Czechoslovak Mathematical Journal

P. Milewski; Roman Pol

On a theorem of Holický and Zelený concerning Bore maps without σ-compact fibers

Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 3, 535-543
Persistent URL: http://dml.cz/dmlcz/127821

Terms of use:

© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON A THEOREM OF HOLICKY AND ZELENY CONCERNING BOREL MAPS WITHOUT σ-COMPACT FIBERS

P. Milewski and R. Pol, Warszawa

(Received July 10, 2000)

Abstract

The paper is concerned with a recent very interesting theorem obtained by Holický and Zelený. We provide an alternative proof avoiding games used by Holický and Zelený and give some generalizations to the case of set-valued mappings.

Keywords: Borel maps, σ-compact sections, set-valued maps
MSC 2000: 54H05, 26A21, 28A05, 54C10

1. Introduction

We shall consider only separable metrizable spaces. Our terminology follows Kuratowski [8] and Kechris [6]. We denote by $2^{\mathbb{N}}$ the Cantor set and $\mathbb{N}^{\mathbb{N}}$ is the space of irrationals.

Holický and Zelený [5] proved recently a very interesting theorem that if $f: X \rightarrow Y$ is a Borel map between complete spaces with uncountably many non- σ-compact fibres, then f takes a closed set in X to a non-Borel set in Y.

More specifically, Holický and Zelený established that for any such map $f: X \rightarrow$ Y, there is a Cantor set K in Y and a homeomorphism $k: K \times \mathbb{N}^{\mathbb{N}} \rightarrow P, P \subset X$, such that $f \circ k(y, t)=y$ for $(y, t) \in K \times \mathbb{N}^{\mathbb{N}}$, and $f(x) \notin K$ for $x \in \bar{P} \backslash P$.

A key element in the proof in [5] is a parametric version of the Kechris-LouveauWoodin theorem, cf. Section 2. The proof given by Holický and Zelený involves a closed game introduced by Louveau and Saint Raymond.

In this note we use an approach from [10] to present a proof of a certain parametric version of the Kechris-Louveau-Woodin theorem, based directly on a classical theorem of Hurewicz. We shall also give an extension of the Holický-Zelený theorem to the case of set-valued functions.

We would like to thank the referee for remarks which improved the exposition.

2. Some background

Let X be a complete space and let A be an analytic not F_{σ} set in X. A classical theorem of Hurewicz asserts that there is a copy T of $2^{\mathbb{N}}$ in X with $T \backslash A$ countable and dense in T, cf. [6, 21.18]. Kechris, Louveau and Woodin [7], [6, 21.22] strengthened this result as follows: if $B \subset X \backslash A$ and each F_{σ} set in X containing A hits B, then there is a copy T of $2^{\mathbb{N}}$ in $A \cup B$ with $T \cap B$ countable and dense in T.

We shall use the following closely related fact.
2.1. Lemma. Let G be a G_{δ} set in a complete space X, let $H \subset X \backslash G$, and let $R \subset X \times X$ be a closed symmetric relation on X. Assume that each F_{σ} set in X containing G intersects H, and $G \times H \cap R=\emptyset$. Then there is a copy T of $2^{\mathbb{N}}$ in $G \cup H$ with $T \cap H$ countable and dense in T and $(s, t) \notin R$ for any distinct $s, t \in T$.

A justification requires only some adaptations of standard proofs of the Hurewicz theorem, cf. [4, p. 333]. To be more specific, first one removes from X all open sets U such that $U \cap G$ is contained in some F_{σ} set disjoint from H, and next, one replaces H by its countable dense subset. This allows one to concentrate on the case where both G and H are dense in X and H is countable. In this case the classical Hurewicz's arguments need only a slight modification. One can also get Lemma 2.1 from [1, Proposition 2.1].

Incidentally, the Kechris-Louveau-Woodin theorem can be derived from Lemma 2.1, cf. [9].

We shall need also Jankov-von Neumann selection theorem [6, 29.9]. Let $\mathscr{B} \mathscr{A}(X)$ be the σ-algebra generated by analytic sets in complete space X. A mapping $f: X \rightarrow Y$ is $\mathscr{B} \mathscr{A}$-measurable if $f^{-1}[U] \in \mathscr{B} \mathscr{A}(X)$ for any open U in Y. The Jankov-von Neumann theorem asserts that for any analytic set $E \subset X \times Y$ in the product of complete spaces, with all vertical sections E_{x} nonempty, there is a $\mathscr{B} \mathscr{A}$ measurable mapping $f: X \rightarrow Y$ such that $f(x) \in E_{x}$, for $x \in X$.

3. A parametric version of the Kechris-Louveau-Woodin theorem

Given an $M \subset S \times T$ we denote respectively the vertical and the horizontal sections of M by

$$
\begin{equation*}
M_{s}=\{t:(s, t) \in M\}, \quad M^{t}=\{s:(s, t) \in M\} . \tag{1}
\end{equation*}
$$

Let Z be a complete space. We denote by $\mathscr{H}\left(2^{\mathbb{N}}, Z\right)$ the space of embeddings of the Cantor set into Z with the topology of uniform convergence and by $\mathscr{K}(Z)$ the space of compact subsets of Z with the Vietoris topology, cf. [6]. Both spaces are completely metrizable.

Let us recall that $f: X \rightarrow Z$ is $\mathscr{B} \mathscr{A}$-measurable if $f^{-1}[U]$ is in the σ-algebra generated by analytic sets in X, for any open U in Z, cf. Section 2 .
3.1. Theorem. Let $A, B \subset X \times Y$ be disjoint analytic sets in the product of complete spaces X, Y such that every F_{σ} set in Y containing A_{x} hits $B_{x}, x \in X$. Let C, D be disjoint countable dense sets in $2^{\mathbb{N}}$. Then there are $\mathscr{B} \mathscr{A}$-measurable mappings $h: X \rightarrow \mathscr{H}\left(2^{\mathbb{N}}, Y\right)$ and $H_{n}: X \rightarrow \mathscr{K}\left(2^{\mathbb{N}}\right)$ such that, with $G(x)=2^{\mathbb{N}} \backslash$ $\bigcup_{n=1}^{\infty} H_{n}(x)$,

$$
\begin{equation*}
C \subset G(x), \quad h(x)[G(x)] \subset A_{x}, \quad \text { for } x \in X \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
h(x)[D] \subset B_{x}, \quad \text { for } x \in X \tag{3}
\end{equation*}
$$

Proof. Let $\pi: X \times Y \times 2^{\mathbb{N}} \rightarrow X \times Y, p: Y \times 2^{\mathbb{N}} \rightarrow Y$ be the projections. Let $G \subset X \times Y \times 2^{\mathbb{N}}$ be a G_{δ} set such that

$$
\begin{equation*}
A=\pi[G] \quad \text { and } \quad H=\pi^{-1}[B] . \tag{4}
\end{equation*}
$$

Let

$$
\begin{equation*}
E=\left\{(x, f) \in X \times \mathscr{H}\left(2^{\mathbb{N}}, Y \times 2^{\mathbb{N}}\right): f[C] \subset G_{x}, \quad f[D] \subset H_{x}, \quad p \circ f \in \mathscr{H}\left(2^{\mathbb{N}}, Y\right)\right\} . \tag{5}
\end{equation*}
$$

We shall check that

$$
\begin{equation*}
E \text { is analytic and } E_{x} \neq \emptyset \text { for } x \in X . \tag{6}
\end{equation*}
$$

For any $t \in 2^{\mathbb{N}}$ let us consider the continuous mapping $e_{t}: X \times \mathscr{H}\left(2^{\mathbb{N}}, Y \times 2^{\mathbb{N}}\right) \rightarrow$ $X \times Y \times 2^{\mathbb{N}}$ defined by $e_{t}(x, f)=(x, f(t))$. Then the set

$$
E^{\prime}=\bigcap_{c \in C} e_{c}^{-1}[G] \cap \bigcap_{d \in D} e_{d}^{-1}[H]
$$

is analytic, C, D being countable. The set $W=\left\{f \in \mathscr{H}\left(2^{\mathbb{N}}, Y \times 2^{\mathbb{N}}\right): p \circ f \in\right.$ $\left.\mathscr{H}\left(2^{\mathbb{N}}, Y\right)\right\}$ is of type G_{δ}. We conclude that $E=E^{\prime} \cap(X \times W)$ is analytic.

To check the second part of (6), let us fix $x \in X$. Since $p\left[G_{x}\right]=A_{x}, H_{x}=p^{-1}\left(B_{x}\right)$ and the projection parallel to the compact axis takes closed sets to closed sets, every F_{σ} set in $Y \times 2^{\mathbb{N}}$ containing G_{x} hits H_{x}. Let $R=\left\{(u, v) \in\left(Y \times 2^{\mathbb{N}}\right)^{2}: p(u)=\right.$ $p(v)\}$. Then Lemma 2.1 can be applied to the triple G_{x}, H_{x}, R, providing a copy $T \subset G_{x} \cup H_{x}$ of $2^{\mathbb{N}}$ with $T \cap H_{x}$ countable and dense in T and p injective on T. Let $f: 2^{\mathbb{N}} \rightarrow T$ be a homeomorphism with $f[D]=T \cap H_{x}$, cf. [3, 4.3.H(e)]. Then $f[C] \subset G_{x}$ and $p \circ f \in \mathscr{H}\left(2^{\mathbb{N}}, Y\right)$. It follows that $f \in E_{x}$.

Having checked (6), one can apply the Jankov-von Neumann theorem, cf. Section 2, to get a $\mathscr{B} \mathscr{A}$-measurable mapping

$$
\begin{equation*}
k: X \rightarrow \mathscr{H}\left(2^{\mathbb{N}}, Y \times 2^{\mathbb{N}}\right), \quad k(x) \in E_{x} . \tag{7}
\end{equation*}
$$

Let $X \times Y \times 2^{\mathbb{N}} \backslash G=\bigcup_{n=1}^{\infty} F_{n}$, where F_{n} are closed. We set

$$
\begin{equation*}
h(x)=p \circ k(x), \quad H_{n}(x)=k(x)^{-1}\left[\left(F_{n}\right)_{x}\right] . \tag{8}
\end{equation*}
$$

Then $h: X \rightarrow \mathscr{H}\left(2^{\mathbb{N}}, Y\right)$ and $H_{n}: X \rightarrow \mathscr{K}\left(2^{\mathbb{N}}\right)$ are $\mathscr{B} \mathscr{A}$-measurable mappings. This is transparent for h. To check $\mathscr{B} \mathscr{A}$-measurability of H_{n} let us notice that $H_{n}=\varphi \circ \psi$, where $\varphi(f, K)=f^{-1}[K]\left(f \in \mathscr{H}\left(2^{\mathbb{N}}, Y \times 2^{\mathbb{N}}\right), K \in \mathscr{K}\left(Y \times 2^{\mathbb{N}}\right)\right)$ and $\psi(x)=\left(k(x),\left(F_{n}\right)_{x}\right)$. Since φ is Borel and ψ is $\mathscr{B} \mathscr{A}$-measurable, $x \mapsto\left(F_{n}\right)_{x}$ being Borel, cf. [6, 11.4 ii$)$], the composition $\varphi \circ \psi$ is $\mathscr{B} \mathscr{A}$-measurable. Therefore, h and H_{n} satisfy the assertion of the theorem, cf. (4), (5) and (7), (8).

Let us comment on Theorem 3.1. Since the mappings h and H_{n} are $\mathscr{B} \mathscr{A}$ measurable, there is a dense G_{δ} set P in X such that the restrictions of h and H_{n} to P are continuous, cf. [6, 29.5]. Let K be any compact set in P. The continuity of H_{n} on K implies that $G=2^{\mathbb{N}} \backslash \bigcup_{n=1}^{\infty} \bigcup\left\{H_{n}(x): x \in K\right\}$ is a G_{δ} set. By (2) and (3), $C \subset G, h(x)[G] \subset A_{x}$, and $h(x)[D] \subset B_{x}$, for any $x \in K$. Since G and D are dense in $2^{\mathbb{N}}$, Lemma 2.1 (with R being the diagonal) provides a Cantor set $T \subset G \cup D$ with $\overline{T \cap D}=T$. The map $\Phi: K \times T \rightarrow K \times Y$ defined by $\Phi(x, t)=(x, h(x)(t))$ is an embedding which sends $K \times(T \backslash D)$ to A and $K \times(T \cap D)$ to B.

This is a parametric version of the Kechris-Louveau-Woodin theorem, established by Holický and Zelený [5, Lemma 1].

We shall close this section with a lemma containing some observations which will be useful in the next section. The expression "for almost every compact set in X " refers to the Baire category in $\mathscr{K}(X)$. Let us recall that in a complete space X without isolated points almost every nonempty compact set is a Cantor set.
3.2. Lemma. Let A, B, C, D and h be as in Theorem 3.1. Assume in addition that X has no isolated points and

$$
\begin{equation*}
A^{y} \text { is meager in } X \text { for any } y \in Y \text {. } \tag{9}
\end{equation*}
$$

Then for almost every Cantor set K in X, there is a Cantor set T in $2^{\mathbb{N}}$ such that

$$
\begin{equation*}
\overline{T \cap D}=T \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
h\left(x_{1}\right)[T \backslash D] \cap h\left(x_{2}\right)[T]=\emptyset, \quad \text { for } x_{1} \neq x_{2}, \quad x_{1}, x_{2} \in K \tag{11}
\end{equation*}
$$

Proof. Let P be a dense G_{δ} set in X such that the $\mathscr{B} \mathscr{A}$-measurable mapping h restricted to P is continuous. Let us fix $c \in C, u \in C \cup D, c \neq u$, and let $\mathscr{G}_{c, u}$ be the collection of compact sets K in P such that

$$
\begin{equation*}
h\left(x_{1}\right)(c) \neq h\left(x_{2}\right)(c) \neq h\left(x_{1}\right)(u), \quad \text { for } x_{1} \neq x_{2}, \quad x_{1}, x_{2} \in K . \tag{12}
\end{equation*}
$$

Then $\mathscr{G}_{c, u}$ is a G_{δ} set in $\mathscr{K}(X)$. Let us check that $\mathscr{G}_{c, u}$ is dense, and hence comeager, in $\mathscr{K}(X)$. To this end let us consider nonempty open sets V_{1}, \ldots, V_{n} in X. We have to find $K \subset \bigcup_{i=1}^{n} V_{i}$ intersecting all V_{i} and satisfying (12). Let us set

$$
\begin{equation*}
k(x)=h(x)(c), \quad l(x)=h(x)(u), \quad x \in P . \tag{13}
\end{equation*}
$$

The functions $k: P \rightarrow Y, l: P \rightarrow Y$ are continuous and $k^{-1}(y) \subset A^{y}$, cf. (2). By (9), the fibers of k are meager in P. If $l^{-1}(y)$ is nonmeager, then being closed in P, it contains the intersection of a nonempty open set with P. It follows that the set J of points y with $l^{-1}(y)$ nonmeager in P is at most countable. Therefore, one can choose inductively $a_{j} \in V_{j} \cap P \backslash k^{-1}[J]$ such that $a_{j} \notin \bigcup_{i<j}\left(k^{-1}\left[k\left(a_{i}\right)\right] \cup k^{-1}\left[l\left(a_{i}\right)\right] \cup l^{-1}\left[k\left(a_{i}\right)\right]\right)$. Then $K=\left\{a_{1}, \ldots, a_{n}\right\}$ satisfies (12), cf. (13).

We have demonstrated that each $\mathscr{G}_{c, u}$ is comeager, and in effect almost every Cantor set K in P satisfies (12) simultaneously for all pairs $c \neq u$ with $c \in C$, $u \in C \cup D$. Let us fix any such K. We shall find a Cantor set T in $2^{\mathbb{N}}$ satisfying (10) and (11). Let

$$
\begin{align*}
& G=\left\{t \in 2^{\mathbb{N}}: h\left(x_{1}\right)(t) \neq h\left(x_{2}\right)(t) \text { for any } x_{1} \neq x_{2}, \quad x_{1}, x_{2} \in K\right. \tag{14}\\
&\text { and } \left.h\left(x_{1}\right)(t) \neq h\left(x_{2}\right)(d) \text { for any } d \in D \text { and } x_{1}, x_{2} \in K\right\} .
\end{align*}
$$

Using the continuity of the mapping $(x, t) \mapsto h(x)(t)$ on the product $K \times 2^{\mathbb{N}}$, one easily verifies that G is a G_{δ} set. It is transparent that $G \cap D=\emptyset$ and, by (12), $C \subset G$. Let R be the closed symmetric set in $2^{\mathbb{N}} \times 2^{\mathbb{N}}$ consisting of pairs (s, t) such that $h\left(x_{1}\right)(s)=h\left(x_{2}\right)(t)$ for some $x_{1}, x_{2} \in K$. Then $G \times D \cap R=\emptyset$, cf. (14). Therefore, Lemma 2.1 can be applied to the triple G, D, R, providing a Cantor set $T \subset G \cup D$ with $\overline{T \cap D}=T$ and $(s, t) \notin R$ for any distinct $s, t \in T$. One readily checks that T satisfies also (11).

4. Set-valued Borel functions

Let us recall that $\mathscr{K}(E)$ is the space of compact subsets of E with the Vietoris topology and the phrase "almost all" refers to the Baire category.

The following fact provides an extension of the Holický-Zelený theorem.
4.1. Theorem. Let S, E be complete spaces without isolated points and let $F: S \rightarrow \mathscr{K}(E)$ be a Borel mapping whose values are boundary in E. Then the following conditions are equivalent:
(i) for almost all $x \in E$, the set $\{s \in S: x \in F(s)\}$ is not σ-compact,
(ii) for almost all Cantor sets K in E there is a homeomorphism $k: K \times \mathbb{N}^{\mathbb{N}} \rightarrow P$, $P \subset S$, such that $x \in F(k(x, t))$ and $F(s) \cap K=\emptyset$ for $s \in \bar{P} \backslash P$.

We shall first establish a counterpart to Lemma 2 in [5].
4.2. Lemma. Let X be a dense G_{δ} subset of the complete space without isolated points E and let $H: X \rightarrow \mathscr{K}(E)$ be a Borel mapping such that $x \notin H(x)$ and the interior of $H(x)$ is empty for all $x \in X$. Then for almost all $K \in \mathscr{K}(E)$, $K \cap \bigcup\{H(x): x \in K\}=\emptyset$.

Proof. Let P be a dense G_{δ} subset of X such that H restricted to P is continuous. Since $\mathscr{K}(P) \subset \mathscr{K}(E)$ is comeager and the set $\mathscr{L}=\{K \in \mathscr{K}(P)$: $K \cap H(x)=\emptyset$ for $x \in K\}$ is open in $\mathscr{K}(P)$, it is sufficient to prove the density of \mathscr{L}. Let V_{1}, \ldots, V_{n} be nonempty open subsets of P. Since $\{(x, t): x \in P, t \in H(x)\}$ is Borel with all vertical sections meager, by the Kuratowski-Ulam theorem the set $Z=\{t \in E:\{x \in P: t \in H(x)\}$ is nonmeager $\}$ is meager. Therefore we can successively choose $t_{i} \in P \cap V_{i} \backslash\left[\bigcup_{j=1}^{i-1} H\left(t_{j}\right) \cup \bigcup_{j=1}^{i-1}\left\{x \in P: t_{j} \in H(x)\right\} \cup Z\right]$ for $i=1, \ldots, n$. Then $\left\{t_{1}, \ldots, t_{n}\right\}$ belongs to \mathscr{L} and hits every V_{i}.

Before passing to the proof of Theorem 4.1, let us make a simple observation. If \mathscr{L} is a comeager family of compact subsets of a complete space X, then $\bigcup \mathscr{L}$ is
comeager in X. Indeed, let $\mathscr{L}^{\prime} \subset \mathscr{L}$ be dense G_{δ} in $\mathscr{K}(X)$. Then $\bigcup \mathscr{L}^{\prime} \subset X$ is analytic. Thus $\bigcup \mathscr{L}^{\prime}=\left(U \backslash M_{1}\right) \cup M_{2}$, where U is open and M_{i} are meager in X, cf. [6, 8.21, 29.5]. If $\overline{U \backslash M_{1}}=X, \bigcup \mathscr{L}^{\prime}$ is comeager in X. Otherwise let us take the nonempty open $V=X \backslash \overline{U \backslash M_{1}}$. Then $\mathscr{K}\left(V \backslash M_{2}\right)$ is comeager in $\mathscr{K}(V)$ and disjoint from \mathscr{L}^{\prime}, a contradiction.

Proof of Theorem 4.1. (i) \Rightarrow (ii). Let $X \subset E$ be a dense G_{δ} set such that $\{s \in S: x \in F(s)\}$ is not σ-compact for all $x \in X$. Let us set

$$
\begin{equation*}
A=\{(x, s) \in X \times S: x \in F(s)\}, \quad B=X \times S \backslash A \tag{15}
\end{equation*}
$$

Every σ-compact set containing A_{x} hits $B_{x}, x \in X$. Therefore, the assumptions of Theorem 3.1 are satisfied and let h be the map described in this theorem. By Lemma 3.2 for almost all Cantor sets K in X, and hence in E, there is a Cantor set T in $2^{\mathbb{N}}$ satisfying (10) and (11). Moreover, one can also demand that $(x, h(x)(t)) \in A$ for $x \in K, t \in T \backslash D$, using a simple argument that follows the proof of Theorem 3.1. The map h is continuous on a dense G_{δ} subset X^{\prime} of X. To simplify the notation we shall assume that $X^{\prime}=X$. Let $d \in D$ and let us define $H: X \rightarrow \mathscr{K}(E)$ by $H(x)=F(h(x)(d))$. By (15) and condition (3) in Theorem 3.1, $x \notin H(x)$. Therefore, by Lemma 4.2, we can assume in addition that

$$
\begin{equation*}
K \cap F(h(x)(d))=\emptyset \quad \text { for all } x \in X \text { and } d \in D \tag{16}
\end{equation*}
$$

We shall verify that each such K satisfies (ii). Let $g: \mathbb{N}^{\mathbb{N}} \rightarrow T \backslash D$ be any homeomorphism. Let us define $k: K \times \mathbb{N}^{\mathbb{N}} \rightarrow S$ by

$$
\begin{equation*}
k(x, t)=h(x)(g(t)), \quad P=k\left[K \times \mathbb{N}^{\mathbb{N}}\right] . \tag{17}
\end{equation*}
$$

Using (11), one easily checks that k is an embedding. By (17), $x \in F(k(x, t))$ for $(x, t) \in K \times \mathbb{N}^{\mathbb{N}}$. Let us note that \bar{P} is included in the compact set $\bigcup_{x \in K} h(x)[T]$. Thus, if $s \in \bar{P} \backslash P$ then $s=h(x)(d)$ for some $d \in D$. Therefore, by (16), $F(s) \cap K=\emptyset$ for $s \in \bar{P} \backslash P$.
(ii) \Rightarrow (i) Let us note that if K is a Cantor set described in (ii), then for every $x \in K$ the set $\{s \in S: x \in F(s)\}$ is not σ-compact. Therefore, (i) follows from the remark preceding the proof.

Corollary 4.3. Let S, E be complete spaces and let $F: S \rightarrow \mathscr{K}(E)$ be a Borel mapping. Suppose that the set $\{x \in S: y \in F(x)\}$ is not σ-compact for uncountably many $y \in E$. Then there is a closed subset \tilde{S} of S and a Borel function $f: S \rightarrow E$ with $f(x) \in F(x)$ whenever $F(x) \neq \emptyset$, such that $f[\tilde{S}]$ is not Borel.

Proof. Let us first assume that E is the ternary Cantor set $\mathscr{C} \subset[0,1]$, all values of F are nonempty and the set $\{x \in S: y \in F(x)\}$ is not σ-compact for all but countably many $y \in \mathscr{C}$. Let us set

$$
A=\{(y, t): t \in S, \quad y \in F(t)\}, \quad B=\mathscr{C} \times S \backslash A
$$

For each open interval J_{k} with rational endpoints let us put $A\left(J_{k}\right)=\left\{s: J_{k} \subset F(s)\right\}$. Since every horizontal section of the Borel set $\left(J_{k} \times S\right) \cap B$ is σ-compact, the set $S \backslash A\left(J_{k}\right)=\pi_{S}\left[\left(J_{k} \times S\right) \cap B\right]$ is Borel, π_{S} being the projection. Let us consider two cases.
A. The set $A\left(J_{k}\right)$ is not σ-compact for some $k \in \mathbb{N}$. Then by the Hurewicz theorem there is a Cantor set $T \subset S$ such that $T \backslash A\left(J_{k}\right)$ is countable and dense in T. Let $g_{1}: T \cap A\left(J_{k}\right) \rightarrow J_{k}$ be a continuous function with $g_{1}\left[T \cap A\left(J_{k}\right)\right]$ not Borel, and let $g_{2}: S \rightarrow \mathscr{C}$ be any Borel selection of F. Then $\tilde{S}=T$ and the function $f: S \rightarrow \mathscr{C}$ that agrees with g_{1} on $\tilde{S} \cap A\left(J_{k}\right)$ and with g_{2} on $S \backslash\left(A\left(J_{k}\right) \cap \tilde{S}\right)$ has the required properties.
B. $A\left(J_{k}\right)$ is σ-compact for all $k \in \mathbb{N}$. Let us put $A^{\prime}=A \backslash \bigcup_{k=1}^{\infty} J_{k} \times A\left(J_{k}\right)$. Then every horizontal section of the Borel set A^{\prime} is compact, boundary and nonempty. For any x, the section $\left(A^{\prime}\right)_{x}$ is the difference of A_{x} and its σ-compact subset, and hence it is not σ-compact. Therefore we can assume without loss of generality that the set $F(x)$ is boundary for all $x \in S$. Let K and k be respectively a Cantor set and a homeomorphism, such as in Theorem 4.1. Let $M \subset K \times \mathbb{N}^{\mathbb{N}}$ be a closed set such that $\pi_{K}[M]$ is not Borel. Let us put $N=k[M], \tilde{S}=\overline{k[M]}$ and let $f: S \rightarrow \mathscr{C}$ coincides on N with $\pi_{K} \circ k^{-1}(x)$ and with any Borel selection for F on $S \backslash N$. Since $K \cap f[\tilde{S}]=\pi_{K}[M]$, the set $f[\tilde{S}]$ is not Borel.

Let us consider now the general case. Because the set of all $y \in E$ such that $\{t \in S: y \in F(t)\}$ is not σ-compact is analytic (see [2, Remarque (b), p. 255]), it contains a Cantor set \mathscr{C}. Let $X=\{x \in S: F(x) \cap \mathscr{C} \neq \emptyset\}$. We shall apply the reasoning from the first part of the proof to the Borel function F^{\prime} on S which sends $x \in X$ to $F(x) \cap \mathscr{C}$ and associates to $x \in S \backslash X$ a fixed singleton $\left\{c_{0}\right\}, c_{0} \in \mathscr{C}$. In effect, we obtain a closed set \tilde{S} in S and a Borel map $f: S \rightarrow \mathscr{C}, f(x) \in F^{\prime}(x)$, with $f[\tilde{S}]$ non-Borel. It suffices to replace the function f on the set $\{x \in S \backslash X: F(x) \neq \emptyset\}$ by any Borel selection for F. The proof is completed.

References

[1] J. Chaber and R. Pol: Remarks on closed relations and a theorem of Hurewicz. Topology Proc. 22 (1997), 81-94.
[2] C. Dellacherie: Un cours sur les ensembles analytiques. In: Analytic Sets (C. A. Rogers et al., eds.). Academic Press, London, 1980, pp. 183-316.
[3] R. Engelking: General Topology. PWN, Warszawa, 1977.
[4] J. Hoffman-Jørgensen and F. Topsøe: Analytic spaces and their Application. In: Analytic Sets (C. A. Rogers et al., eds.). Academic Press, London, 1980, pp. 317-401.
[5] P. Holický and M. Zelený: A converse of Arsenin-Kunugui theorem on Borel sets with σ-compact sections. Fund. Math. 165 (2000), 191-202.
[6] A.S. Kechris: Classical Descriptive Set Theory. Springer-Verlag, New York, 1994.
[7] A.S. Kechris, A. Louveau and W. H. Woodin: The structure of σ-ideals of compact sets. Trans. Amer. Math. Soc. 301 (1987), 263-288.
[8] K. Kuratowski: Topology I and II. Academic Press, Warszawa, 1966 and 1968.
[9] H. Michalewski and R. Pol: On a Hurewicz-type theorem and a selection theorem of Michael. Bull. Polish Acad. Sci. Math. 43 (1995), 273-275.
[10] R. Pol: Some remarks about measurable parametrizations. Proc. Amer. Math. Soc. 93 (1985), 628-632.

Authors' address: Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland, e-mails: pamil@mimuw.edu.pl, pol@mimuw.edu.pl.

