ◦ q̂ ◦ i = ˆ(x̂(q)) ◦ i.

To do this let t ∈ T . Then

x̂(q̂(i(t))) = x̂(q̃(t)) = x̂(tq)

= tx̂(q) since x̂ is a flow map

=
"
(x̂(q))(t) =

!
(x̂(q))(i(t))

and we are done. �

The next result is of central importance in what follows. Here, in case T is a
topological group, this result is known and is discussed in detail in DeVries [14],

Appendix D, pp. 662–668.

2.6. Corollary. T̂ is a semitopological monoid whose identity is i(1).
������� �

. Proposition 2.5 (with X = T̂ ) shows that the binary operation on T̂ is

associative. Also, for fixed q ∈ T̂ , the fact that the map p 7→ pq is continuous is just
a reference to the continuity of q̂. Lastly, we show that i(1) is the identity of T̂ . Let
q ∈ T̂ . Then

(i(1))q = q̂(i(1)) = q̃(1) = 1q = q.
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To show that q(i(1)) = q, observe that î(1) : T̂ → T̂ is a continuous flow map and
that

(î(1) ◦ i)(t) = ĩ(1)(t) = t(i(1))

= i(t1) since i is a flow map

= i(t) = (id ◦i)(t).

Thus î(1) = id, since these two continuous flow maps agree on the dense subflow
i(T ) ⊆ T̂ . That is q(i(1)) = q. �

The action of T̂ on compact flows commutes with flow maps.

2.7. Proposition. Let X and Y be compact flows and f : X → Y be a flow

map. Then f(px) = pf(x) for all x ∈ X and p ∈ T̂ .
������� �

. Fix x ∈ X and let y designate f(x). Let x̃, x̂, ỹ, and ŷ have the

meanings assigned to them in the discussion leading up to Proposition 2.5. Then
fx̃ = ỹ because

fx̃(t) = f(tx) = tf(x) = ỹ(t)

for all t ∈ T . Therefore fx̂i = fx̃ = ỹ = ŷi, so that fx̂ = ŷ by the uniqueness clause
of Corollary 2.3. We have

f(px) = f(x̂(p)) = ŷ(p) = py = pf(x).

�

3. Idempotents, proximal points, and recurrent points in flows

In a compact flow X , the classical notions of proximal and recurrent points can be
characterized in terms of the action of T̂ on X . Though our context is considerably

more general, this section and the next owe a considerable debt to Blass’ development
in the admirable expository article [4].

Definition. Two points x1 and x2 in a flow X are proximal if for every neigh-
borhood u of the diagonal ∆ ≡ {(x, x) : x ∈ X} in X ×X there is some action t for

which (tx1, tx2) ∈ u.

3.1. Proposition. Two points xi of a compact flow X are proximal if and only

if there is some p ∈ T̂ such that px1 = px2.
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������� �
. (⇒) Let

P =
{
b = {bi : i ∈ F} : F finite, each bi is open and

⋃

b∈b

b = X

}
.

(P is just the set of finite open covers of X .) Then the assumptions yield that if

b ∈ P ,
ab =

⋃

b∈b

{t : tx1, tx2 ∈ b} 6= ∅.

Now it is clear that the family {ab : b ∈ P} has the finite intersection property, so
⋂
{cl(i(ab)) : b ∈ P} 6= ∅.

Let p be any point of this intersection. We claim that px1 = px2. To prove the
claim we show that (px1, px2) lies in every neighborhood of ∆. For consider the
continuous function (x̂1, x̂2) : T̂ → X ×X defined by

(x̂1, x̂2)(q) = (x̂1(q), x̂2(q)), q ∈ T̂ .

If u is a neighborhood of ∆ then an easy compactness argument yields b ∈ P so that⋃
b∈b

cl(b× b) ⊆ u. But p ∈ cl(i(ab)) implies

(px1, px2) = (x̂1, x̂2)(p) ∈ cl((x̂1, x̂2)(i(ab))),

and (x̂1, x̂2)(i(ab)) ⊆ ⋃
b∈b

(b× b) because for each t ∈ ab there is a b ∈ b such that

(x̂1, x̂2)(i(t)) = (x̂1(i(t)), x̂2(i(t))) = (x̃1(t), x̃2(t)) = (tx1, tx2) ∈ b× b.

It follows that (px1, px2) ∈ u.

(⇐) Suppose that px1 = px2 and let u be a neighborhood of ∆. Then the map
(x̂1, x̂2) is continuous at p and i(T ) is dense in T̂ , so there is a t ∈ T so that

(x̂1, x̂2)(i(t)) = (tx1, tx2) ∈ u. �

Definition. A point x in a flow X is recurrent if there is some a in N1 such that
for every b ∈ Nx there is some t /∈ a with tx ∈ b.

If px = x for some point x in a flow X and some p ∈ T̂ with p 6= 1 then x is

recurrent. The converse, however, is not exactly true. Let T be a topological monoid
having a nontrivial neighborhood of 1 such that T̂ is a singleton (see Example 2.4

above). Let T act on the one point space {•} in the only way it can. Then every
t ∈ T satisfies t• = •, so • is a recurrent point. But, although every point of T̂

325



fixes •, in fact there is only one such point and it is i(1). This shows that recurrence
of a point x does not imply in general that a non-identity p ∈ T̂ fixes x. The next
result, Proposition 3.2, precisely clarifies these ideas.

3.2 Proposition. Let X be a compact flow and x ∈ X . Then the following are

equivalent:

(1) There exists a p 6= i(1) ∈ T̂ such that px = x.

(2) There is a neighborhood a of 1 in T such that

(a) if b ∈ Nx there is some t /∈ a with tx ∈ b, i.e., x is recurrent; and

(b) i(1) /∈ cl(i(T\a)).
������� �

. (1) ⇒ (2) Pick open neighborhoods U and V of p so that i(1) /∈ cl(V )
and cl(U) ⊆ V . Put W = T̂\ cl(U) and a = i−1(W ). Since V ∪ W = T̂ , it follows

that T\a ⊆ i−1(V ), so i(T\a) ⊆ V . Thus cl(i(T\a)) ⊆ cl(V ) and since i1 /∈ cl(V ),
it is obvious that i1 /∈ cl(i(T\a)). This shows that the neighborhood a satisfies

property (b).

It is also easy to see that a satisfies property (a). Let b ∈ Nx. Since x̂ is continuous

at p and x̂p = x, p ∈ x̂−1(b). So x̂−1(b) ∩ U 6= ∅, and since i(T ) is dense in T̂ , any
t ∈ i−1(x̂−1(b) ∩ U) satisfies t /∈ a and tx = x̃(t) = x̂(i(t)) ∈ b. This establishes (a).

(2) ⇒ (1) Consider x̂ : cl(i(T\a)) → X . Compactness and (a) imply that x ∈
x̂(cl(i(T\a))) so there is a p ∈ cl(i(T\a)) such that x̂(p) = x. By (b), p 6= i(1). �

This next simple lemma is needed in the proof of Corollary 3.5.

3.3. Lemma. Let Z be compact, D dense in Z and U a regular open set in Z.

Then cl(D\U) = Z\U .
������� �

. Put K = cl(D\U) and suppose that z /∈ K. Since z ∈ cl(D), it is easy
to see that z ∈ cl(D ∩ U), so z ∈ cl(U). Thus

U ⊆ Z\K ⊆ cl(U).

Since U is regular, U = Z\K, or K = Z\U . �

3.4. Example. This lemma fails if U is not regular. To see this, let Z be [0, 2],
D be the irrationals in Z, and U be Z\{1}. Then Z\U = {1}, D\U = ∅, and
cl(D\U) = ∅ 6= Z\U . It is clear, however, that cl(D\U) ⊆ Z\U . It is easy to
produce examples where cl(D\U) 6= ∅.

3.5. Corollary. Suppose that T is nontrivial. Then (2) of Proposition 3.2 is
satisfied if x is recurrent and T is compactifiable, i.e., if i is a homeomorphism.
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������� �
. We need to produce the neighborhood a of 1 satisfying (2) of Propo-

sition 3.2. Let a1 be a neighborhood of 1 in T satisfying the recurrence definition
for x. Then since i(T ) has the relative topology in T̂ and i(a1) is open in i(T ), there
is an open V in T̂ such that V ∩ i(T ) = i(a1). So there exists regular open U such

that i(1) ∈ U ⊆ V .

Set a = i−1(U). Note that a ⊆ a1 so that a satisfies property (2a) of Proposi-
tion 3.2. Now apply Lemma 3.3 with Z = T̂ , D = i(T ) and U to obtain

cl(i(T\a)) = cl(i(T )\U) = T̂\U.

Since i(1) ∈ U , i(1) /∈ cl(i(T\a) and (2b) of Proposition 3.2 is satisfied. �

We would like to know if (2) of Proposition 3.2 is satisfied when i is just one-to-one.

Definition. A point x of a flow X is uniformly recurrent if for all b ∈ Nx there
is a finite subset T0 ⊆ T such that for every t ∈ T there is some t0 ∈ T0 with t0tx ∈ b,
i.e., ⋃

T0

t−1
0 x̃−1b = T.

3.6. Proposition. A point x of a compact flow X is uniformly recurrent if and

only if for every q ∈ T̂ there is some p ∈ T̂ such that (pq)x = x.
������� �

. (⇒) Let z = qx for x and q as in the statement of the proposition. Now

ẑ : T̂ → X is continuous and T̂ is compact, so to show the existence of p we need
only show that

x ∈ ẑ(T̂ ) = ẑ(cl(i(T ))) = cl(ẑ(i(T ))) = cl(z̃(T )).

To this end, let c ∈ Nx. Pick b ∈ Nx so that cl(b) ⊆ c. Pick a finite set T0 ⊆ T

such that for every t ∈ T there is some t0 ∈ T0 with t0tx ∈ b. We claim that t0z ∈ c

for some t0 ∈ T0. If not, then because T0 is finite there exists a neighborhood a of z

such that

t0a ∩ cl(b) = ∅

for each t0. Now since x̂ is a continuous function which takes q to z and since i(T )
is dense in T̂ , tx ∈ a for some t ∈ T . But then t0tx ∈ b for some t0, a contradiction

to t0a ∩ cl(b) = ∅.
(⇐) Let b be a neighborhood of x. We first observe that for each q ∈ T̂ there

exists t ∈ T such that tqx ∈ b. Indeed, since

q̂x : T̂ → X
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is continuous and q̂x(p) = x for some p, the density of i(T ) gives t such that tqx =
q̂x(i(t)) ∈ b. So for each q there is a t and a neighborhood ct,q of qx so that tct,q ⊆ b.
(The notation just means that c depends on t and q.) These c’s cover T̂ , so finitely
many do, say {ct,q : t ∈ T0}, and this set T0 is what we are looking for. To verify,

let t ∈ T . Then tx ∈ ct0,q for some t0 and so t0tx ∈ b. �

We use this machinery to study idempotents in T̂ . For the remainder of this
section we simplify notation slightly by writing 1 instead of i(1) since this will cause
no confusion. We begin by applying Propositions 3.1, 3.2, and 3.6 to X = T̂ .

3.7. Proposition. The following hold in T̂ .

(1) r is recurrent in T̂ if there is some p 6= 1 such that pr = r.

(2) r is uniformly recurrent in T̂ if and only if for all q there is some p such that

pqr = r, i.e., if and only if r lies in some minimal (closed) left ideal of T̂ .

(3) r1 and r2 are proximal if and only if there is some p for which pr1 = pr2.

(4) r generates a minimal closed subsemigroup of T̂ if and only if r is idempotent,

i.e., if and only if r2 = r.

Proposition 3.7 (4) is Namakura’s Theorem [12]. The proofs of the next two results
are straightforward.

3.8. Proposition. Each of the following statements about an element r 6= 1
of T̂ implies the next.

(1) r is uniformly recurrent and proximal to 1.
(2) r is idempotent.

(3) r is recurrent and proximal to 1.

3.9. Proposition. Let X be a compact flow and let x ∈ X . If p is (uniformly)

recurrent in T̂ then px is (uniformly) recurrent in X . If r1 and r2 are proximal in T̂

then r1x and r2x are proximal in X .

It is useful to order the idempotents of T̂ . A natural first step is to preorder them

according to the containment of the left ideals they generate.

3.10. Lemma. The following are equivalent for idempotents p, q ∈ T̂ .

(1) T̂ q ⊆ T̂ p.

(2) For all r there is an s such that rq = sp.

(3) qp = q.

������� �
. The equivalence of (1) and (2) is clear. If (3) holds and r is given, then

s can be taken to be rq in (2). If (2) holds then in particular there is some s for
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which q = q2 = sp. But then

qp = (sp)p = s(p2) = sp = q.

�

An actual partial order refines the preorder of Lemma 3.10.

Definition. The idempotent elements of T̂ are partially ordered by

p 6 q ⇐⇒ qp = pq = p.

3.11. Lemma. Suppose p and q are related as in Lemma 3.10. Set q1 ≡ pq.

Then q1 is an idempotent and q1 6 p.
������� �

. We calculate

q2
1 = (pq)2 = p(qp)q = pq2 = pq = q1,

pq1 = p(pq) = p2q = pq = q1,

q1p = (pq)p = p(qp) = pq = q1.

�

The next result combines the foregoing ideas. Its proof is left as an exercise.

3.12. Proposition. The following are equivalent for p ∈ T̂ .

(1) p is uniformly recurrent and proximal to 1.
(2) p is idempotent and belongs to some minimal left ideal of T̂ .

(3) p is a minimal idempotent.

We now turn our attention to the issue of when T̂ has a nontrivial idempotent,

i.e., an idempotent p 6= 1.

3.13. Proposition. An element q ∈ T̂ has a left inverse if and only if it can be

moved arbitrarily close to 1, i.e., if and only if for every b ∈ N1 there is some t ∈ T

such that tq ∈ b.
������� �

. If pq = 1 then the facts that p 7→ pq is continuous and i(T ) is dense in T̂

imply that q can be moved arbitrarily close to 1. If q can be moved arbitrarily close
to 1 then ab ≡ {r : rq ∈ b} is a nonempty open set for each b ∈ N1, and since the
family of all ab’s clearly has the finite intersection property, there is some p which

lies in
⋂

b∈N1

cl(ab). It is easy to see that pq must be 1. �
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3.14. Theorem. The following are equivalent for T .

(1) T̂ has no proper left ideals.

(2) Every element of T̂ has a left inverse.
(3) T̂ is a group.

(4) Every element of T̂ can be moved arbitrarily close to 1, i.e., for every q ∈ T̂ and

every neighborhood b of the identity in T̂ there is some t ∈ T such that tq ∈ b.

(5) T̂ has no nonidentity idempotents.

(6) No nonidentity recurrent point of T̂ is proximal to 1.
(7) For every neighborhood b of the identity in T̂ there is a finite subset T0 ⊆ T

such that for every p ∈ T̂ there is some t0 ∈ T0 with t0p ∈ b, i.e.,
⋃

T0

t−1
0 b = T̂ .

������� �
. The equivalence of (1) and (2) is clear, and the equivalence of (2) and

(3) is an exercise in the elementary theory of monoids. If (2) holds and q ∈ T̂ then
there is some p for which pq = 1. For given b ∈ N1, the continuity of the map r 7→ rq

at r = p and the density of i(T ) in T̂ furnish t ∈ T such that tq ∈ b, i.e., (4) holds.
If (4) holds and q ∈ T̂ then Vb ≡ {r ∈ T̂ : rq ∈ b} is a nonempty open set for each
b ∈ N1, and since the family of all Vb’s clearly has the finite intersection property,
there is some p which lies in

⋂
b∈N1

cl(Vb). It is easy to see that pq must be 1. This

shows that (2) holds.

The implication from (2) to (5) is likewise easy: if p is an idempotent with left
inverse q then

p = 1p = (qp)p = q(pp) = qp = 1.

To show that (5) implies (2) observe that if p has no left inverse then T̂ p is a closed
subsemigroup omitting 1. This must contain a minimal closed subsemigroup by
Zorn’s Lemma, and the latter must be of the form {q} for some idempotent q 6= 1 by
Theorem 3.7 (4). The equivalence of (5) and (6) is a consequence of Theorem 3.12, for

T̂ has a nontrivial idempotent if and only if it has a nontrivial minimal idempotent.
The equivalence of (4) and (7) is a consequence of the compactness of T̂ . Indeed, for

t ∈ T put Ut = {p ∈ T̂ : tp ∈ b}. Each Ut is open in T̂ and Proposition 3.13 insures
that {Ut : t ∈ T} covers T̂ . �

We are interested in conditions on T which are equivalent to the existence (or

nonexistence) of idempotents in T̂ . The following corollary comes close to providing
such an equivalence.

Definition. An open set a in T will be called large if there is some finite subset

T0 ⊆ T for which
⋃
T0

t−1
0 a = T . An open set which is not large is called small.
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3.15. Corollary. Any topological monoid T in which every neighborhood of

the identity is large satisfies Theorem 3.14. Conversely, if T satisfies Theorem 3.14,
and if for every neighborhood a of the identity in T there is a neighborhood b of the

identity in T̂ with i−1(b) ⊆ a, then every neighborhood of the identity in T is large.

In particular, if T is compactifiable then it satisfies Theorem 3.14 if and only if every
neighborhood of the identity is large.

������� �
. Suppose that every neighborhood of the identity in T is large. We aim

to show that Theorem 3.14 (6) holds. For that purpose consider a neighborhood b of 1
in T̂ , and then find a neighborhood c of 1 in T̂ such that cl(c) ⊆ b. Let a = i−1(c).
Since a is large there is some finite T0 ⊆ T such that

⋃
T0

t−1
0 a = T . We claim that

⋃
T0

t−1
0 b = T̂ . If not, there is a p ∈ T̂ such that t0p /∈ b for all t0 ∈ T0. Then there

is a neighborhood U of p such that t0q /∈ cl(c) for all t0 ∈ T0 and q ∈ U . Now if

t ∈ i−1(U) then it follows that i(t0t) = t0(i(t)) /∈ cl(c) for all t0 ∈ T0, which implies
that t0t /∈ i−1(c) = a for all t0 ∈ T0, a contradiction.

Now assume that T satisfies Theorem 3.14, and that for every neighborhood a of
the identity in T there is a neighborhood b of the identity in T̂ with i−1(b) ⊆ a. Let
a be open in T with 1 ∈ a. Pick b in T̂ containing 1 with i−1(b) ⊆ a and pick a finite

T0 satisfying property (6) of Theorem 3.14 for the set b. It is routine to check that⋃
T0

t−1
0 a = T . �

Not every neighborhood of the identity in T need be large even if T satisfies
Theorem 3.14. Indeed, let T be the monoid discussed in Example 2.4. Then T̂ is a

singleton so it trivially satisfies Theorem 3.14, yet T has small neighborhoods of the
identity. One such is a ≡ {t : t(1) = 1}. For if we define the functions sn ∈ T by

sn(1) = n and sn(j) = j if j 6= 1, then for any finite set T0 ⊆ T there is an m such
that t0(m) = m for all t0 ∈ T0. In particular, t0sm /∈ a for all t0 ∈ T0.

The Auslander-Ellis Theorem holds for arbitrary topological monoids in the fol-
lowing form.

3.16. Theorem. If T̂ contains a nontrivial idempotent, then every point of every
compact flow has a uniformly recurrent point proximal to it. If T is compactifiable,

and every point of every compact flow has a uniformly recurrent point proximal to

it, then T̂ contains a nontrivial idempotent.
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4. Hindman’s theorem

We apply the machinery developed in the previous section to produce a general-

ization of Hindman’s theorem. In order to state our version of Hindman’s theorem,
Theorem 4.5, we must introduce some notation and technical machinery. Let T be

a topological monoid and let {cn} be a sequence of open sets in T . Then for indices
i1 < i2 < . . . < ik we write

∏

16j6k

cij ≡ {s1s2 . . . sk : sj ∈ cij , 1 6 j 6 k}.

It is important to understand that the factors in these products occur in the order
that the sets from which they are chosen appear in the sequence, without repetition,

i.e., that j < l implies ij < il.

Definition. Let a and a′ be open sets in a flow X . We say that a′ is well below

a, and write a′ C a, if there is some g ∈ CT (X) such that g is 0 on a′ and 1 off a.

Note that if a′ C a by virtue of some g ∈ CT (X), then by replacing g by (g∨0)∧1
if necessary, we may assume that 0 6 g 6 1. The well below relation may be recast
slightly using standard facts from general topology [6]: a′ lies well below a if and
only if there are disjoint zero sets Z and Z ′ of functions in CT (X) such that a′ ⊆ Z ′

and a∪Z = X . In particular, if X is metric and CT (X) = C∗(X) then every closed
set is the zero set of some function in CT (X), and in this case a′ C a if and only if

cl(a′) ⊆ a.
Throughout the remainder of this section we use upper case letters towards the

end of the alphabet (U, V, W, . . .) to designate open sets in X̂ , and lower case letters
towards the beginning of the alphabet (a, b, c, . . .) to designate open sets in X .

4.1. Lemma. Let X be a flow with flow compactification i : X → X̂ as in

Proposition 2.2. If U C V in X̂ then i−1(U) C i−1(V ) in X .
������� �

. Suppose f̂ ∈ C(X̂) is 0 on U and 1 off V . Then f ≡ f̂ i lies in CT (X)
and is 0 on i−1(U) and 1 off i−1(V ). �

Definition. Let X be a flow with flow compactification i : X → X̂ as in Propo-
sition 2.2. For any subset S ⊆ X we define

i∗(S) ≡
⋃
{U ⊆ X̂ : U open and i−1(U) ⊆ S}

= X̂ \ cl(i(X \ S)).

Observe that for S1, S2 ⊆ X , i∗(S1 ∩ S2) = i∗(S1) ∩ i∗(S2), i−1i∗(S1) ⊆ int(S1),
and i∗i−1i∗(S1) = i∗(S1) = i∗(int(S1)).

332



4.2. Lemma. i−1i∗(a) =
⋃{a′ : a′ C a}.

������� �
. Let us take a′ C a. Then for some f ∈ CT (X), f(a′) = 0 and

f(X\a) = 1. Extend f to f̂ on CT (X̂) = C(X̂). Then U ≡ f̂−1(−∞, .5) is open
in X̂ and a′ ⊆ i−1(U) = f−1(−∞, .5) ⊆ a. This implies i−1i∗(a) ⊇ ⋃{a′ : a′ C a}.
For the reverse inclusion consider t ∈ i−1i∗(a). Put p = i(t) ∈ i∗(a) and take

p ∈ U ⊆ X̂ with U open and cl(U) ⊆ i∗(a). Find f̂ ∈ C(X̂) such that f̂(U) = 0
and f̂(X̂\i∗(a)) = 1. Set f = f̂ ◦ i ∈ CT (X) and define a′ = i−1(U). We have
f(t) = f̂(i(t)) = f̂(p) = 0, so t ∈ a′. Now f is 0 on a′, and if s /∈ a then since

i−1i∗(a) ⊆ a we also have s /∈ i−1i∗(a), so f(s) = f̂(i(s)) = 1. This f shows that
a′ C a. �

4.3. Lemma. If a′ C a then cl(i∗(a′)) ∪ cl(i(a′)) ⊆ i∗(a).
������� �

. Find f ∈ CT (X) such that f is 0 on a′ and 1 off a. Extend f to
f̂ ∈ C(X̂) and put U ≡ {y ∈ X̂ : f̂(y) < 1}. Then U is open in X̂ and since

i−1(U) = {x ∈ X : f(x) < 1} ⊆ a, U ⊆ i∗(a). Now if there were some point
y ∈ i∗(a′) for which f̂(y) > 0 then there would be some neighborhood V of y such

that i−1(V ) ⊆ a and f̂(z) > 0 for all z ∈ V . But such a neighborhood must contain
points of i(X), and since i−1i∗(a′) ⊆ a, any such point must be of the form i(x) for
some x ∈ a′, a violation of the assumption that f̂(i(x)) = f(x) = 0. We conclude
that f̂ is 0 on i∗(a′), and since f̂ is also 0 on i(a′) because f is 0 on a′, it follows

that f̂ is 0 on cl(i∗(a′)) ∪ cl(i(a′)). Therefore cl(i∗(a′)) ∪ cl(i(a′)) ⊆ U ⊆ i∗(a). �

Definition. Let C and D be open covers of a flow X . We say that C T -refines D,
and write C C D, provided that for every c ∈ C there is some d ∈ D such that c C d.

A cover C of X is fat if each c ∈ C is open and i∗(C) ≡ {i∗(c) : c ∈ C} covers X̂.

4.4. Lemma. Every open cover of a flow which is T -refined by a finite open cover
is fat. Conversely, every fat cover is T -refined by a finite fat cover. In particular,

every fat cover has a finite fat subcover.

������� �
. Suppose that C C D for open covers C and D of a flow X such that C

is finite. Then {cl(i(c)) : c ∈ C} covers X̂ because i(X) is dense in X . Since for each
c ∈ C there is some d ∈ D such that c C d, we get cl(i(c)) ⊆ i∗(d) by Lemma 4.3.
Therefore D is fat. On the other hand, let D be a fat cover of X . Because every
open subset of X̂ is the union of those open subsets well below it, it follows that the

family of open subsets U ⊆ X̂, for which U C i∗(d) for some d ∈ D, covers X̂ . Let
E be a finite subcover of this family. For each d ∈ D set

cd ≡
⋃
{i−1(U) : U ∈ E and U C i∗(d)}.
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Now for any d ∈ D we have ⋃{U ∈ E : U C i∗(d)} C i∗(d) because E is finite, from
which we get cd C d by Lemma 4.1. That is, C ≡ {cd : d ∈ D} C D. And C is fat
because for each d ∈ D we have

i∗(cd) ⊇
⋃
{U ∈ E : U C i∗(d)}.

�

Now we can state our generalization of Hindman’s Theorem.

4.5. Theorem. Let {dn} be a sequence of open sets in T such that
⋂

�
i∗(dn)

contains a nonisolated idempotent. Then for any finite open cover C of T there is

some c ∈ C such that for every a B c there is a sequence {cn} of pairwise disjoint
nonempty open subsets of c such that

∏

16j6k

cij ⊆ a ∩ dn

for all indices 1 6 n 6 i1 < i2 < . . . < ik. If C is fat then there is some c ∈ C and
some sequence {cn} of pairwise disjoint nonempty open subsets of c such that

∏

16j6k

cij ⊆ c ∩ dn

for all indices 1 6 n 6 i1 < i2 < . . . < ik.

Here is an example to show that the passage from c to a in Theorem 4.5 is necessary.

Example. Take T = � , and cover it with two open sets, c1 and c2, as follows.
Let {ri : i ∈ # }⊆ � satisfy

ri < rj for i < j,

lim
i→∞

ri = ∞, lim
i→−∞

ri = −∞,

lim
i→∞

(ri+1 − ri) = lim
i→−∞

(ri+1 − ri) = 0.

Set

c1 ≡
⋃
$ (r4i, r4i+3), c2 ≡

⋃
$ (r4i+2, r4i+5).

Then a little reflection shows that neither c1 nor c2 can contain a sequence {cn} of
the type guaranteed by Theorem 4.5. But any a B ci has bounded complement, and
so easily contains such a sequence.
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The proof of Theorem 4.5 follows the Galvin-Glaser proof of the classical Hindman

Theorem [5], [7], [10]. The proof rests on the following lemma.

4.7. Lemma. Let p be a nonisolated idempotent of T̂ such that p ∈ cl(i(c)) ∩
i∗(a) for open a, c ⊆ T . Then there exist nonempty disjoint open sets a1, c1 ⊆ T

with the following properties.

(1) a1 ∪ c1 ⊆ a and c1 ⊆ c.

(2) p ∈ i∗(a1).
(3) c1a1 ⊆ a.
������� �

. For fixed p the map q 7−→ qp is continuous. Since p is an idempotent

there exists a neighborhood U of p such that qp ∈ i∗(a) for all q ∈ U . Without loss
of generality U ⊆ i∗(a). Since i(c) ∩ U is infinite there is some t0 ∈ c such that

p 6= i(t0) ∈ U . Let V and W be disjoint neighborhoods of i(t0) and p, respectively,
with V ∪W ⊆ U .

Observe that t0p = i(t0)p ∈ i∗(a) since i(t0) ∈ U . Since T̂ is a flow there are

neighborhoods b of t0 in T and W ′ of p in T̂ such that sq ∈ i∗(a) for all s ∈ b and
q ∈ W ′. Without loss of generality W ′ ⊆ W . Put

a1 ≡ a ∩ i−1(W ′), c1 ≡ b ∩ c ∩ i−1(V ).

Clearly a1 ⊆ a and c1 ⊆ c, and

c1 ⊆ i−1(V ) ⊆ i−1(U) ⊆ i−1i∗(a) ⊆ a.

And i∗(a1) = i∗i−1(W ′)∩ i∗(a) is a neighborhood of p because it containsW ′∩ i∗(a).
Now consider s ∈ c1 and t ∈ a1. Since s ∈ b and i(t) ∈ W ′, it follows that

i(st) = i(s)i(t) = si(t) ∈ i∗(a).

Therefore st ∈ i−1i∗(a) ⊆ a, i.e., c1a1 ⊆ a. �
������� �

of Theorem 4.5. Let C be a finite open cover of T and let p be a
nonisolated idempotent in

⋂

�
i∗(dn). First observe that there is some c ∈ C such that

p ∈ cl(i(c)), and if C is fat then, since i∗(C) covers X̂ , we get that p ∈ i∗(c). To
prove that this c satisfies the theorem, fix a B c and label a as a0; in the fat case

take a0 to be c itself. Then p ∈ i∗(a) by Lemma 4.3. We now use Lemma 4.7 to
find nonempty disjoint open sets a1 and c1 in T such that a1 ∪ c1 ∪ c1a1 ⊆ a0 ∩ d1,

c1 ⊆ c, and p ∈ i∗(a1). Proceeding inductively, we generate sequences {an} and {cn}
of nonempty open subsets of T with the following properties for every n ∈ � .
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(1) an ∩ cn = ∅, an ∪ cn ⊆ an−1 ∩
⋂

16j6n

dj , and cn ⊆ c.

(2) p ∈ i∗(an).
(3) cnan ⊆ an−1 ∩

⋂
16j6n

dj .

We claim that for indices 0 6 m < i1 < i2 < . . . < ik we have

∏

16j6k

cij ⊆ am ∩ dm+1.

We prove the claim by induction on k. The claim is valid for k = 1 because

ci1 ⊆ ai1−1 ∩
⋂

16j6i1

dj ⊆ am ∩ dm+1.

Now assume the claim for k − 1 and consider indices 0 6 m < i1 < i2 < . . . < ik.
Then

∏

16j6k

cij = ci1

∏

26j6k

cij ⊆ ci1ai1 ⊆ ai1−1 ∩
⋂

16j6i1

dj ⊆ am ∩ dm+1.

If we replace m by n− 1 we get
∏

16j6k

cij ⊆ an−1 ∩ dn ⊆ a0 ∩ dn = a ∩ dn

for all indices 1 6 n 6 i1 < i2 < . . . < ik. �

The following corollaries are intended to give an idea of the scope of Theorem 4.5.
The authors are sure that these results only scratch the surface.

4.8. Corollary. Let T be a compactifiable topological monoid with no noniden-

tity idempotent, e.g., a topological group. Suppose T has a small neighborhood of

the identity, and let {Dn} be a sequence of compact subsets of T . Then for any finite
open cover C of T there is some c ∈ C such that for all a B c there is a sequence {cn}
of nonempty pairwise disjoint open subsets of c such that

∏

16j6k

cij ⊆ a ∩
(

T \
⋃

16l6n

Dl

)

for all indices 1 6 n 6 i1 < i2 < . . . < ik. If C is fat then there is some c ∈ C and
some sequence {cn} of pairwise disjoint nonempty open subsets of c such that

∏

16j6k

cij ⊆ c ∩ dn

for all indices 1 6 n 6 i1 < i2 < . . . < ik.
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������� �
. The presence of a small neighborhood of the identity implies that T has

a nonidentity idempotent p by Corollary 3.5, and p cannot be isolated because it
does not lie in T . For each n ∈ � let dn be T \Dn; note that i∗(dn) is T̂ \ i(Dn) and
so contains p. Apply Theorem 4.5. �

4.9. Corollary. Let T be a compactifiable topological monoid with no noniden-

tity idempotent, e.g., a topological group. Suppose T has a small neighborhood of

the identity, and let {tn} be a sequence of elements of T . Then for any finite open
cover C of T there is some c ∈ C such that for all a B c there is a sequence {cn} of
nonempty pairwise disjoint open subsets of c such that

∏

16j6k

cij ⊆ a ∩ (T \ {tl : 1 6 l 6 n})

for all indices n < i1 < i2 < . . . < ik. If C is fat then there is some c ∈ C and some
sequence {cn} of pairwise disjoint nonempty open subsets of c such that

∏

16j6k

cij ⊆ c ∩ (T \ {tl : 1 6 l 6 n})

for all indices 1 6 n 6 i1 < i2 < . . . < ik.

4.10. Corollary. Let T be a locally compact monoid such that T̂ \ i(T ) is a
nonempty subsemigroup of T̂ . Let {Dn} be a sequence of compact subsets of T .

Then for any finite open cover C of T there is some c ∈ C such that for all a B c

there is a sequence {cn} of nonempty pairwise disjoint open subsets of c such that
∏

16j6k

cij ⊆ a ∩
(

T \
⋃

16l6n

Dl

)

for all indices 1 6 n 6 i1 < i2 < . . . < ik. If C is fat then there is some c ∈ C and
some sequence {cn} of pairwise disjoint nonempty open subsets of c such that

∏

16j6k

cij ⊆ c ∩
(

T \
⋃

16l6n

Dl

)

for all indices 1 6 n 6 i1 < i2 < . . . < ik.
������� �

. Since T is locally compact, every Tychonov flow is compactifiable, in-

cluding T itself. Since T is open in T̂ , T̂ \ i(T ) is a nonempty closed subsemigroup
of T̂ and therefore contains an idempotent p by Namakura’s Theorem [12]. Fur-

thermore, p is not isolated since it does not lie in T . Take dn ≡ T \Dn and apply
Theorem 4.5. �
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In the discrete case all bounded real-valued functions on T lie in CT (T ), so that
a B c if and only if a ⊇ c. Thus by taking T to be � in the following corollary we
get Hindman’s classical result.

4.11. Corollary. Let T be a discrete monoid such that T̂ \ i(T ) is a nonempty
subsemigroup of T̂ . Let {tn} be a sequence of elements of T . If C is any finite
partition of T , then there is a c ∈ C which contains a nonrepeating sequence {sn}
such that ∏

16j6k

sij ⊆ c ∩ (T \ {tl : 1 6 l 6 n})

for all indices n < i1 < i2 < . . . < ik.

The point of the next result is that a fat cover of a flow begets a fat cover of T ,

to which Hindman’s Theorem applies.

4.12. Corollary. Let {dn} be a sequence of open sets in T such that
⋂

�
i∗(dn)

contains a nonisolated idempotent. Let X be a flow with distinguished points {xj :
1 6 j 6 n}. Then for any fat cover C of X there is some subset {cj : 1 6 j 6 n} ⊆ C
and some sequence {cn} of pairwise disjoint nonempty open subsets of T such that

∏

16j6k

cij ⊆ dn ∩ {t : txj ∈ cj , 1 6 j 6 n}

for all indices 1 6 n 6 i1 < i2 < . . . < ik.

������� �
. For any finite open cover C of X let Θ(C) designate the set of all maps

θ : {1, 2, . . . , n} → C, and for each θ ∈ Θ(C) let

d(θ) ≡ {t ∈ T : txj ∈ θ(j), 1 6 j 6 n}

and let D(C) ≡ {d(θ) : θ ∈ Θ(C)}. Then D(C) is evidently a finite open cover of T .
We first claim that D(C ′) C D(C) whenever C ′ C C. To verify this claim consider

θ′ ∈ D(C′) and use the fact that C ′ C C to find θ ∈ D(C) such that θ′(j) C θ(j) for
1 6 j 6 n. For each j find fj ∈ CT (X) such that fj is 0 on θ′(j) and 1 off θ(j), and
such that 0 6 fj 6 1. For each j define gj : T → � by the rule

gj(t) ≡ fj(txj).

It is clear that g is continuous, that 0 6 g 6 1, and that g is 0 on {t : txj ∈ θ′(j)}
and 1 off {t : txj ∈ θ(j)}. To show that g is T -uniformly continuous, fix t0 ∈ T and
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ε > 0. Since fj is T -uniformly continuous there is some neighborhood aj of t0 in T

such that

|fj(t′0x)− fj(t0x)| < ε

for all t′0 ∈ aj . But then

|gj(t′0r)− gj(t0r)| = |fj(t′0rxj )− fj(t0rxj)| < ε

for all t′0 ∈ aj and all r ∈ T . This shows that gj ∈ CT (X) for each j. Finally, set

g ≡ 1−
∏

16j6n

(1− gj).

Then g is an element of CT (T ) which is 0 on d(θ′) and 1 off d(θ). This proves the
claim.

Now fix a fat cover C of X . By Lemma 4.4 we may assume that C is finite. In
conjunction with that lemma, the claim shows that D(C) is a fat cover of T . Apply
Theorem 4.5 to D(C). �

Now we can resolve the issues raised by Example 4.6. The reason that no sequence

satisfying Hindman’s Theorem can be found is that the given covering {c1, c2} is not
fat.

4.13. Corollary. Consider � to be a flow acting upon itself by left addition.
Then for any fat cover C of � there is some c ∈ C and some sequence {cn} of pairwise
disjoint nonempty open subsets of � such that

∑

16j6k

cij ⊆ c ∩ (R \ [−n, n]).

for all indices 1 6 n 6 i1 < i2 < . . . < ik.
������� �

. � has small neighborhoods of the identity, and so �̂ \ � contains
an idempotent which is not isolated because it does not lie in � . Furthermore,
i∗( � \ [−n, n]) is a neighborhood of any such idempotent for any n ∈ � . To get the
result simply apply Corollary 4.12 with base point 0. �

Let X be a Tychonoff space and let T be a monoid of continuous functions from X

into X . Let i : X → Y be a compactification of X such that the action of T on X

extends to an action on Y . For each g ∈ C(Y ) and ε > 0 define

U(g, ε) ≡ {(t1, t2) : ∀x ∈ X (|g(t1x)− g(t2x)| < ε)}.
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These neighborhoods of the diagonal in T generate a uniformity, whose topology we

term the Y -topology. With respect to the Y -topology, one easily sees that T is a
Hausdorff topological monoid and i is a flow map. Thus Y is a flow compactification
of X , which is therefore certainly compactifiable. In fact, the Y -topology is the

coarsest with respect to which the functions of C(Y ) are T -uniformly continuous.
Consequently, for open sets a, c ⊆ X we have c C a whenever there is some g ∈ C(Y )
such that g is 0 on c and 1 off a. In this case we shall say that a is Y -above c.
The above considerations always apply when i is taken to be the embedding of X

in its Stone-Čech compactification, for the action of T on X certainly extends to an
action on βX . In this case CT (X) = C(Y ) = C∗(X), so that for open sets a, c ⊆ X ,

c C a if and only if c and X \ a are completely separated.

4.14. Corollary. Let X and Y be as above, and assume that T has a

small Y -neighboorhood of the identity. Then for every fat cover C of T by Y -open

sets there is some c ∈ C, some Y -neighborhood d of 1, and some sequence {cn} of
pairwise disjoint nonempty Y -open subsets of c such that

∏

16j6k

cij ⊆ c \ d.

5. Small projective flows

The considerations in this section take place in the category of compact flows, and

we assume that context for the rest of this paper. A flow is elementary if it has a
point with a dense orbit, and minimal if every point has a dense orbit. A flow X

is projective if for every flow map f : X → Y and every flow surjection h : Z → Y

there is some flow map g : X → Z such that hg = f .

Our construction of T̂ allows us to sharpen slightly some results from [1]. The
reader should exercise caution, however, when consulting that article, for it assumes
that the topology on T is based at 1, an assumption not in force here. And the
definition of an idempotent point there differs from its definition here. (In fact,
Proposition 5.1 shows that the two definitions agree.) The basic result is Proposi-

tion 5.1, which sharpens [1], 12.2.

5.1. Proposition. The following are equivalent for a compact flow X .

(1) X is a flow retract of T̂ .

(2) X is elementary and projective.

(3) X is flow homeomorphic to T̂ p for some idempotent p ∈ T̂ .
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. The implication from (1) to (2) follows from general considerations.

T̂ is projective because it is the free compact flow over the one-point space [1], 11.2.
Here is a sketch of the argument that T̂ is projective. Let Z and Y be compact flows,
f : T̂ → Y a flow map and h : Z → Y a flow surjection. Let F = f ◦ i : T → Y and

y0 = F (1). Since h is a surjection, we may pick z0 ∈ Z so that h(z0) = y0 and define
G : T → Z by G(t) = tz0. It is routine to verify that both F and G are flow maps

and hG = F . Now by Corollary 2.3, G extends to a flow map g : T̂ → Z and because
h ◦ g ◦ i = f ◦ i, it follows that hg = f . Now any retract of T̂ is also projective [8],

12.14, and is, of course, elementary.
The implication from (3) to (1) is likewise easy. Let j : T̂ p → T̂ be the flow

injection which takes each member of the T̂ p to itself, let p̃ : T → T̂ p designate flow
map given by p̃(t) = tp, and let p̂ : T̂ → T̂ p be the flow surjection which is the

continuation of p̃ given by Corollary 2.3. Then any member of T̂ p is of the form qp

for some q ∈ T̂ , for which we have

p̂j(qp) = p̂(qp) = (qp)p = qp2 = qp.

That is to say that p̂j is the identity on T̂ p, meaning that T̂ p is a retract of T̂ .
Assume (2) to prove (3). Since X is elementary there is some point x ∈ X with

a dense orbit. Let x̃ : T → X designate the flow map x̃(t) = tx and let x̂ be the
continuation of x̃ to T̂ (Corollary 2.3 again). Since X is projective and x̂ : T̂ → X

is a flow surjection, there is a flow injection j : X → T̂ such that x̂j is the identity
on X . Set p ≡ j(x). Then

px = x̂(p) = x̂(j(x)) = x.

Consequently by Proposition 2.7,

p = j(x) = j(px) = pj(x) = p2,

so p is an idempotent. It remains to show that j(X) = T̂ p. But j(X) ⊇ T̂ p follows
from the fact that j(qx) = qj(x) = qp for any q ∈ T̂ . And since T̂ x ≡ {qx : q ∈ T̂} is
the image of the compact set T̂ under the continuous function x̂, it is closed. Because
T̂ x contains the dense orbit of x, we have T̂ x = X . From this it follows easily that

j(X) ⊆ T̂ p. �

We remark that it is quite possible for T̂ p to be projective without p being idem-
potent; a finite example can be found in [1].

5.2. Corollary. A compact flow is minimal and projective if and only if it is
flow homeomorphic to T̂ p for some minimal idempotent p.
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. A minimal flow X is certainly elementary, so that if it is also projective

then it is flow homeomorphic to T̂ p for some idempotent p by Proposition 5.1. But
the minimality of X as a flow also implies that T̂ p is minimal among left ideals,
hence p is minimal by Theorem 3.12. On the other hand, the same theorem implies

that if p is minimal then the left ideal T̂ p it generates is minimal among left ideals,
hence T̂ q = T̂ p for all q ∈ T̂ p, meaning every point has a dense orbit, i.e., T̂ p is a

minimal flow. �

With Proposition 5.1 and Corollary 5.2 in hand, one may improve some results
in [1] by replacing T by T̂ , thus removing the hypothesis that T is compact. This

strengthens conditions 4 and 5 of Theorem 12.5, along with conditions 5 and 6 of
Theorem 12.10. And all the results of Section 13, save the last one, benefit from this

modification.
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