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Abstract. In this paper, the relationships between metric spaces and g-metrizable spaces
are established in terms of certain quotient mappings, which is an answer to Alexandroff’s
problems.
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1. Introduction

A central question of Alexandroff’s problem is that the relationships between var-
ious topological spaces and metric spaces are established by means of various map-

pings [1]. The concept of a g-metrizable space was first introduced by F. Siwiec in [2],
as a generalization of metric spaces. How to characterize a g-metrizable space by a

nice image of a metric space? S. Lin introduced the concept of 1-sequence-covering
mappings in order to give characterizations for spaces with a point-countable weak

base [3]. Recently, S. Lin introduced the concept of σ-mappings [4], and showed that
a space X is a σ-space if and only if it is a σ-image of a metric space. This shows

that 1-sequence-covering mappings and σ-mappings are very important in answering
Alexandroff’s problems. In this paper, the relationships between metric spaces and

g-metrizable spaces are established by means of 1-sequence-covering and quotient
σ-mappings, which is also an answer to Alexandroff’s problems.
All spaces in this paper are assumed to be regular and T1. Mappings are continuous

and onto. � denotes the set of positive integers, ω = {0} ∪ � .
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We recall some definitions.

Let X be a space, and P be a cover of X . P is a network for X if, whenever
x ∈ U with U open in X , then x ∈ P ⊂ U for some P ∈ P . A subfamily P ′ of P
is a network at x ∈ X if x ∈ ⋂

P ′ and whenever x ∈ U with U open in X , then

P ⊂ U for some P ∈ P ′. A space is a σ-space if it has a σ-locally finite network.

Definition 1.1. Let f : X → Y be a mapping.
(1) f is called a σ-mapping [4] if X has a baseB such that f(B) = {f(B) : B ∈ B}
is σ-locally finite in Y .

(2) f is a 1-sequence-coveringmapping [3] if for each y ∈ Y , there is x ∈ f−1(y) such
that whenever {yn} is a sequence converging to y in Y there is a sequence {xn}
converging to x in X with xn ∈ f−1(yn) for all n.

(3) f is sequentially quotient [5] if for each convergent sequence L of Y , there is a

convergent sequence S of X such that f(S) is a subsequence of L.
(4) f is quotient [6] if, whenever f−1(U) is open, then U is open in Y .

(5) f is pseudo-open [6] if, whenever f−1(y) ⊂ V with V open in X , then y ∈
int(f(V )).

Obviously, every 1-sequence-covering mapping is sequentially quotient.
Let us recall some basic definitions. Let X be a space, and letP be a cover of X .

A space X is determined byP if U ⊂ X is open (closed) in X if and only if U ∩P is
open (closed) in P for every P ∈ P . A space X is a k-space (a sequential space), if

it is determined by the cover consisting of all compact (all compact metric) subsets
of X . A space is a Fréchet if, whenever x ∈ A, there is a sequence {an : n ∈ � } in A

with an → x.

Definition 1.2. Let X be a space, and let P =
⋃{Px : x ∈ X} be a collection

of subsets in X satisfying the following conditions:
(a) Px is a network at x ∈ X .

(b) For any U, V ∈ Px, there is W ∈ Px such that W ⊂ U ∩ V .

Then,

(1) P is called a weak base for X [7] if for G ⊂ X , x ∈ G, there is P ∈ Px with
x ∈ P ⊂ G. Then G is open in X [13]. A space X is weakly first countable if

X has a weak base P =
⋃ {Px : x ∈ X} such that each Px is countable. A

space X is a g-metrizable space [2] if it has a σ-locally finite weak base.

(2) P is called a sequential neighborhood network for X [3] if any P ∈ Px is
a sequential neighborhood of x in X (that is, if for each convergent sequence

xn → x, there exists m ∈ � such that {x} ∪ {xn : n > m} ⊂ P ). This Px is
called a sequential neighborhood network of x.

492



2. Results

Lemma 2.1. The following conditions are equivalent for a space X :

(1) X is a 1-sequence-covering and σ-image of a metric space.

(2) X has a σ-locally finite sequential neighborhood network.

�	��
�
�
. (1) ⇒ (2). Suppose that f : M → X is a 1-sequence-covering and

σ-mapping, where M is a metric space, then there is a base B for M such that

f(B) is σ-locally finite in X . For each x ∈ X , there is βx ∈ f−1(x) satisfying
Definition 1.1 (2). Put Px = {f(B) : βx ∈ B ∈ B}, P =

⋃ {Px : x ∈ X}, then it
is easy to check that P is a σ-locally finite sequential neighborhood network for X .

(2) ⇒ (1). Let X have a σ-locally finite sequential neighborhood network P =⋃{Pn : n ∈ � }, whereP is closed under finite intersections, and eachPn is locally

finite. We can assume that X ∈ Pn ⊂ Pn+1. Let Pn = {Pα : α ∈ An}. For
each n ∈ � , An is endowed with discrete topology. Put M =

{
α = (αn) ∈ ∏

n∈ �
An :

{Pαn : n ∈ � } is a network at some point xα in X
}
, and equip withM the subspace

topology induced by the product topology of the product space
∏

n∈ �
An. Then M is

a metric space. The point xα is unique in X because X is T2. We define f : M → X

by f(α) = xα. Then

(a) f is surjective. For each x ∈ X , there is a subsequence {ni} of � such that
αni ∈ Ani and {Pαni

: i ∈ � } is a network at x. For n ∈ � \ {ni : i ∈ � }, take
αn ∈ An with Pαn = X . Let α = (αn). Then α ∈ M and f(α) = x. Thus f is
surjective.

(b) f is continuous. For each α = (αn) ∈ M we have f(α) = xα ∈ X . If U is
an open neighborhood of xα in X , then there is n ∈ � such that xα ∈ Pαn ⊂
U because {Pαn : n ∈ � } is a network at xα in X . Put W = {β ∈ M :
the n-th coordinate of β is αn}, then W is an open neighborhood of α in M ,

and f(W ) ⊂ Pαn ⊂ U . Hence f is continuous.

(c) f is a σ-mapping. For n ∈ � , αn ∈ An, put V (α1, . . . , αn) = {α ∈ M :
if i 6 n, then the i-th coordinate of α is αi}, B = {V (α1, . . . , αn) : αi ∈
Ai, i 6 n and n ∈ � }. Then B is a base for M . It suffices to show that
f(V (α1, . . . , αn)) =

⋂
i6n

Pαi . In fact, by the definition of f , f(V (α1, . . . , αn)) ⊂

Pαi for each i 6 n, and thus f(V (α1, . . . , αn)) ⊂ ⋂
i6n

Pαi . Conversely, since

f is surjective, for each x ∈ ⋂
i6n

Pαi there is β = (βj) ∈ M with f(β) = x.

For j ∈ � we have Pβj ∈ Pj ⊂ Pj+n, thus there is αj+n ∈ Aj+n with
Pαj+n = Pβj . Put α = (αj). Then α ∈ V (α1, . . . , αn) and f(α) = x, and thus
f(V (α1, . . . , αn)) =

⋂
i6n

Pαi . Hence f is a σ-mapping.

493



(d) f is 1-sequence-covering. For each x ∈ X , there is β = (αi) ∈ M with

β ∈ f−1(x). From the fact above, we have f(V (α1, . . . , αn)) =
⋂

i6n

Pαi . For

a convergent sequence {xj} of X with xj → x, since f(V (α1, . . . , αn)) is a se-
quential neighborhood of x in X , there exists i(n) ∈ � such that if i > i(n),
then xi ∈ f(V (α1, . . . , αn)). Thus f−1(xi) ∩ V (α1, . . . , αn) 6= ∅. We may as-
sume 1 < i(n) < i(n + 1). For each j ∈ � , if j < i(1), we take βj ∈ f−1(xj);
if i(n) 6 j < i(n + 1), we take βj ∈ f−1(xj) ∩ V (α1, . . . , αn) for n ∈ � . Then
it is easy to show that the sequence {βj} converges to β in M . Hence f is

1-sequence-covering.
From (a)–(d) above, X is a 1-sequence-covering and σ-image of a metric space. �

By virtue of Definition 1.2 it is easy to check the following lemma (or see [3]).

Lemma 2.2. Assume P is a cover of X .

(1) IfP is a weak base for X , thenP is a sequential neighborhood network for X .

(2) If P is a sequential neighborhood network of a sequential space, then P is a

weak base for X .

Lemma 2.3 [2]. Every g-first countable space is a sequential space.

Lemma 2.3 [5]. Assume f : X → Y is a sequentially quotient mapping. If Y is

a sequential space, then f is a quotient mapping.

Theorem 2.4. The following conditions are equivalent for a space X .

(1) X is a g-metrizable space.

(2) X is a 1-sequence-covering and quotient σ-image of a metric space.
�	��
�
�

. (1) ⇒ (2). Suppose X is a g-metrizable space, then X has a σ-locally
finite weak base. By Lemma 2.2 and Lemma 2.3, X is a sequential space, and

X has a σ-locally finite sequential neighborhood network. By Lemma 2.1, X is
a 1-sequence-covering and σ-image of a metric space. In view of Lemma 2.3, the

1-sequence-covering mapping is a quotient mapping.
(2) ⇒ (1). Suppose X is a 1-sequence-covering and quotient σ-image of a metric

space. Then X is a sequential space because f is a quotient mapping. By Lemma 2.1,
X has a σ-locally finite sequential neighborhood networkP . In view of Lemma 2.2,

P is σ-locally finite weak base for X . Hence X is a g-metrizable space. �

By Theorem 14 in [8], we have

Corollary 2.5. Every 1-sequence-covering and pseudo-open σ-mapping preserves

metrizability.
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