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CODIMENSION 1 SUBVARIETIES OF Mg AND

REAL GONALITY OF REAL CURVES
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, Trento

(Received January 15, 2001)

Abstract. LetMg be the moduli space of smooth complex projective curves of genus g.
Here we prove that the subset of Mg formed by all curves for which some Brill-Noether
locus has dimension larger than the expected one has codimension at least two inMg . As
an application we show that if X ∈ Mg is defined over � , then there exists a low degree
pencil u : X →  1 defined over � .
Keywords: moduli space of curves, gonality, real curves, Brill-Noether theory, real alge-

braic curves, real Riemann surfaces
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1. Introduction

Let X be a smooth complex projective curve of genus g and let Gr
d(X) := {(L, V ) :

L ∈ Picd(X), V ⊆ H0(X, L), dim(V ) = r + 1} be the scheme of all r-dimensional
linear systems of degree d on X . Set W r

d (X) := {L ∈ Picd(X), h0(X, L) > r + 1}.
The geometry of the schemes Gr

d(X) and W r
d (X) is quite well understood when X is

a general curve of genus g ([1]). In particular for a general X every Gr
d(X) is smooth,

equidimensional, non-empty if and only if %(g, r, d) := g − (r + 1)(g + r − d) > 0
and connected if and only if %(g, r, d) > 0. It is natural to try to give upper bounds
for the codimension in the moduli spaceMg of the set of all curves for which some
of these properties fail. For all integers g, d, r, i with g > 3, 0 < d < 2g − 2,
0 < r < g and i > 0 set B(g, r, d, i) := {X ∈ Mg: there is an irreducible component
T of Gr

d(X) such that the Zariski tangent space of Gr
d(X) has dimension at least
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%(g, r, d) + i at a general point of T} and D(g, r, d, i) := {X ∈ Mg : W r
d (X) has

dimension at least %(g, r, d) + i}. It is possible to define several other failure loci.
We will need only the following ones. For all integers x, y with x > 0 and y > 0
set E(g, d, x, y) := {X ∈ Mg : there is a y-dimensional family of L ∈ Picd(X) with
h0(X, L) > 2 and h1(X, L⊗2) > x}. In Section 2 we will prove the following result.

Theorem 1. For all integers g, d with g > 4 and 0 < d < 2g− 2 every irreducible
component of B(g, 1, d, 3), E(g, d, 2, 1) and E(g, d, 1, 2) has codimension at least two
inMg.

Now we explain our motivation for showing that some bad sublocus of Mg has

codimension at least two in Mg. Let X be a smooth connected projective curve of
genus g defined over � . Hence the set X( � ) of its complex points is an oriented
compact topological surface (a sphere with g handles) equipped with a complex
structure. The set X( � ) is the union of n(X) disjoint circles. The real structure
is uniquely determined by an anti-holomorphic involution σ : X( � ) → X( � ). We
have X( � ) = {P ∈ X( � ) : σ(P ) = P}. It is known that either X( � ) \ X( � )
is connected or X( � ) \ X( � ) has exactly two connected components (see e.g. [7,
Prop. 3.1], or [11, p. 262]); following [7] we will write a(X) = 0 if X( � ) \X( � ) is
not connected and a(X) = 1 if X( � ) \X( � ) is connected. It is known that we have
1 6 n(X) 6 g + 1 and n(X) ≡ g + 1 mod(2) if a(X) = 0 and 0 6 n(X) 6 g if

a(X) = 1 and that every such pair (n(X), a(X)) arises for some real smooth curve
of genus g ([7, Prop. 3.1], or [11, p. 262]). The pair (n(X), a(X)) will be called the
topological type of the real curve X . There exists a connected smooth Teichmüller

space, T (g, c, e), parametrizing all genus g real smooth curve with fixed topological
type (c, e) ([6] or [10, Th. 5.1]). We learned the notion of gonality over an arbitrary
base field from [9]. For every smooth real curve X set gon(X, � ) := inf{d ∈ � : there
exists a real L ∈ Picd(X) with h0(X, L) > 2}. The integer gon(X, � ) is called the
real gonality of the real curve X . For any such curve the case r = 1 of the existence
theorem for special divisors ([1]) gives gon(X, � ) > [ 12 (g + 3)]. By specialization and
semicontinuity, to obtain this upper bound it is sufficient to prove this bound for
a general curve Y of genus g. For a general curve Y we have gon(Y, � ) = [ 1

2 (g + 3)]
([1]). By [2, Th. 3.1], for every integer g > 2 and every topological type (c, e), e = 0, 1,
with c > 0 there is an open non-empty euclidean subset U(g, c, e) of T (g, c, e) such
that gon(X, � ) = [ 12 (g + 3)] for every X ∈ U(g, c, e). By specialization for every
real curve X in the euclidean closure, V (g, c, e), of U(g, c, e) we have gon(X, � ) >
[ 12 (g + 3)]. We are interested in the corresponding problem for all real curves. In
genus 8 a surprise arose: by [2, Th. 3.2], for every topological type (c, e) admissible
for genus 8 and with c > 0 there is a non-empty open subset B(8, c, e) of T (8, c, e)
such that every X ∈ B(8, c, e) has gon(X, � ) > [ 12 (g + 3)] = 5. The connection
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with Theorem 1 is simple; every solution specializes, i.e. for every integer d the

set gon(d; g, c, e) := {X ∈ T (g, c, e) : gon(X, � ) 6 d} is closed in T (g, c, e); every
smooth solution generalizes, i.e. it can be extended to nearby curves, but in general
non-smooth solutions do not generalize (consider a double root of a real polynomial

f ∈ � [t]. Hence we see that if g = 8 for all admissible types B(8, 5, 1, 1) ∩ T (8, c, e)
disconnects T (8, c, e). Since T (8, c, e) is a smooth differential manifold, this implies
that B(8, 5, 1, 1) ∩ T (8, c, e) has codimension one in T (8, c, e) and hence B(8, 5, 1, 1)
has a component of codimension one inM8. Using Theorem 1 in Section 3 we will

prove the following result.

Theorem 2. For every integer g > 3 and every smooth real curve X of genus g

with X( � ) 6= ∅ we have gon(X, � ) 6 [ 12 (g + 3)] + 3.

The case of curves without real points is more delicate, because such curves have
only real linear systems of even degree. In Section 3 we will prove the following

result.

Theorem 3. For every integer g > 3, let u(g) be the first even integer bounded
above by [ 12 (g + 3)] + 6, i.e. set u(g) := 2([ 14 (g + 3)] + 6. Then for every smooth real
curve X of genus g with X( � ) = ∅ we have gon(X, � ) 6 u(g).

2. Proof of Theorem 1

In the case of spanned pencils, the Petri map is essentially equivalent to the

multiplication map H0(X, L) ⊗ H0(X, L) → H0(X, L⊗2). More precisely, for any
smooth curve X and L ∈ Picd(X) with h0(X, L) = 2 and |L| = |F | + B with |F |
base point free pencil and B > 0 the base locus of |L|, as in the base point free pencil
trick the multiplication map induces an exact sequence

(1) 0 → L⊗ F ∗ → H0(X, F )⊗ L → L⊗ F → 0.

The exact sequence (1) shows that the excess dimension of the Zariski tangent

space of W 1
d (X) at L is just H1(X, F⊗2⊗B). For a spanned pencil F the condition

H1(X, F⊗2) = 0 has a very nice geometric interpretation: we have h1(X, F⊗2) 6= 0
if and only if F is the limit of two different g1

d’s in a family of curves ([3]). We will
not need this nice interpretation.

Remark 1. Since we may ignore finitely many irreducible subvarieties of Mg

with codimension at least two, we will always consider curves without non-trivial
automorphisms, i.e. we will always work on the smooth locus ofMg. Fix any such
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Y ∈Mg and take L ∈ Pic(Y ) with L spanned, h0(Y, L) = 2 and x := h1(Y, L⊗2) > 0.
For x general points P1, . . . , Px of Y we have h1(Y, L⊗2(P1 + . . . + Px)) = 0 (e.g. use
Serre duality if x > 2).

���������
of Theorem 1. The idea is to use Remark 1. To carry over this idea

we prefer to use induction on g, the cases g = 2 and g = 3 being trivial. Hence
we assume g > 4 and that the result is true for curves of genus at most g − 1. In
order to obtain a contradiction we assume the existence of an irreducible subvariety

G of Mg with dim(G) = 3g − 4 and such that the corresponding result is false for
all curves X ∈ G. Let T be the closure of G in Mg . Since Mg has no complete

subvariety of dimension 3g − 4 (see [5] for much more), T intersects the boundary
Mg\Mg. SinceMg has only quotient singularities, we may easily check using a local

smooth finite covering that T intersects at least one of the irreducible components of
Mg \Mg in an algebraic set of codimension 6 1. Mg \Mg has [ 12g] + 1 irreducible
components Yi, 0 6 i 6 [ 12g]: a general member of Y0 is given by an irreducible
curve with a unique node, while a general member of Yi, 1 6 i 6 [ 12g], is the union
of two smooth curves, one of genus g − i and the other one of genus i, linked at
a unique point. First assume that T contains an irreducible hypersurface F of Y0.

Fix a general X ∈ F and let π : Y → X be the normalization. Either F is the closure
of the irreducible curves of arithmetic genus g with two ordinary nodes or its general

member has a unique node. First assume that F is the closure of the irreducible
curves of arithmetic genus g with two ordinary nodes. Since dim(F ) = 3g − 5, Y

is a general curve of genus g − 2 and the 4 points π−1(Sing(X)) are general points

of Y . Fix L ∈ Pic(X) with L spanned, h0(X, L) = 2 and h1(X, L⊗2) > 2. Fix an
effective divisor B > 0 such that h1(X, L⊗2(B)) = 2 (Remark 1). Set R = π∗(L). We
have h1(Y, R⊗2) > h1(X, L⊗2) − 2 with equality if and only if h0(Y, R) = h0(X, L).
Since Y is general, we have h1(X, R⊗2) = 0 by a corollary of the Gieseker-Petri
Theorem. Hence we obtain a contradiction unless h1(X, L⊗2) = 2 and h0(Y, R) =
h0(X, L). This case is excluded in the statement of Theorem 1 but even avoiding
this observation in this case by Remark 1 we obtain that the set of all offending
line bundles on Y has dimension at least two more than the ones on X , obtaining

a contradiction by the inductive assumption for genus g − 2. Now assume that X

has a unique node. Since dim(F ) = 3g− 5, either Y is a general curve of genus g− 1
and one of the two points of π−1(Sing(X)) is a general point of Y or Y is a general
member of an irreducible codimension one subvariety G′ ofMg−1 and the two points

of π−1(Sing(X)) are general points of Y . Fix L ∈ Pic(X) with h0(X, L) = 2 and L

spanned. Fix an effective divisor B > 0 such that h1(X, L⊗2(B)) > 2; again, the case
h1(X, L⊗2(B)) = 2 is excluded in the statement of Theorem 1 but we need to handle
it when at the end of the proof we will consider the case in which L is not locally
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free. Thus h1(X, L⊗2) > 2. Set R = π∗(L). We have h1(Y, R⊗2) > h1(X, L⊗2) − 2
with equality if and only if h0(Y, R) = h0(X, L). Hence if Y has general moduli,
then the corollary of the Gieseker-Petri Theorem just used gives a contradiction.
Now assume that Y has not general moduli. Thus Y must be the general member

of a hypersurface Z of Mg−1, while the two points of π−1(Sing(X)) are general in
Y . We apply Remark 1 and obtain that the set of all offending line bundles on Y

has dimension at least one more than the dimension of the set of all offending line
bundles on X . We conclude by induction on g using in the inductive assumption the

full statement of Theorem 1 involving the algebraic sets E(∗, ∗, ∗, ∗). Now assume
that T contains an irreducible hypersurface F of Yi with 1 6 i 6 [ 12g]. First assume
that a general X ∈ F has a unique singular point, i.e. assume that X is the union of
two smooth curves, X1 of genus g − i and X2 of genus i, linked at one point P . If

i > 2 at least one of the two components of X , say X2, must have general moduli.
Fix L ∈ Pic(X) with L spanned, h0(X, L) > 2 and h1(X, L) > 2. Hence L

∣∣X1 and

L
∣∣X2 are both spanned and at least one of them is not trivial. For any spanned

M ∈ Pic(X) consider the Mayer-Vietoris exact sequence

(2) 0 → M → M
∣∣X1 ⊕M

∣∣X2 → M
∣∣{P} → 0.

Since M
∣∣X1 and M

∣∣X2 are spanned, we obtain h0(X, M) = h0(X1, M
∣∣X1) +

h0(X, M
∣∣X2)−1 and h1(X, M) = h1(X1, M

∣∣X1)+h1(X, M
∣∣X2). TakeM = L⊗2. If

M
∣∣X2 is not trivial, we obtain a contradiction either for degree reasons (case i 6 2)

or by the generality of X2 and the inductive assumption. Hence we may assume

L⊗2
∣∣X2

∼= OX2 . We may avoid this case for the following reason; the curve X must
be a limit of coverings {ut : Xt → � 1} with deg(ut) = deg(L) and Xt smooth; by the

theory of admissible coverings due to Harris and Mumford ([8]) this family has as
limit whenXt goes toX an admissible deg(L) covering of a curveE such thatX is the
stable resuction of E and in the corresponding covering both X1 and X2 are mapped
non-trivially to a copy of � 1. Now assume that X has at least two singular points.

Counting dimensions, we see that either X has two irreducible components, one of
them being smooth and with general moduli, or it has 3 irreducible components, all

of them with general moduli and linked as a tree at general points of the components.
We conclude as in the previous case. Now we drop the assumption of the existence

of a spanned L ∈ Pic(X) of the same degree as the one on a general element of
G and with h1(X, L⊗2) > 2. In the general case in the limit we only have a rank
one torsion free sheaf A with h0(X, A) > 2 and with h1(X, (A⊗2)∗∗) > 2. For the
formal classification of finitely generated torsion free modules on the completion of

a local of a node, see [12, pp. 162–163] (both for the case in which the node is on one
irreducible component of X and the case in which the node is on the intersection of
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two irreducible components of X). Let R be the subsheaf of A spanned by H0(X, A).
Thus R is a spanned rank one torsion free sheaf on X with deg(R) 6 deg(A) and
h0(X, R) = h0(X, A) > 2. First assume X ∈ Yi, i 6= 0, X = X1 ∪ X2 and call
u : X1 → X and v : X2 → X the inclusions. Set R1 := u∗(R)/ Tors(u∗(R)) and
R2 := v∗(R)/ Tors(v∗(R)). The sheaves R1 and R2 are spanned line bundles. We
have 0 6 lenght(Tors(u∗(R))) 6 1, 0 6 lenght(Tors(v∗(R))) 6 1 and deg(R) − 2 6
deg(R1) + deg(R2 6 deg(R). We do the same for the torsion free sheaf R⊗2∗∗; R⊗2

1

(resp. R⊗2
2 ) is the corresponding line bundle on X1 (resp. X2). By Riemann-Roch

we have h1(X1, R
⊗2
1 ) + h1(X2, R

⊗2
2 ) > h1(X, (R⊗2)∗∗)− 1 > 2. Since at least one of

the curves X1 and X2 has general moduli, we obtain a contradiction. In the same

way, just loosing one condition (but with a smaller degree) with respect to the case
in which L is locally free, we handle the case F ⊂ Y0. �

3. Proofs of Theorems 2 and 3

���������
of Theorem 2. Set A(g, c, e) := {X ∈ T (g, c, e) : gon(X, � ) 6 [ 12 (g +

3)] + 3}. By specialization A(g, c, e) is a closed subset of T (g, c, e) and Theorem 2 is
equivalent to the assertion that A(g, c, e) contains a dense open subset of T (g, c, e).
By [2, Th. 3.1], for every integer g > 2 and every topological type (c, e) with c > 0
and e = 0, 1 there is a non-empty open (for the euclidean topology) subset U(g, c, e)
of T (g, c, e) corresponding to smooth real curves with real gonality [ 1

2 (g + 3)]. By
Theorem 1 the set of all curves X ∈ Mg with L ∈ Pic(X), h0(X, L) = 2, L spanned,
deg(L) = [ 12 (g+3)] and with h1(X, L⊗2) > 3 has codimension at least two inMg . We
know that the subset of Mg parametrizing curves with non-trivial automorphisms

has codimension at least two inMg and hence that its real part does not disconnect
any connected component U(g, c, e) of the semialgebraic subset of Mg formed by

real curves. Take a pair (X, L) with X ∈ U(g, c, e), c > 0, deg(L) = [ 1
2 (g + 3)],

h0(X, L⊗2) = 2, L spanned and x := h1(X, L⊗2) > 0. Since X( � ) is infinite, for x

general points P1, . . . , Px of any component of X( � ) we have h1(X, L⊗2(P1 + . . . +
Px)) = 0 (Remark 1). Non-base point free pencils propagate to nearby curves, even
to spanned complete pencils ([4, Prop. A.3]). Hence for each degree d > [ 1

2 (g +
3)] + 2 outside a subset which does not disconnect U(g, c, e) we may find a smooth
pencil of degree d. For every real curve Y with real structure induced by an anti-
holomorphic involution σ and all integers r, d the schemes W r

d (Y ) and Gr
d(Y ) are

real andW r
d (Y )reg( � ) is either empty or a real manifold of dimension %(g, r, d) whose

members propagate to nearby real curves as σ-invariant linear systems; here we use

that if Y ( � ) 6= ∅, then every σ-invariant line bundle is real ([7, Prop. 2.2]). Hence by
the existence theorem of a degree [ 12 (g + 3)] real pencil for an euclidean non-empty
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open subset U1(g, c, e) of U(g, c, e) ([2, Th. 3.1]) we obtain the existence of a dense
open subset U2(g, c, e) of U(g, c, e) such that every X ∈ U2(g, c, e) has a real pencil
of degree [ 12 (g + 3)] + 3; indeed, by Theorem 1 outside a non-disconnecting subset
of U(g, c, e) every point on the closure of U1(g, c, e) in U(g, c, e) has a real pencil of
degree at most [ 12 (g + 3)] + 3 which propagates to nearby curves, i.e. for all nearby
curves X we have W 1

[ 12 (g+3)]+3
(X)reg( � ) 6= ∅. By specialization every X ∈ U(g, c, e)

has a real pencil of degree at most [ 12 (g + 3)] + 3, proving Theorem 2. �
���������

of Theorem 3. First we will check the existence of a non-empty euclidean

open subset U1(g, 0, 1) of U(g, 0, 1) such that every X ∈ U1(g, 0, 1) has a real pencil
of degree the first even integer > [ 12 (g+3)]. We start with a genus g real hyperelliptic
curve Y with Y ( � ) = ∅ and such that the hyperelliptic pencil R ∈ Pic2(Y ) is defined
over � ([7, 6.1 and 6.2]). Call σ : Y → Y the anti-holomorphic involution giving

the real structure of Y . Let y be the first integer such that 4y + 3 > g + 2. Since
σ is not the hyperelliptic involution, for any y general points P1, . . . , Py of Y ( � )
we have h0(Y, R(P1 + . . . + Py + σ(P1) + . . . + σ(Py))) = 2, h0(Y, R⊗2(2P1 + . . . +
2Py + 2σ(P1) + . . . + 2σ(Py))) = 3 and h1(Y, R⊗2(2P1 + . . . + 2Py + 2σ(P1) + . . . +
2σ(Py))) = 0. Hence the real pencil R(P1 + . . .+Py +σ(P1)+ . . .+σ(Py)) propagates
to an open neighborhood of Y ([4, Appendix]). Since for every X ∈ U(g, 0, 1)
near Y we have a smooth pencil near R(P1 + . . . + Py + σ(P1) + . . . + σ(Py))), we
also have a pencil invariant for the anti-holomorphic involution. Now we continue

as in the proof of Theorem 2 because if X ∈ U(g, 0, 1), L is real, σ induces the
real structure of X and h1(X, L⊗2) 6 2z, then for z general points P1, . . . , Pz of

X( � ) we have h1(X, L⊗2(P1 + . . . + Pz + σ(P1) + . . . σ(Pz))) = 0 and the pencil
L(P1 + . . . + Pz + σ(P1) + . . . σ(Pz)) is σ-invariant. We have a new difficulty with

respect to the proof of Theorem 2. Since c > 0, it is not true that, calling σ the anti-
holomorphic involution inducing the real structure, every σ-invariant line bundle is

real, but in our situation we have more: we have a morphism f : X → � 1 which is
invariant with respect to the usual real structure of � 1. Every such morphism f is

induced by a real spanned line bundle because the graph of f is a real subcurve of
X × � 1. �
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