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DUAL CONVERGENCES OF ITERATION PROCESSES
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Abstract. In this paper we establish a dual weak convergence theorem for the Ishikawa
iteration process for nonexpansive mappings in a reflexive and strictly convex Banach space
with a uniformly Gâteaux differentiable norm, and then apply this result to study the
problem of the weak convergence of the iteration process.
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1. Introduction

Let D be a nonempty subset of a Banach space E. A mapping T : D → E is said
to be nonexpansive if

‖Tx− Ty‖ 6 ‖x− y‖

for all x, y in D. In [4], Ishikawa introduced a new iteration process as

(1)

{
xn+1 = (1− tn)xn + tnTyn

yn = (1− sn)xn + snTxn, n = 1, 2, . . . ,

where {tn} and {sn} are sequences in [0, 1] satisfying certain restrictions. If sn = 0,
the Ishikawa iteration process reduces to the Mann iteration process [7]

xn+1 = (1− tn)xn + tnTxn, n = 1, 2, . . .
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The convergence of the sequence {xn} defined by (1) for a nonexpansive self-
mapping T in a uniformly convex Banach space with a Fréchet differentiable norm
has been studied by Deng [2], Reich [8], and Tan and Xu [10].

In this paper we first establish a dual weak convergence theorem for the Ishikawa
iteration process (1) for nonexpansive mappings in a reflexive and strictly convex

Banach space with a uniformly Gâteaux differentiable norm. Then we apply this
result to study the weak convergence of the iteration process (1) in the same Banach

space. Further, we obtain the dual weak convergence for the iteration process (1)
under different restrictions on {tn} and {sn} in the same Banach space. We should
point out that the Banach space E in the main results is not assumed to be uniformly
convex and that our results also apply to all Lp spaces (1 < p < ∞).

2. Preliminaries and Lemmas

Let E be a real Banach space and let I denote the identity operator. Recall that
a Banach space E is said to be smooth provided the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x and y in U = {x ∈ E : ‖x‖ = 1}. In this case, the norm of E is
said to be Gâteaux differentiable. It is said to be uniformly Gâteaux differentiable

if for each y ∈ U , this limit is attained uniformly for x ∈ U . The norm is said to be
Fréchet differentiable if for each x ∈ U , this limit is attained uniformly for y ∈ U .

Finally, the norm is said to be uniformly Fréchet differentiable if the limit is attained
uniformly for (x, y) ∈ U × U . In this case, E is said to be uniformly smooth. Since

the dual E∗ of E is uniformly convex if and only if the norm of E is uniformly Fréchet
differentiable, every Banach space with a uniformly convex dual is reflexive and has

a uniformly Gâteaux differentiable norm. The reverse is false (cf. [9]).

The duality mapping from E into the family of nonempty subsets of its dual E∗

is defined by

J(x) = {x∗ ∈ E∗ : (x, x∗) = ‖x‖2 = ‖x∗‖2}.

It is single valued if and only if E is smooth. If E is smooth, the duality mapping J

is said to be weakly sequentially continuous at 0 if {J(xn)} converges to 0 in the
sense of the weak-star topology of E∗, whenever {xn} converges weakly to 0 in E.

Let µ be a mean on positive integers � , i.e., a continuous linear functional on `∞

satisfying ‖µ‖ = 1 = µ(1). Then we know that µ is a mean on � if and only if

inf{an : n ∈ � } 6 µ(a) 6 sup{an : n ∈ � }
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for every a = (a1, a2, . . .) ∈ `∞. According to time and circumstances, we use µn(an)
instead of µ(a). A mean µ on � is called a Banach limit if

µn(an) = µn(an+1)

for every a = (a1, a2, . . .) ∈ `∞. Using the Hahn-Banach theorem, we can prove the
existence of a Banach limit. We know that if µ is a Banach limit, then

lim inf
n→∞

an 6 µn(an) 6 lim sup
n→∞

an

for every a = (a1, a2, . . .) ∈ `∞. Let {xn} be a bounded sequence in E. Then we can
define a real valued continuous convex function ϕ on E by

ϕ(z) = µn‖xn − z‖2

for each z ∈ E. The following lemma was proved in [5] (cf. [9]).

Lemma 1. Let E be a Banach space with a uniformly Gâteaux differentiable

norm and let {xn} be a bounded sequence in E. Let µ be a Banach limit and u ∈ E.

Then

µn‖xn − u‖2 = inf
z∈E

µn‖xn − z‖2

if and only if

µn(z, J(xn − u)) = 0

for all z ∈ E, where J is the duality mapping of E into E∗.

In the sequel, we need the following lemmas for the proof of our main results.

Lemma 2 ([2]). Let D be a subset of a normed space E and let T : D → E be a

nonexpansive mapping. Let a sequence {xn} in E be defined by

{
xn+1 = (1− tn)xn + tnTyn,

yn = (1− sn)xn + snTxn, n = 1, 2, . . . ,

where two real sequences {tn} and {sn} satisfy the following conditions
(i) 0 6 tn 6 t < 1 and

∞∑
n=1

tn = ∞,

(ii) 0 6 sn 6 1 and
∞∑

n=1
sn < ∞.

If {xn} is bounded, then ‖xn − Txn‖ → 0 as n →∞.
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Lemma 3 ([10]). Let D be a subset of a normed space E, and T : D → X a

nonexpansive mapping. Let a sequence {xn} in D be defined by
{

xn+1 = (1− tn)xn + tnTyn,

yn = (1− sn)xn + snTxn, n = 1, 2, . . . ,

where 0 6 tn, sn 6 1 for all n > 1. Then

‖xn+1 − p‖ 6 ‖xn − p‖

for all n > 1 and all p ∈ F (T ), where F (T ) denotes the set of fixed points of T .

Finally, we recall the following definition: a sequence {an} ∈ `∞ is said to

be almost convergent if all Banach limits agree (Lorentz’s characterization is

that lim
n→∞

( n∑
i=1

ai+k

)
/n exists uniformly in k > 0 [6]). We also say that a se-

quence {xn} in a Banach space E is weakly almost convergent to z ∈ E if the weak

lim
n→∞

( n∑
i=1

xi+k

)
/n = z uniformly in k > 0.

3. Main results

Now, we establish a dual weak convergence theorem for the Ishikawa iteration
process in a reflexive and strictly convex Banach space.

Theorem 1. Let E be a reflexive and strictly convex Banach space with a uni-

formly Gâteaux differentiable norm and let T : E → E be a nonexpansive mapping.

Let a sequence {xn} in E be defined by
{

xn+1 = (1− tn)xn + tnTyn,

yn = (1− sn)xn + snTxn, n = 1, 2, . . . ,

where two real sequences {tn} and {sn} satisfy the following conditions:
(i) 0 6 tn 6 t < 1 and

∞∑
n=1

tn = ∞,

(ii) 0 6 sn 6 1 and
∞∑

n=1
sn < ∞.

If the fixed point set F (T ) of T is nonempty, then there exists a point v in F (T )
such that {J(xn − v)} weakly almost converges to 0.
���������

. Let p ∈ F (T ) and let x0 be an initial point of {xn}. Then ‖xn − p‖ 6
‖x0 − p‖ for all n and hence {xn} is bounded by Lemma 3. Let µ be a Banach limit

and define a real valued function ϕ on E by

ϕ(z) = µn‖xn − z‖2
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for each z ∈ E. Then ϕ is a continuous convex function and ϕ(z) →∞ as ‖z‖ → ∞.
Since X is reflexive, ϕ attains its infimum over E (cf. [3, p. 12]). Let

K = {u ∈ E : ϕ(u) = inf
z∈E

ϕ(z)}.

Then it is easy to verify that K is nonempty closed convex and bounded. Further-

more, K is invariant under T . In fact, by Lemma 2, lim
n→∞

‖xn − Txn‖ = 0, and so
we have, for each u ∈ K,

ϕ(Tu) = µn‖xn − Tu‖2 = µn‖Txn − Tu‖2 6 µn‖xn − u‖ = ϕ(u).

We also observe that K contains a fixed point v of T . To see this, let w ∈ F (T ) and
define

K ′ = {u ∈ K : ‖u− w‖ = d(w, K)},

where d(w, K) denotes the distance of K from a point w. Then, since E is strictly
convex, K ′ is a singleton. Let K ′ = {v}. Then we have

‖Tv − w‖ = ‖Tv − Tw‖ 6 ‖v − w‖,

and so Tv = v.

On the other hand, since {‖xn−p‖} is nonincreasing for any p ∈ F (T ) by Lemma 3,
it converges in real numbers � and so ϕ(p) is independent of Banach limits. Thus
we may assume that v minimizes ϕ for any Banach limit µ. It follows from Lemma 1

that

µn(z, J(xn − v)) = 0

for all z ∈ E and any Banach limit µ. Thus {(z, J(xn − v))} is almost convergent
to 0. In other words, {J(xn − v)} is weakly almost convergent to 0. �

Applying Theorem 1, we obtain the following result.

Theorem 2. Let E be a reflexive and strictly convex Banach space with a uni-

formly Gâteaux differentiable norm and let T and {xn}, {tn} and {sn} be as in
Theorem 1. If F (T ) is nonempty and J−1 : E∗ → E is weakly sequentially continu-

ous at 0, then {xn} converges weakly to a fixed point of T .
���������

. Since

‖xn+1 − xn‖ = tn‖xn − Tyn‖ 6 tn(‖xn − Txn‖+ ‖Txn − Tyn‖)
6 (1 + sn)tn‖xn − Txn‖
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for all n = 1, 2, . . . , where yn = (1 − sn)xn + snTxn, by Lemma 2, we have

‖xn+1 − xn‖ → 0 as n → ∞. By Theorem 1, there exists a point v in F (T ) such
that {J(xn− v)} is weakly almost convergent to 0. Since the norm of E is uniformly
Gâteaux differentiable, the duality mapping is uniformly continuous on bounded sub-

sets of E from the strong topology of E to the weak-star topology of E∗. Thus, since
{xn} is bounded and xn − xn+1 → 0, {J(xn − v) − J(xn+1 − v)} converges weakly
to 0. However, this is a Tauberian condition for almost convergence, so {J(xn − v)}
converges weakly to 0. Since J−1 is weakly sequentially continuous at 0, {xn} con-
verges weakly to v. �

Remark 1. For a closed bounded convex subset D of E and a nonexpansive

self-mapping T : D → D, the weak convergence of the sequence {xn} in Theorem 2
has been known in a uniformly convex Banach space with a Fréchet differentiable
norm or with a duality mapping that is weakly sequentially continuous at 0 under
different choices of tn and sn (see [2, 8, 10]).

As a consequence of Theorem 2, we obtain the following result.

Corollary 1. Let E be a reflexive and strictly convex Banach space with a uni-

formly Gâteaux differentiable norm and let T : E → E be a nonexpansive mapping.

Let a sequence {xn} in E be defined by

xn+1 = (1− tn)xn + tnTxn, n = 1, 2, . . . ,

where {tn} is a real sequence such that 0 6 tn 6 t < 1 and
∞∑

n=1
tn = ∞. If

F (T ) is nonempty and J−1 : E → E∗ is weakly sequentially continuous at 0, then
{xn} converges weakly to a fixed point of T .

Corollary 2. Let E be a uniformly convex Banach space with a uniformly

Gâteaux differentiable norm and let {xn}, {tn}, {sn}, J−1 be as in Theorem 2.
If F (T ) is nonempty, then {xn} converges weakly to a fixed point of T .

Finally, using the property of the Banach limit that µn(an) = µn(an+1), we give
a dual weak convergence theorem under different restrictions on {tn} and {sn}.

Theorem 3. Let E be a reflexive and strict convex Banach space with a uniformly
Gâteaux differentiable norm. Let T : E → E be a nonexpansive mapping with

F (T ) 6= ∅. Let a sequence {xn} in E be defined by

{
xn+1 = (1− tn)xn + tnTyn,

yn = (1− sn)xn + snTxn, n = 1, 2, . . . ,
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where two real sequences {tn} and {sn} satisfy the following conditions:
(i) 0 6 tn 6 1 and lim

n→∞
tn = 1,

(ii) 0 6 sn 6 1 and lim
n→∞

sn = 0.

Then there exists a point v in F (T ) such that {J(xn−v)} is weakly almost convergent
to 0.
���������

. As in the proof of Theorem 1, for a p ∈ F (T ) and an initial point x0

of {xn}, we have ‖xn − y‖ 6 ‖x0 − y‖ for all n and hence {xn} is bounded. Also it
follows from Lemma 3 that {‖xn − w‖} is decreasing and so {‖xn − w‖} converges
in real numbers � for all w ∈ F (T ).
Now, since

‖xn+1 − Txn‖ = ‖(1− tn)xn + tnTyn − Txn‖
6 (1− tn)‖xn − Txn‖+ tn‖yn − xn‖
6 [(1− tn) + tnsn]‖xn − Txn‖

for all n = 1, 2, . . . by conditions (1) and (ii), we have

(2) lim
n→∞

‖xn+1 − Txn‖ = 0.

As in the proof of Theorem 1, for a Banach limit µ we define

ϕ(z) = µn‖xn − z‖2

for each z ∈ E. Let K be the set of minimizers of ϕ over E. Then K is invariant
under T . In fact, by (2), we have for each u ∈ K,

ϕ(Tu) = µn‖xn−Tu‖2 = µn‖xn+1−Tu‖2 = µn‖Txn−Tu‖2 6 µn‖xn−u‖2 = ϕ(u).

(Here we have used the fact that µn(an) = µn(an+1).) So, by the argument used in
the proof of Theorem 1, ϕ attains its minimizer v over E for any µ, which is a fixed

point of T . Thus the remainder also follows from that in the proof of Theorem 1. �

Corollary 3. Let E be a reflexive and strict convex Banach space with a uniformly
Gâteaux differentiable norm, and let T : E → E be a nonexpansive mapping with a

fixed point. Let {xn} be defined by

xn+1 = (1− tn)xn + tnTxn, n = 1, 2, . . . ,

where {tn} is a real sequence such that 0 6 tn 6 1 and tn → 1. Then there exists a
fixed point v of T such that {J(xn − v)} is weakly almost convergent to 0.
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Corollary 4. Let E be a uniformly convex Banach space with a uniformly

Gâteaux differentiable norm, and let T : E → E be a nonexpansive mapping with a

fixed point. Let {xn} be defined by

xn+1 = (1− tn)xn + tnTxn, n = 1, 2, . . . ,

where {tn} is a real sequence such that 0 6 tn 6 1 and tn → 1. Then there exists a
fixed point v of T such that {J(xn − v)} is weakly almost convergent to 0.

Remark 2. Using the fixed point property for nonexpansive self-mappings, Bruck
and Reich [1] established Corollary 3 in uniformly smooth Banach spaces.

Remark 3. Theorems 1 and 3 apply to all Lp spaces (1 < p < ∞).
Remark 4. Since the duality mapping J in a Hilbert space is an identity mapping,

we obtain the weak almost convergences of the Ishikawa and Mann iteration processes
by virtue of our results.
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