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Abstract. In this paper, the general ordinary quasi-differential expression Mp of n-th
order with complex coefficients and its formal adjoint M+

p on any finite number of in-
tervals Ip = (ap, bp), p = 1, . . . , N , are considered in the setting of the direct sums of
L2wp
(ap, bp)-spaces of functions defined on each of the separate intervals, and a number of

results concerning the location of the point spectra and the regularity fields of general dif-
ferential operators generated by such expressions are obtained. Some of these are extensions
or generalizations of those in a symmetric case in [1], [14], [15], [16], [17] and of a general
case with one interval in [2], [11], [12], whilst others are new.

Keywords: quasi-differential expressions, essential spectra, joint field of regularity, regu-
larly solvable operators, direct sum spaces
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1. Introduction

In [8] and [10], Everitt considered the problem of characterizing all self-adjoint
operators which can be generated by a formally symmetric Sturm-Liouville differ-

ential (quasi-differential) expression Mp, defined on a finite number of intervals Ip,
p = 1, . . . , N , in the setting of direct sum spaces. In [12], Ibrahim considered the

problem of the location of the point spectra and regularity fields of general ordinary
quasi-differential operators in the one interval case with one regular end-point and

the other end-point which may be regular or singular.
Our objective in this paper is to investigate the location of the point spectra

and regularity fields of the operators generated by a general quasi-differential ex-
pression Mp on any finite number of intervals Ip, p = 1, . . . , N , in the setting of

direct sums of L2
wp

(ap, bp)-space of functions defined on each of the separate inter-
vals. These results extend those of formally symmetric expression studied in [1], [2],
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[14], [15], [16] and [17], and also extend those proved in [5], [11] and [12] for general

case with one interval.

The operators involved are no longer symmetric but direct sums as:

T0(M) =
N⊕

p=1

T0(Mp) and T0(M+) =
N⊕

p=1

T0(M+
p ),

where T0(Mp) is the minimal operator generated by Mp on Ip and M+
p denotes the

formal adjoint of Mp; these form an adjoint pair of closed operators in
N⊕

p=1
L2

wp
(Ip).

This fact allows us to use the abstract theory developed in [1] for the operators which

are regularly solvable with respect to T0(Mp) and T0(M+
p ). Such an operator S

satisfies T0(Mp) ⊂ S ⊂ [T0(M+
p )]∗ and for some λ ∈ � , (S − λI) is a Fredholm

operator with zero index; this means that S has the desirable Fredholm property
that the equation (S − λI)u = f has a solution if and only if f is orthogonal to the

solutions of (S∗ − λI)v = 0, and furthermore the solution spaces of (S − λI)u = 0
and (S∗ − λI)v = 0 have the same finite dimension. This notion was originally due
to Visik [18].

We deal throughout with a quasi-differential expression Mp of arbitrary order n

defined by a general Shin-Zettl matrix given in [3], [5] and [9], and the minimal

operator T0(Mp) generated by w−1
p Mp[·] in L2

wp
(Ip), p = 1, . . . , N , where wp is a

positive weight function on the underlying interval Ip. The end-points of Ip may be

regular or singular.

2. Preliminaries

In this section we give some definitions and results which will be needed later;

see [2], [3], [4], [5] and [7].

The domain and range of a linear operator T acting in a Hilbert space H will
be denoted by D(T ) and R(T ), respectively, and N(T ) will denote its null space.
The nullity of T , written null(T ), is the dimension of N(T ) and the deficiency of T ,
written def(T ), is the co-dimension of R(T ) in H ; thus if T is densely defined and

R(T ) is closed, then def(T ) = null(T ∗). The Fredholm domain of T is (in the notation
of [3]) the open subset ∆3(T ) of � consisting of those values λ ∈ � which are such
that (T − λI) is a Fredholm operator, where I is the identity operator in H . Thus,
λ ∈ ∆3(T ) if and only if (T − λI) has closed range and finite nullity and deficiency.
The index of (T − λI) is the number ind(T − λI) = null(T − λI)− def(T − λI), this
being defined for λ ∈ ∆3(T ).
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Two closed densely defined operators A and B acting in H are said to form an

adjoint pair if A ⊂ B∗ and, consequently, B ⊂ A∗; equivalently, (Ax, y) = (x, By)
for all x ∈ D(A) and y ∈ D(B), where (·, ·) denotes the inner-product on H .
The field of regularity Π(A) of A is the set of all λ ∈ � for which there exists a

positive constant K(λ) such that

‖(A− λI)x‖ > K(λ)‖x‖ for all x ∈ D(A),

or, equivalently, on using the Closed Graph Theorem, null(A−λI) = 0 and R(A−λI)
is closed.

The joint field of regularity Π(A, B) of A and B is the set of λ ∈ � which are
such that λ ∈ Π(A), λ ∈ Π(B) and both def(A− λI) and def(B− λI) are finite. An
adjoint pair A and B is said to be compatible if Π(A, B) 6= ∅.
Definition 2.1. A closed operator S in H is said to be regularly solvable

with respect to the compatible adjoint pair A and B if A ⊂ S ⊂ B∗ and

Π(A, B) ∩∆4(S) 6= ∅, where ∆4(S) = {λ : λ ∈ ∆3(S), ind(S − λI) = 0}. The
terminology “regularly solvable” comes from Visik’s paper [18].

Definition 2.2. The resolvent set %(S) of a closed operator S in H consists of

the complex numbers λ for which (S−λI)−1 exists, is defined on H and is bounded.
The complement of %(S) ∈ � is called the spectrum of S and written σ(S). The point
spectrum σp(S), the continuous spectrum σc(S) and the residual spectrum σr(S) are
the following subsets of σ(S) (see [2] and [3]):

σp(S) = {λ ∈ σ(S) : (S − λI) is not injective}, i.e., the set of eigenvalues of S;
σc(S) = {λ ∈ σ(S) : (S − λI) is injective, R(S − λI) ⊂

6=
R(S − λI) = H};

σr(S) = {λ ∈ σ(S) : (S − λI) is injective, R(S − λI) 6= H}.
For a closed operator S we have

σ(S) = σp(S) ∪ σc(S) ∪ σr(S).

An important subset of the spectrum of a closed densely defined S in H is the

so-called essential spectrum. The various essential spectra of S are defined as in [3,
Chapter II] to be the sets:

(2.1) σek(S) = � \∆k(S) (k = 1, 2, 3, 4, 5),

where ∆3(S) and ∆4(S) have been defined earlier.
The sets σek(S) are closed and σek(S) ⊂ σej(S) if k < j. The inclusion being strict

in general. We refer the reader to [1], [2] and [3, Chapter IX] for further information

about the sets σek(S).
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3. Quasi-differential expressions

The quasi-differential expressions are defined in terms of a Shin-Zettl matrix Fp on
an interval Ip. The set Zn(Ip) of Shin-Zettl matrices on Ip consists of n×n-matrices

Fp = {fp
rs}, 1 6 r, s 6 n, p = 1, . . . , N , whose entries are complex-valued functions

on Ip which satisfy the following conditions:

fp
rs ∈ L2

loc(Ip) (1 6 r, s 6 n, n > 2),(3.1)

fp
r,r+1 6= 0 a.e. on Ip (1 6 r 6 n− 1),

fp
rs = 0 a.e. on Ip (2 6 r + 1 < s 6 n), p = 1, . . . , N.

For Fp ∈ Zn(Ip), the quasi-derivatives associated with Fp are defined by:

y[0] := y,(3.2)

y[r] := (fp
r,r+1)

−1

{(
y[r−1]

)′ −
r∑

s=1

fp
rsy

[s−1]

}
(1 6 r 6 n− 1),

y[n] :=
(
y[n−1]

)′ −
n∑

s=1

fp
nsy

[s−1],

where the prime ′ denotes differentiation.

The quasi-differential expression Mp associated with Fp is given by:

(3.3) Mp[y] := iny[n] (n > 2),

this being defined on the set:

V (Mp) := {y : y[r−1] ∈ ACloc(Ip), r = 1, . . . , n; p = 1, . . . , N},

where ACloc(Ip) denotes the set of functions which are absolutely continuous on
every compact subinterval of Ip.

The formal adjoint M+
p of Mp is defined by the matrix F +

p ∈ Zn(Ip) given by:

(3.4) F+
p := −L−1F ∗

p L,

where F ∗
p is the conjugate transpose of Fp and Ln×n is the non-singular n×n-matrix,

(3.5) Ln×n = {(−1)r+s+1δr,n+1−s} (1 6 r, s 6 n),

δ being the Kronecker delta. If F +
p = (fp

rs)+, then it follows that

(3.6) (fp
rs)

+ = (−1)r+s+1fp
n−s+1,n−r+1, for each r and s.
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The quasi-derivatives associated with F +
p are therefore,

y
[0]
+ := y,(3.7)

y
[r]
+ := (fp

n−r,n−r+1)
−1

{
(y[r−1]

+ )′ −
r∑

s=1

fp
n−s+1,n−r+1y

[s−1]
+

}

(1 6 r 6 n− 1),

y
[n]
+ := (y[n−1]

+ )′ −
n∑

s=1

fp
n−s+1,1y

[s−1]
+ ,

and

M+
p [y] := iny

[n]
+ , p = 1, . . . , N, for all y ∈ V (M+

p );(3.8)

V (M+
p ) :=

{
y : y

[r−1]
+ ∈ ACloc(Ip), r = 1, . . . , n; p = 1, . . . , N

}
.

Note that: (F+
p )+ = Fp and so (M+

p )+ = Mp. We refer to [5], [11], [12], [13]

and [19] for a full account of the above and subsequent results on quasi-differential
expressions.

Let the interval Ip have end-points ap, bp (−∞ 6 ap < bp 6 ∞), and let wp : Ip →�
be a non-negative weight function with wp ∈ L1

loc(Ip) and wp(x) > 0 (for almost
all x ∈ Ip). Then Hp = L2

wp
(Ip) denotes the Hilbert function space of equivalence

classes of Lebesgue measurable functions such that
∫

Ip
wp|f |2 < ∞; the inner-product

is defined by:

(f, g)p :=
∫

Ip

wp(x)f(x)g(x) dx (f, g ∈ L2
wp

(Ip), p = 1, . . . , N).

The equation,

(3.9) Mp[u]− λwpu = 0 (λ ∈ � ) on Ip,

is said to be regular at the left end-point ap ∈
�
, if for all X ∈ (ap, bp),

ap ∈
�
; wp, f

p
rs ∈ L1(ap, X) (r, s = 1, . . . , n; p = 1, . . . , N).

Otherwise (3.9) is said to be singular at ap. If (3.9) is regular at both end-points,
then it is said to be regular; in this case we have,

ap, bp ∈
�
; wp, f

p
rs ∈ L1(ap, bp), (r, s = 1, . . . , n; p = 1, . . . , N).
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We shall be concerned with the case when ap is a regular end-point of (3.9), the end-

point bp being allowed to be either regular or singular. Note that, in view of (3.6),
an end-point of Ip is regular for (3.9), if and only if it is regular for the equation,

(3.10) M+
p [v]− λwpv = 0 (λ ∈ � ) on Ip, p = 1, . . . , N.

Note that, at a regular end-point ap, say, u[r−1](ap)
(
v
[r−1]
+ (ap)

)
, r = 1, . . . , n, is

defined for all u ∈ V (Mp) (v ∈ V (M+
p ). Set

D(Mp) := {u : u ∈ V (Mp), u and w−1
p Mp[u] ∈ L2

wp
(ap, bp)},(3.11)

D(M+
p ) := {v : v ∈ V (M+

p ), v and w−1
p M+

p [v] ∈ L2
wp

(ap, bp)},
p = 1, . . . , N.

The subspaces D(Mp) and D(M+
p ) of L2

wp
(ap, bp) are domains of the so-called

maximal operators T (Mp) and T (M+
p ) respectively, defined by:

T (Mp)u := w−1
p Mp[u] (u ∈ D(Mp)) and T (M+

p )v := w−1
p M+

p [v] (v ∈ D(M+
p )).

For the regular problem the minimal operators T0(Mp) and T0(M+
p ), p = 1, . . . , N ,

are the restrictions of w−1
p Mp[u] and w−1

p M+
p [v] to the subspaces:

D0(Mp) :=
{
u : u ∈ D(Mp), u[r−1](ap) = u[r−1](bp) = 0, r = 1, . . . , n

}
,(3.12)

D0(M+
p ) :=

{
v : v ∈ D(M+

p ), v
[r−1]
+ (ap) = v

[r−1]
+ (bp) = 0, r = 1, . . . , n

}
;

p = 1, . . . , N,

respectively. The subspaces D0(Mp) and D0(M+
p ) are dense in L2

wp
(ap, bp) and

T0(Mp) and T0(M+
p ) are closed operators (see [3], [5], [11] and [19, Section 3]).

In the singular problem we first introduce the operators T ′
0(Mp) and T ′

0(M+
p );

T ′
0(Mp) being the restriction of w−1

p Mp[·] to the subspace:

(3.13) D′
0(Mp) := {u : u ∈ D(Mp), supp u ⊂ (ap, bp)}, p = 1, . . . , N,

and with T ′
0(M

+
p ) defined similarly. These operators are densely-defined and closable

in L2
wp

(ap, bp); and we define the minimal operators T0(Mp), T0(M+
p ) to be their

respective closures (see [3], [5] and [19, Section 5]). We denote the domains of
T0(Mp) and T0(M+

p ) by D0(Mp) and D0(M+
p ), respectively. It can be shown that:

u ∈ D0(Mp) =⇒ u[r−1](ap) = 0 (r = 1, . . . , n; p = 1, . . . , N),(3.14)

v ∈ D0(M+
p ) =⇒ v

[r−1]
+ (ap) = 0 (r = 1, . . . , n; p = 1, . . . , N),
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because we are assuming that ap is a regular end-point. Moreover, in both regular

and singular problems, we have

(3.15) T ∗
0 (Mp) = T (M+

p ) and T ∗(Mp) = T0(M+
p ), p = 1, . . . , N ;

see [19, Section 5] in the case when Mp = M+
p and compare with treatment in [3,

Section III.10.3] and [5] in general case.

In the case of two singular end-points, the problem on (ap, bp) is effectively reduced
to the problems with one singular end-point on the intervals (ap, cp] and [cp, bp),
where cp ∈ (ap, bp). We denote by T (Mp; ap) and T (Mp; bp) the maximal operators
with domains D(Mp; ap) and D(Mp; bp), and denote T0(Mp; ap) and T0(Mp; bp) the
closures of the operators T ′

0(Mp; ap) and T ′
0(Mp; bp) defined in (3.13) on the intervals

(ap, cp] and [cp, bp), respectively, see [3], [7], [11], [13] and [14].
Let T̃ ′

0(Mp), p = 1, . . . , N , be the orthogonal sum as:

T̃ ′
0(Mp) = T ′

0(Mp; ap)⊕ T ′
0(Mp; bp)

in

L2
wp

(ap, bp) = L2
wp

(ap, cp)⊕ L2
wp

(cp, bp),

T̃ ′
0(Mp) is densely-defined and closable in L2

wp
(ap, bp) and its closure is given by

T̃0(Mp) = T0(Mp; ap)⊕ T0(Mp; bp), p = 1, . . . , N.

Also,

null[T̃0(Mp)− λI ] = null[T0(Mp; ap)− λI ] + null[T0(Mp; bp)− λI ],

def[T̃0(Mp)− λI ] = def[T0(Mp; ap)− λI ] + def[T0(Mp; bp)− λI ],

and R[T̃0(Mp)−λI ] is closed if and only if R[T0(Mp; ap)−λI ] and R[T0(Mp; bp)−λI ]
are both closed. These results imply in particular that,

Π[T̃0(Mp)] = Π[T (Mp; ap)] ∩ Π[T (Mp; bp)], p = 1, . . . , N.

We refer to [3, Section 3.10.14], [11] and [13] for more details.

Remark 3.1. If Sap
p is a regularly solvable extension of T0(Mp; ap) and S

bp
p is a

regularly solvable extension of T0(Mp; bp), then S = S
ap
p ⊕S

bp
p is a regularly solvable

extension of T̃0(Mp), p = 1, . . . , N . We refer to [3, Section 3.10.4], [11] and [13] for
more details.
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Next, we state the following results; the proof is similar to that in [3, Sec-

tion 3.10.4], [11] and [13].

Theorem 3.2. T̃0(Mp) ⊂ T0(Mp), T (Mp) ⊂ T0(Mp; ap)⊕ T0(Mp; bp) and

dim{D[T0(Mp)]/D[T̃0(Mp)]} = n, p = 1, . . . , N.

If λ ∈ Π[T̃0(Mp)] ∩∆3[T0(Mp)− λI ], then

ind[T0(Mp)− λI ] = n− def[T0(Mp; ap)− λI ]− def[T0(Mp; bp)− λI ],

and in particular, if λ ∈ Π[T0(Mp)],

def[T0(Mp)− λI ] = def[T0(Mp; ap)− λI ] + def[T0(Mp; bp)− λI ]− n.

Remark 3.3. It can be shown that

D[T̃0(Mp)] =
{
u : u ∈ D[T0(Mp)] and u[r−1](cp) = 0, r = 1, . . . , n

}
,(3.16)

D[T̃0(M+
p )] =

{
v : v ∈ D[T0(M+

p )] and v
[r−1]
+ (cp) = 0, r = 1, . . . , n

}
,

p = 1, . . . , N ;

see [3, Section 3.10.4].

Let H be the direct sum,

(3.17) H =
N⊕

p=1

Hp =
N⊕

p=1

L2
wp

(ap, bp).

The elements of H will be denoted by f̃ = {f1, . . . , fN} with f1 ∈ H1, . . ., fN ∈ HN .

Remark 3.4. When Ii ∩ Ij = ∅, i 6= j, i, j = 1, . . . , N , the direct sum space
N⊕

p=1
L2

wp
(ap, bp) can be naturally identified with the space L2

w

( N⋃
p=1

Ip

)
, where wp = w

on Ip, p = 1, . . . , N . This remark is of significance when
N⋃

p=1
Ip may be taken as a

single interval, see [8] and [10].
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We now establish by [3], [8] and [13] some further notations,

D0(M) =
N⊕

p=1

D0(Mp), D(M) =
N⊕

p=1

D(Mp),(3.18)

D0(M+) =
N⊕

p=1

D0(M+
p ), D(M+) =

N⊕

p=1

D(M+
p ),

T0(M)f := {T0(M1)f1, . . . , T0(MN)fN};
f1 ∈ D0(M1), . . . , fN ∈ D0(MN ),

T0(M+)g := {T0(M+
1 )g1, . . . , T0(M+

N )gN};
g1 ∈ D0(M+

1 ), . . . , gN ∈ D0(M+
N ).

Also,

T (M)f := {T (M1)f1, . . . , T (MN)fN}, f1 ∈ D(M1), . . . , fN ∈ D(MN ),

T (M+)g := {T (M+
1 )g1, . . . , T (M+

N )gN}, g1 ∈ D(M+
1 ), . . . , gN ∈ D(M+

N ).

We summarize a few additional properties of T0(M) in the form of a Lemma.

Lemma 3.5. We have,

(a) [T0(M)]∗ =
N⊕

p=1
[T0(Mp)]∗ =

N⊕
p=1

[T (M+
p )],

[T0(M+)]∗ =
N⊕

p=1
[T0(M+

p )]∗ =
N⊕

p=1
[T (Mp)].

In particular,

D[T0(M)]∗ = D[T (M+)] =
N⊕

p=1
D[T (M+

p )],

D[T0(M+)]∗ = D[T (M)] =
N⊕

p=1
D[T (Mp)],

(b) null[T0(M)− λI ] =
N∑

p=1
null[T0(Mp)− λI)],

null[T0(M+)− λI ] =
N∑

p=1
null[T0(M+

p )− λI)].

(c) The deficiency indices of T0(M) are given by:

def[T0(M)− λI ] =
N∑

p=1

def[T0(Mp)− λI)] for all λ ∈ Π[T0(Mp)],

def[T0(M+)− λI ] =
N∑

p=1

def[T0(M+
p )− λI)] for all λ ∈ Π[T0(M+

p )].

17



����� �"!
. Part (a) follows immediately from the definition of T0(M) and from

the general definition of an adjoint operator. The other parts are either direct con-
sequences of part (a) or follow immediately from the definitions. �

Lemma 3.6. For λ ∈ Π[T0(M), T0(M+)],

def[T0(M)− λI ] + def[T0(M+)− λI ]

is constant and

0 6 def[T0(M)− λI ] + def[T0(M+)− λI ] 6 2nN.

In the problem with one singular end-point,

nN 6 def[T0(M)− λI ] + def[T0(M+)− λI ] 6 2nN,

for all λ ∈ Π[T0(M), T0(M+)].

In the regular problem,

def[T0(M)− λI ] + def[T0(M+)− λI ] = 2nN, for all λ ∈ Π[T0(M), T0(M+)].

����� �"!
. For λ ∈ Π[T0(M), T0(M+)], we obtain from Theorem 3.2 and

Lemma 3.5 that

def[T0(M)− λI ] + def[T0(M+)− λI ]

=
{ N∑

p=1

def[T0(Mp; ap)− λI)] +
N∑

p=1

def[T0(Mp; bp)− λI)]− nN

}

+
{ N∑

p=1

def[T0(M+
p ; ap)− λI)] +

N∑

p=1

def[T0(M+
p ; bp)− λI)]− nN

}

=
{ N∑

p=1

null[T (M+
p ; ap)− λI)] +

N∑

p=1

null[T (M+
p ; bp)− λI)]− nN

}

+
{ N∑

p=1

null[T (Mp; ap)− λI)] +
N∑

p=1

null[T (Mp; bp)− λI)] − nN

}

6 2(2nN − nN) = 2nN,

with equality in the regular problem. In the problem with one singular end-point,

the proof is similar to that in [3], and we have

def[T0(M)− λI ] + def[T0(M+)− λI ] > nN.

18



For the problem with two singular end-points, we have

def[T0(M)− λI ] + def[T0(M+)− λI ]

=
{ N∑

p=1

def[T0(Mp; ap)− λI)] +
N∑

p=1

def[T0(M+
p ; ap)− λI)]

}

+
{ N∑

p=1

def[T0(Mp; bp)− λI)] +
N∑

p=1

def[T0(M+
p ; bp)− λI)]

}
− 2nN

> 2nN − 2nN = 0.

The Lemma is therefore proved, we refer to [3], [5], [13, Lemma 2.4] for more

details. �

Lemma 3.7. Let T0(M) =
N⊕

p=1
T0(Mp) be a closed densely-defined operator

on H . Then,

Π[T0(M)] =
N⋂

p=1

Π[T0(Mp)].

����� �"!
. The proof follows from Lemma 3.5 and since R[T0(M)− λI)] is closed

if and only if R[T0(Mp)− λI)], p = 1, . . . , N , are closed. �

Lemma 3.8. If Sp, p = 1, . . . , N , are regularly solvable with respect to T0(Mp)

and T0(M+
p ), then S =

N⊕
p=1

Sp is regularly solvable with respect to T0(M) and

T0(M+).
����� �"!

. The proof follows from Lemmas 3.5 and 3.7. �

Remark 3.9. Let S =
N⊕

j=1

Sj be an arbitrary closed operator on H . Since

λ ∈ %(S) if, and only if, null(S − λI) = def(S − λI) = 0 (see [2, Theorem 1.3.2]), we

have %(S) =
N⋂

j=1

%(Sj). We therefore have

(3.19) σ(S) =
N⋃

j=1

σ(Sj), σp(S) =
N⋃

j=1

σp(Sj) and σr(S) =
N⋃

j=1

σr(Sj).

Also,

(3.20) σek(S) =
N⋃

j=1

σek(Sj), k = 2, 3.

We refer to [3, Chapter 9] for more details.
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Theorem 3.10. Suppose f ∈ L1
loc(Ip) and suppose that the conditions (3.1)

are satisfied. Then given any complex numbers cj ∈ � , j = 0, 1, . . . , n − 1 and
x0 ∈ (ap, bp) there exists a unique solution of Mp[ϕp] = wf in (ap, bp) which satisfies

ϕ[j]
p (x0) = cj (j = 0, 1, . . . , n− 1; p = 1, . . . , N).

����� �"!
. See [1], [3] and [14, Part II, Theorem 16.2.2]. �

Theorem 3.11 (cf. [3] and [14, Theorem II.2.5]). Let Mp be a regular quasi-

differential expression of order n on the closed interval [ap, bp]. For f ∈ L2
w(ap, bp),

the equation Mp[ϕp] = wf has a solution ϕp ∈ V (Mp) satisfying

ϕ[j]
p (ap) = ϕ[j]

p (bp) = 0 (j = 0, 1, . . . , n− 1, p = 1, . . . , N),

if, and only if, f is orthogonal in L2
w(ap, bp) to the solution space of M+

p [ϕp] = 0,
i.e.,

(3.21) R[T0(Mp)− λI ] = N [T (M+
p )− λI ]⊥, p = 1, . . . , N.

Corollary 3.12 (cf. [14, Corollary II.2.6]). As a result from Theorem 3.11, we
have that

(3.22) R[T0(Mp)− λI ]⊥ = N [T (M+
p )− λI ], p = 1, . . . , N.

Lemma 3.13 (cf. [3, Lemma IX.9.1]). If Ip = [ap, bp], with −∞ < ap < bp < ∞,
p = 1, . . . , N , then for any λ ∈ � , the operator [T0(Mp) − λI ], p = 1, . . . , N , has

closed range, zero nullity and deficiency n. Hence,

σek [T0(Mp)] =

{
∅ (k = 1, 2, 3),

� (k = 4, 5), p = 1, . . . , N.
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4. The spectra of operators in direct sum spaces

In this section we shall consider our interval to be I = [a, b). We denote by T (M)
and T0(M) the maximal and minimal operators defined on the interval I . Also, we
deal with the various components of the spectra of T0(M) and T0(M+) as the direct
sum of differential operators T0(Mp) and T0(M+

p ), p = 1, . . . , N .

Lemma 4.1. Let T0(M) =
N⊕

j=1

T0(Mj) and T0(M+) =
N⊕

j=1

T0(M+
j ) be a regular

differential operators, then the point spectra σp[T0(M)] and σp[T0(M+)] of T0(M)
and T0(M+) are empty.
����� �"!

. Let λ ∈ σp[T0(Mj)]. Then there exists a non-zero element ϕj ∈ D0(Mj),
j = 1, . . . , N , such that

[T0(Mj)− λI ]ϕj = 0, j = 1, . . . , N.

In particular, this gives that

Mj [ϕj ] = λwϕj ,

ϕ
[r]
j (aj) = ϕ

[r]
j (bj) = 0 (r = 0, 1, . . . , n− 1; j = 1, . . . , N).

From Theorem 3.10, it follows that ϕj = 0 and hence σp[T0(Mj)] = ∅, j = 1, . . . , N .
Similarly,

σp[T0(M+
j )] = ∅, i = 1, . . . , N.

Therefore, by (3.19), we have,

σp[T0(M)] =
N⋃

j=1

σp[T0(Mj)] = ∅ and σp[T0(M+)] =
N⋃

j=1

σp[T0(M+
j )] = ∅,

see Naimark [14, part II, Section 19]. �

Theorem 4.2. Let T0(M) =
N⊕

j=1

T0(Mj) and T0(M+) =
N⊕

j=1

T0(M+
j ), then

(i) %[T0(M)] = %[T0(M+)] = ∅,
(ii) σc[T0(M)] = σc[T0(M+)] = ∅,
(iii) σ[T0(M)] = σ[T0(M+)] = � , and

σr[T0(M)] = σr[T0(M+)] = � .
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����� �"!
. (i) Let λ ∈ � , since R[T0(Mj) − λI ], j = 1, . . . , N are proper closed

subspaces of L2
w(aj , bj), then the resolvent sets %[T0(Mj)] are empty and hence

%[T0(M)] =
N⋂

j=1

%[T0(Mj)] = ∅.

Similarly

%[T0(M+)] =
N⋂

j=1

%[T0(M+
j )] = ∅.

(ii) Since R[T0(Mj) − λI ], j = 1, . . . , N , are closed for any λ ∈ � , then the
continuous spectra of T0(Mj) are the empty sets, i.e., σc[T0(Mj)] = ∅, j = 1, . . . , N .

Hence,

σc[T0(M)] =
N⋃

j=1

σc[T0(M)] = ∅.

Similarly,

σc[T0(M+)] =
N⋃

j=1

σc[T0(M+)] = ∅.

(iii) From (i), (ii) and Lemma 3.5, it follows that,

σ[T0(M)] =
N⋃

j=1

σ[T0(Mj)] = � and σr[T0(M)] =
N⋃

j=1

σr[T0(Mj)] = � .

Similarly,

σ[T0(M+)] =
N⋃

j=1

σ[T0(M+
j )] = �

and

σr[T0(M+)] =
N⋃

j=1

σr[T0(M+
j )] = � .

�

Corollary 4.3. Let T0(M) =
N⊕

j=1

T0(Mj) and T0(M+) =
N⊕

j=1

T0(M+
j ), then

(i) σc[T (M)] = σc[T (M+)] = ∅ and σr[T (M)] = σr[T (M+)] = ∅,
(ii) σ[T (M)] = σ[T (M+)] = � and σp[T (M)] = σp[T (M+)] = � ,
(iii) %[T (M)] = %[T (M+)] = ∅.
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����� �"!
. From Theorem 3.11 and since T (Mj) = [T0(M+

j )]∗, j = 1, . . . , N , it fol-

lows that R[T0(Mj) − λI ], j = 1, . . . , N , are closed and, hence R[T (M)− λI ] =
N⊕

p=1
R[T (Mj) − λI ] is closed for every λ ∈ � ; see [3, Theorem I.3.7]. Also by

Lemma 3.5, we have

null[T (M)− λI ] = def[T0(M+)− λI ] =
N∑

j=1

def[T0(M+
j )− λI ] = nN,

and

def[T (M)− λI ] = null[T0(M+)− λI ] =
N∑

j=1

null[T0(M+
j )− λI ] = 0.

(i) Since R[T (Mj) − λI ] are closed and def[T (Mj) − λI ] = 0, j = 1, . . . , N , then
by Lemma 3.5 R[T (M)− λI ] = H . This yields that σc[T (M)] = σr[T (M)] = ∅.
Similarly,

σr [T (M+)] = σr[T (M+)] = ∅.

(ii) Since null[T (M)− λI ] =
N∑

j=1

null[T (Mj)− λI ] = nN and

null[T (M+)− λI ] =
N∑

j=1

null[T (M+
j )− λI ] = nN for everyλ ∈ � ,

then we have that

σp[T (M)] =
N⋃

j=1

σp[T (Mj)] = � and σp[T (M+)] =
N⋃

j=1

σp[T (M+
j )] = � .

It also follows that

σ[T (M)] =
N⋃

j=1

σ[T (Mj)] = � , σ[T (M+)] =
N⋃

j=1

σ[T (M+
j )] = � ,

and, hence

%[T (M)] = %[T (M+)] = ∅.

�
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5. The field of regularity of operators in direct sum spaces

We now obtain some results which in fact are a natural consequence of those in

Section 4.

Theorem 5.1. Let T0(M) =
N⊕

p=1
T0(Mp) and T0(M+) =

N⊕
p=1

T0(M+
p ), then

(i) Π[T0(M)] = Π[T0(M+)]· = � , and for every λ ∈ � ,

def[T0(M)− λI ] = def[T0(M+)− λI ] = nN,

(ii) Π[T (M)] = Π[T (M+)]· = ∅, and for every λ ∈ � ,

null[T (M)− λI ] = null[T (M+)− λI ] = nN.

����� �"!
. (i) We have from Theorem 3.11 and Lemma 4.1 that, for every λ ∈ � ,

[T0(Mp) − λI ]−1 exists and its domain R[T0(Mp) − λI ] is a closed subspace of
L2

w(ap, bp), p = 1, . . . , N . Hence, since T0(Mp), p = 1, . . . , N , are closed opera-
tors, then [T0(Mp)− λI ]−1 are also closed and so, it follows from the Closed Graph

Theorem that [T0(Mp)− λI ]−1, p = 1, . . . , N are bounded, and hence

Π[T0(M)] =
N⋂

p=1

Π[T0(Mp)]· = � .

From Theorem 3.11, R[T0(Mp)−λI ]⊥, p = 1, . . . , N , are n-dimensional subspaces

of L2
w(ap, bp). Thus, by Lemma 3.5,

def[T0(M)− λI ] =
N∑

p=1

def[T0(Mp)− λI ]

=
N∑

p=1

dim R[T0(Mp)− λI ]⊥ = nN, for every λ ∈ �

Similarly,

def[T0(M+)− λI ] =
N∑

p=1

def[T0(M+
p )− λI ]

=
N∑

p=1

dim R[T0(M+
p )− λI ]⊥ = nN, for everyλ ∈ � .
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(ii) As Π[T0(M+)] = � , we have, for every λ ∈ � , that T0(M+) − λI has closed

range, and so, since T (M) = [T0(M+)]∗, then T (M) − λI =
N∑

p=1
[T (Mp) − λI ] has

closed range; see [3, Theorem I.3.7]. Furthermore, from (i),

null[T (M)− λI ] = def[T0(M+)− λI ] =
N∑

p=1

def[T0(M+
p )− λI ] = nN.

Hence, λ /∈ Π[T (M)], and so part (ii) of the theorem follows. �

Corollary 5.2. The operators T0(M), T0(M+) form a compatible adjoint pair
with Π[T0(M), T0(M+)] = � .
����� �"!

. From part (i) of Theorem 5.1 and Lemma 3.7, it follows that

Π[T0(M), T0(M+)] =
N⋂

p=1

Π[T0(Mp), T0(M+
p )] = � .

Using (3.15), the corollary follows. �

Theorem 5.3. If for some λ0 ∈ � , there are nN linearly independent solutions

of the equations

M [ϕ] = λ0wϕ and M+[ϕ] = λ0wϕ,

in L2
w(a, b), then all solutions of the equations

M [ϕ] = λwϕ and M+[ϕ] = λwϕ,

are in L2
w(a, b) for all λ ∈ � .

����� �"!
. The proof follows from Lemma 3.5 and Lemma 3.6. We refer to [6] and

[13, Lemmas 3.3, 3.4] for more details. �

From Corollary 5.2 and Theorem 5.3 we have the following Lemma.

Lemma 5.4. If, for some λ0 ∈ � , there are nN linearly independent solutions

of the equations

M [ϕ] = λ0wϕ and M+[ϕ] = λ0wϕ,

in L2
w(a, b), then λ0 ∈ Π[T0(M), T0(M+)]; see also [15, Theorem 2.1] and [17,

Lemma 5.1].
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Theorem 5.5. Let T0(M) =
N⊕

p=1
T0(Mp) and T0(M+) =

N⊕
p=1

T0(M+
p ) be the

minimal operators, defined on the interval [a, b). If Π[T0(M), T0(M+)] is empty,
then

def[T0(M)− λI ] + def[T0(M+)− λI ] 6= 2nN.

In particular, if Π[T0(M), T0(M+)] is empty and n = 1, then

def[T0(M)− λI ] + def[T0(M+)− λI ] = N.

����� �"!
. If for some λ0 ∈ � , def[T0(M)− λI ] =

N∑
p=1

def[T0(Mp)− λI ] = nN and

def[T0(M+)− λI ] =
N∑

p=1

def[T0(M+
p )− λI ] = nN,

then,

M [u] = λ0wu and M+[v] = λ0wv

each have nN solutions in L2
w(a, b) (see [6]). Hence by Theorem 5.3, we have that

all solutions of

M [u] = λwu and M+[v] = λwv

are in L2
w(a, b) for all λ ∈ � , and hence, by Corollary 5.2, we have that λ ∈

Π[T0(M), T0(M+)]. Thus, if Π[T0(M), T0(M+)] is empty, we cannot have

def[T0(M)− λI ] + def[T0(M+)− λI ] = 2nN.

In particular, if n = 1, then by Lemma 3.6 we have that

N 6 def[T0(M)− λI ] + def[T0(M+)− λI ] 6 2N,

so if Π[T0(M), T0(M+)] is empty, we have

def[T0(M)− λI ] + def[T0(M+)− λI ] = N.

�
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For a regularly solvable operator, we have the following general theorem.

Theorem 5.6. Suppose for a regularly solvable extension S of the minimal

operator T0(M) =
N⊕

p=1
T0(Mp) that

def[T0(M)− λI ] + def[T0(M+)− λI ] = K, nN 6 K 6 2nN,

for all λ ∈ Π[T0(M), T0(M+)].

Then,

null[T (M)− λI ] + null[T (M+)− λI ] 6 K, for all λ ∈ � .

If Π[T0(M), T0(M+)] is empty, then

null[T (M)− λI ] + null[T (M+)− λI ] < K.

����� �"!
. Let def[T0(Mp) − λI ] = rp, def[T0(M+

p ) − λI ] = sp, p = 1, . . . , N , be
such that

def[T0(Mp)− λI ] + def[T0(M+
p )− λI ] = rp + sp, n 6 rp + sp 6 2n,

for all λ ∈ Π[T0(Mp), T0(M+
p )], p = 1, . . . , N . Then, for any closed extension Sp of

T0(Mp) which is regularly solvable with respect to T0(Mp) and T0(M+
p ), we have

from [3, Theorem III.3.5] that

dim{D(Sp)/D0(Mp)} = def[T0(Mp)− λI ] = rp, p = 1, . . . , N,

dim{D(S∗
p)/D0(M+

p )} = def[T0(M+
p )− λI ] = sp, p = 1, . . . , N.

Hence Sp and S∗
p are finite dimensional extensions of T0(Mp) and T0(M+

p ), respec-
tively. Thus, from [3, Corollary IX.4.2], we get

(5.1) σek [T0(Mp)] = σek(Sp) (k = 1, 2, 3; p = 1, . . . , N).

Since T0(Mp)−λI has closed range, zero nullity and deficiency rp (see Lemma 3.13),

then for any λ ∈ � , we have that

Π[T0(Mp)] ∩ σek [T0(Mp)] = ∅ (k = 1, 2, 3; p = 1, . . . , N).

Therefore,

∆ek [T0(Mp)] = ∆ek(Sp) = � (k = 1, 2, 3; p = 1, . . . , N).
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Similarly,

∆ek[T0(M+
p )] = ∆ek(S∗

p) = � (k = 1, 2, 3; p = 1, . . . , N).

Furthermore, the equations

Mp[ϕp] = λ0wϕp and M+
p [ϕp] = λ0wϕp, p = 1, . . . , N,

have at most rp and sp linearly independent solutions for λ0 ∈ � , respectively. Hence,

null[T (M)− λI ] + null[T (M+)− λI ]

=
N∑

p=1

null[T (Mp)− λI ] +
N∑

p=1

null[T (M+
p )− λI ]

=
N∑

p=1

(rp + sp) 6 K, nN 6 K 6 2nN for all λ ∈ � .

But for any λ0 /∈ Π[T0(Mp), T0(M+
p )], either λ0 /∈ Π[T0(Mp)] or λ0 /∈ Π[T0(M+

p )].
If λ0 /∈ Π[T0(Mp)], then either λ0 is an eigenvalue of T0(Mp) or R[T0(Mp) − λI ],
p = 1, . . . , N , are not closed. Similarly for λ0 /∈ Π[T0(M+

p )]. But T0(Mp) and
T0(M+

p ) have no eigenvalues; thus if λ0 /∈ Π[T0(Mp), T0(M+
p )], then R[T0(Mp)− λI ]

and R[T0(M+
p )− λI ], p = 1, . . . , N , are both not closed, and so we can not have

null[T (M)− λI ] + null[T (M+)− λI ]

=
N∑

p=1

null[T (Mp)− λI ] +
N∑

p=1

null[T (M+
p )− λI ] = K.

Hence,

null[T (M)− λI ] + null[T (M+)− λI ] < K, nN 6 K 6 2nN,

for all λ /∈ Π[T0(M), T0(M+)] =
N⋂

p=1
Π[T0(Mp), T0(M+

p )]. �

Remark 5.7. It remains an open question as to how many of the solutions of the
equations:

M [u] = λwu and M+[v] = λwv,

may be in L2
w(a, b) for any λ ∈ � , when Π[T0(M), T0(M+)] is empty, except that we

know from the above that not all of them are in L2
w(a, b). We refer to [2], [6], [15],

[17] for more details.
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