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Abstract. Let f be a function defined on the set M2×2 of all 2 by 2 matrices that is
invariant with respect to left and right multiplications of its argument by proper orthogonal
matrices. The function f can be represented as a function f̃ of the signed singular values
of its matrix argument. The paper expresses the ordinary convexity, polyconvexity, and
rank 1 convexity of f in terms of its representation f̃ .
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1. Introduction

In the two-dimensional nonlinear elasticity and in the theory of phase transitions
in solids, one deals with the energy functional

I(u) =
∫

Ω

f(Du) dx

where Ω ⊂ � 2 , u : Ω → � 2 is a deformation with the gradient Du and f : M2×2 →
� ∪{∞} is the stored energy defined on the setM2×2 of all real 2× 2 matrices. The
elastic equilibrium, if it exists, corresponds to the minimum of I on an appropriate
function space. The existence/nonexistence of the minimizer, the formation/absence

of microstructure and other important properties of I are related to the semicon-
vexity properties of f , i.e., the rank 1 convexity, quasiconvexity, polyconvexity, and
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convexity, [11], [6], [7]. For an isotropic body the stored energy is rotationally invari-

ant. A function f : M2×2 → � ∪ {∞} is said to be rotationally invariant (briefly,
invariant) if f(A) = f(QAR) for allA ∈ M2×2 and allQ, R proper orthogonal (i.e.,
with detQ = detR = 1); if the same holds for all Q, R orthogonal then f is called

fully rotationally invariant (briefly, fully invariant). A combination of the polar and
spectral decomposition theorems implies that an invariant function is expressible as

(1) f(A) = f̃(τ), A ∈ M2×2,

where f̃ and τ are as follows. The function f̃ : � 2 → � ∪ {∞}, called the represen-
tation of f , is symmetric and even:

(2) f̃(α1, α2) = f̃(α2, α1), f̃(α) = f̃(−α), α ∈ � 2 .

The pair τ = (τ1, τ2) is called the (pair of) signed singular values of A, de-
fined, [12], [15], as the unique pair such that τ1 > |τ2| are ordered eigenvalues
of

√
AAT and sgn τ2 = sgndetA. We write τ(A) = (τ1(A), τ2(A)). Note that

τ1(A)± τ2(A) =
1√
2
|A± cof A|

and hence

τ1,2(A) =
1

2
√

2

(
|A + cof A| ± |A− cof A|

)
.

Indeed, in view of the invariance of the above expressions, it suffices to verify them
on diagonal matrices, which is trivial. Furthermore, since the norm is convex and

the cofactor is linear in dimension 2, one sees that the functions τ1, τ1 + τ2, τ1 − τ2

are convex onM2×2.

It is immediate that if f is invariant with the representation f̃ then

f̃(α) = f(diag(α)), α ∈ � 2 ,

and that f is fully invariant if and only if f̃ is fully even, i.e., in addition to (2) also

f̃(α1, α2) = f̃(−α1, α2), α ∈ � 2 .

Recall that f : M2×2 → � ∪ {∞} is said to be convex if

(3) f((1− t)A + tB) 6 (1− t)f(A) + tf(B)
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for every A,B ∈ M2×2 and every t ∈ [0, 1], while f is said to be rank 1 convex if
(3) holds only provided additionally rank(A−B) 6 1. The function f is said to be
polyconvex if there exists a convex function g : M2×2 × � → � ∪ {∞} such that

f(A) = g(A, detA), A ∈ M2×2.

The paper continues the line [13–18] which seeks the understanding of the semicon-
vexity properties in terms of the shortened language of f̃ . Specifically, reference [17]

shows that invariant convex and rank 1 convex functions have certain monotonicity
properties; see (5) ⇒ (6), (27) ⇒ (28) below for the two-dimensional case. (The
fully invariant case has been treated in [10, Section 7.3].) The monotonicities are

closely related to the ordered forces inequalities and to the Baker-Ericksen inequali-
ties, [13]. On the other hand, recent literature on invariant functions contains global

(as opposed to differential) conditions for convexity, [13], [12], [15], rank 1 convex-
ity, [3], [15], [14], [16], and polyconvexity, [12], [15]. The paper integrates conditions

of this type with the monotonicity. The results reveal the importance of the convex
functions τ1 ± τ2 and the representation of invariant functions in terms of them.

Theorems 2.1, 3.1, 4.1 and 5.3 (below) take natural forms in as much as they pro-
vide necessary and sufficient conditions, do not involve differentiability hypotheses,

and apply to functions ranging in � ∪ {∞}. They are suitable for the calculation of
semiconvex hulls of functions and sets. In addition, Proposition 4.2 and Theorem 5.3

provide an interesting ‘estimation’ of the difference between the rank1 convexity and
polyconvexity.

2. Symmetric even convex functions

In view of the representation theorem (1) it is convenient to begin with the ex-
amination of the convexity of symmetric even functions. The results will be applied

to invariant convex functions on M2×2 in Section 3 and to invariant polyconvex
functions in Section 4.

Let � 2
+ := [0,∞)2, G2 := {x ∈ � 2 : x1 > |x2|}, and note that τ(A) ∈ G2 for each

A ∈ M2×2. A function h : D → � ∪{∞}, where D ⊂ � 2 , is said to be non-decreasing

if h(x) 6 h(y) for every x, y ∈ D such that xi 6 yi, i = 1, 2.

Theorem 2.1. Let g : � 2 → � ∪{∞} be a symmetric even function. The following
conditions are equivalent:

(i) g is convex;

(ii) if α, β, γ ∈ G2 and t ∈ [0, 1] satisfy

γ1 + εγ2 6 (1− t)(α1 + εα2) + t(β1 + εβ2) for each ε ∈ {−1, 1}
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then

g(γ) 6 (1− t)g(α) + tg(β);

(iii) there exists a convex nondecreasing function h : � 2
+ → � ∪ {∞} such that

(4) g(α) = h(α1 + α2, α1 − α2)

for every α ∈ G2.

��������
. (i) ⇒ (ii): Let g be convex on � 2 . If α, β ∈ G2 satisfy

α1 + εα2 6 β1 + εβ2 for each ε ∈ {−1, 1}(5)

then

g(α) 6 g(β).(6)

This is just a reformulation of [8, Lemma 1.2]. Alternatively, this is proved by spe-
cializing the proof of [17, Lemma 4.2] to dimension 2. Combining the monotonicity
(5) ⇒ (6) with the convexity, we obtain (ii).

(ii) ⇒ (iii): Since the mapping α 7→ (α1 + α2, α1 − α2) maps G2 bijectively onto

� 2
+ , the implication is immediate.

(iii) ⇒ (i): Since we have (4) for each α ∈ G2 and g is symmetric even, one

deduces that

g(α) = h(|α1 + α2|, |α1 − α2|)

for each α ∈ � 2 . Thus g is a composition of a convex nondecreasing function with

two convex functions. �

Recall that fully invariant functions are represented by symmetric fully even func-

tions. For these, Theorem 2.1 remains valid, but the following is also true.

Theorem 2.2. Let g : � 2 → � ∪ {∞} be a symmetric fully even function. The
following conditions are equivalent:

(i) g is convex;

(ii) if α, β, γ ∈ G2 ∩ � 2
+ and t ∈ [0, 1] satisfy

γ1 6 (1− t)α1 + tβ1, γ1 + γ2 6 (1− t)(α1 + α2) + t(β1 + β2)

then

g(γ) 6 (1− t)g(α) + tg(β);
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(iii) there exists a convex nondecreasing function h : P2 → � ∪ {∞}, defined on
(7) P2 := {x ∈ � 2 : x1 > x2 > 1

2x1} ⊂ G2 ∩ � 2
+ ,

such that

(8) g(α) = h(α1 + α2, α1)

for each α ∈ G2 ∩ � 2
+ .

��������
. (i) ⇒ (ii): Let g be convex on � 2 . Prove first that if α, β ∈ G2 ∩ � 2

+

satisfy

(9) α1 6 β1, α1 + α2 6 β1 + β2,

then

(10) g(α) 6 g(β).

If in addition to (9) also α1 − α2 6 β1 − β2, then (10) follows from Theorem 2.1.

Suppose now that α1 − α2 > β1 − β2. Let γ = (γ1, γ2) be determined from

γ1 = β1, α1 − α2 = γ1 − γ2,

i.e., γ = (β1, γ2), γ2 = β1 − α1 + α2. Then

(11) α1 + εα2 6 γ1 + εγ2 for each ε ∈ {−1, 1}; moreover γ2 6 β2.

From (11)1 and Theorem 2.1, g(α) 6 g(γ). Furthermore, g(β1, ·) is convex and
even; hence nondecreasing on [0,∞) and thus g(γ) 6 g(β) by (11)2. To summarize,
g(α) 6 g(γ) 6 g(β) which completes the proof of the monotonicity (9) ⇒ (10). A
combination with the convexity of g provides (ii).

(ii) ⇒ (iii): The mapping α 7→ (α1 + α2, α1) maps G2 ∩ � 2
+ onto P2; the rest is

immediate.

(iii) ⇒ (i): Prove first that (iii) implies that

(12) g(β) = h
(
|β1|+ |β2|, max{|β1|, |β2|}

)

for every β ∈ � 2 . Indeed, the argument of h is in P2 for each β ∈ � 2 . Next, the
function defined by the right-hand side of (12) is symmetric and fully even. Moreover,

for β ∈ G2 ∩ � 2
+ the argument on the right-hand side of (12) reduces to (β1 +β2, β1)

and thus the equality in (12) holds by (8) in this case. That (12) holds generally is

then deduced by noting that both sides of this equality are symmetric and fully even
functions. Finally, the functions β 7→ |β1|+ |β2|, max{|β1|, |β2|} are convex and h is
nondecreasing and convex. Thus g is convex. �
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3. Invariant convex functions

Recall the mapping A 7→ τ(A) = (τ1(A), τ2(A)) which associates the pair of
signed singular values with a matrixA ∈ M2×2 (see the introduction). The functions

τ1 ± τ2, τ1 + |τ2|, τ1

are convex on M2×2. Indeed, the convexity of τ1 ± τ2, τ1 has been proved in Intro-
duction and the convexity of τ1 + |τ2| follows from τ1 + |τ2| = max{τ1 + τ2, τ1 − τ2}.
Alternatively, this follows from the SO(n)-invariant version of the von Neumann’s
trace inequality, [13, Proposition 18.3.2(2)]; see also [12] and [15].

Theorem 3.1. Let f : M2×2 → � ∪ {∞} be invariant and let f̃ be its represen-

tation. The following conditions are equivalent:

(i) f is convex;
(ii) f̃ is convex;

(iii) if α, β, γ ∈ G2 and t ∈ [0, 1] satisfy

γ1 + εγ2 6 (1− t)(α1 + εα2) + t(β1 + εβ2) for each ε ∈ {−1, 1}

then

f̃(γ) 6 (1− t)f̃(α) + tf̃(β);

(iv) there exists a convex nondecreasing function h : � 2
+ → � ∪ {∞} such that

f̃(α) = h(α1 + α2, α1 − α2)

for every α ∈ G2.

In particular, the representation g := f̃ of a convex invariant function has mono-

tonicity: if α, β ∈ G2 satisfy (5) then (6) holds. The equivalence (i) ⇔ (ii) is due to
Dacorogna & Koshigoe [8, Theorem 1.1].

��������
. (i) ⇒ (ii) is trivial and (ii) ⇒ (iii) follows from Theorem 2.1. (iii) ⇒ (iv)

is immediate.

(iv) ⇒ (i): Condition (iv) implies that

f(A) = h(τ1(A) + τ2(A), τ1(A) − τ2(A))

for every A ∈ M2×2 and it suffices to recall that τ1 ± τ2 are convex. �

For fully invariant functions we have additionally the following result.
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Theorem 3.2. Let f : M2×2 → � ∪ {∞} be fully invariant and let f̃ be its

representation. The following conditions are equivalent:

(i) f is convex;

(ii) f̃ is convex;

iii) if α, β, γ ∈ G2 ∩ � 2
+ and t ∈ [0, 1] satisfy

γ1 6 (1− t)α1 + tβ1, γ1 + γ2 6 (1− t)(α1 + α2) + t(β1 + β2)

then

f̃(γ) 6 (1− t)f̃(α) + tf̃(β);

(iv) there exists a convex nondecreasing function h : P2 → � ∪ {∞}, where P2 is

defined in (7), such that

g(α) = h(α1 + α2, α1)

for each α ∈ G2 ∩ � 2
+ .

In particular, the representation g := f̃ of a convex invariant function has mono-

tonicity: if α, β ∈ G2 ∩ � 2
+ satisfy (9) then (10) holds.��������

. (i) ⇒ (ii) is trivial and (ii) ⇒ (iii) follows from Theorem 2.2. (iii) ⇒ (iv)
is immediate.

(iv) ⇒ (i): Condition (iv) implies that

f(A) = h(τ1(A) + |τ2(A)|, τ1(A))

for every A ∈ M2×2 and it suffices to recall that τ1, τ1 + |τ2| are convex. �

4. Invariant polyconvex functions

The treatment of polyconvex invariant functions is based on the monotonicity of
symmetric even convex functions.

Theorem 4.1. Let f : M2×2 → � ∪ {∞} be an invariant function with the
representation f̃ . The following conditions are equivalent:

(i) f is polyconvex;

(ii) there exists a convex h : � 3 → � ∪ {∞}, symmetric and even in the first two
variables, such that

f̃(α) = h(α1, α2, α1α2)

for every α ∈ G2;

565



(iii) there exists a convex function k : � 2
+ × � → � ∪{∞}, nondecreasing in the first

two variables, such that

f̃(α) = k(α1 + α2, α1 − α2, α1α2)

for every α ∈ G2;
(iv) if β, αi ∈ G2, ti > 0, i = 1, . . . , p, satisfy

p∑

i=1

ti = 1,(13)

β1β2 =
p∑

i=1

tiαi
1α

i
2, β1 + εβ2 6

p∑

i=1

tiαi
1 + εαi

2 for each ε ∈ {−1, 1}(14)

then

(15) f̃(β) 6
p∑

i=1

tif̃(αi).

��������
. The equivalence (i) ⇔ (ii) is essentially contained in [8], [12], [15] and

the proof is therefore omitted. (ii) ⇒ (iii) follows from (ii) ⇒ (iii) in Theorem 2.1.
(iii) ⇒ (iv) is immediate.

(iv) ⇒ (i): Let (iv) hold, and let B,Ai ∈ M2×2, ti > 0, i = 1, . . . , p, be such that

(13) holds and

(16) detB =
p∑

i=1

ti detAi, B =
p∑

i=1

tiAi.

Denote by β, αi the signed singular values of B, Ai, respectively. Then (16) reads

as (14) and the convexity of τ1 ± τ2 and (16)2 implies (14)2. Hence (15) holds which
reads

(17) f(B) 6
p∑

i=1

tif(Ai).

The implication (16) ⇒ (17) gives the polyconvexity [7, Subsection 4.1.1.2]. �

This section is concluded with the following necessary condition, stated here for
future reference (Section 5).

566



Proposition 4.2. If f : M2×2 → � ∪ {∞} is polyconvex then

f̃(γ) 6 (1− t)f̃(α) + tf̃(β)

for every α, β, γ ∈ G2 and t ∈ [0, 1] satisfying

(18)

{
γ1γ2 = (1− t)α1α2 + tβ1β2,

γ1 + εγ2 6 (1− t)(α1 + εα2) + t(β1 + εβ2),

where

(19) ε =

{
+1 if (α1 − β1)(α2 − β2) > 0,

−1 if (α1 − β1)(α2 − β2) < 0.

��������
. If

(20) γ := (1− t)α + tβ

then from (18),

(21) γ1 + εγ2 6 γ1 + εγ2.

The function ϕ(t) := εγ1γ2, 0 6 t 6 1, where γ is given by (20), is quadratic and its

second derivative is 2ε(α1 − β1)(α2 − β2) > 0. Therefore its convexity implies

(22) εγ1γ2 6 (1− t)ϕ(0) + tϕ(1) = ε
(
(1− t)α1α2 + tβ1β2

)
= εγ1γ2.

Combining the square of (21) with (22) and taking the square root, we obtain

γ1 − εγ2 6 γ1 − εγ2.

Hence

γ1 − εγ2 6 (1− t)(α1 − εα2) + t(β1 − εβ2)

and the conclusion follows from (iv) of Theorem 4.1. �

567



5. Invariant rank 1 convex functions

Recall that the rank 1 convexity is the convexity restricted to line segments with
endpoints A, B satisfying rank(A−B) 6 1. A matrix B ∈ M2×2 is said to be a
rank 1 perturbation of A ∈ M2×2 if rank(A−B) 6 1. The following remark shows

that the signed singular values of a rank1 perturbation are restricted by definite
inequalities which will occur in the subsequent results.

Remark 5.1. ([4], [5], [15]) Let A ∈ M2×2 have signed singular values α ∈ G2.

Then β ∈ G2 are the signed singular values of some rank 1 perturbation of A if and
only if

(23) |α2| 6 β1, |β2| 6 α1.

The following proposition is a special case of a general result; cf. [15], [14].

Proposition 5.2. Let A ∈ M2×2 have signed singular values α, let β ∈ G2

satisfy (23), and let ε be given by (19). Then there exists a rank 1 perturbation B
of A such that if t ∈ [0, 1] and C := (1− t)A + tB, γ := τ(C) then

(24)

{
γ1γ2 = (1− t)α1α2 + tβ1β2,

γ1 + εγ2 = (1− t)(α1 + εα2) + t(β1 + εβ2).

The rank 1 perturbation B is given explicitly in the cited papers but their form is
irrelevant for our purposes. What is more important for understanding the results
to follow is the occurrence of ε. This is not an artifact of the proof nor a matter
of convenience; rather, ε is inherently connected with the structure of the set of all

rank 1 perturbations of A. Thus, e.g., if α, β are as in Proposition 5.2 such that
ε = 1, there is no rank 1 perturbation B of A such that we would have (24) with
ε = −1.

Theorem 5.3. An invariant function f : M2×2 → � ∪ {∞} is rank 1 convex if
and only if

(25) f̃(γ) 6 (1− t)f̃(α) + tf̃(β)

for every α, β, γ ∈ G2 and t ∈ [0, 1] that satisfy (23) and

(26)

{
γ1γ2 = (1− t)α1α2 + tβ1β2,

γ1 + εγ2 6 (1− t)(α1 + εα2) + t(β1 + εβ2)

where ε is given by (19).
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��������
. Let f be rank 1 convex, and prove first that if α, β ∈ G2 satisfy

(27) α1 6 β1, α1α2 = β1β2

then

(28) f̃(α) 6 f̃(β).

Indeed, [17, Theorem 5.4] implies that (28) holds if

(29) α1 + α2 6 β1 + β2, α1α2 = β1β2.

It now suffices to note that for α, β ∈ G2, (29) and (27) are equivalent, since α1 7→
α1 + α2 is an increasing function of α1 on the hyperbola α1α2 = β1β2. Let now α,

β, γ, t be as in the statement of the theorem. Let A, B, C be as in Proposition 5.2
and denote the signed singular values of C by γ so that

{
γ1γ2 = (1− t)α1α2 + tβ1β2,

γ1 + εγ2 = (1− t)(α1 + εα2) + t(β1 + εβ2),

and (26) implies

(30) γ1γ2 = γ1γ2, γ1 + εγ2 6 γ1 + εγ2.

Combining the square of (30)2 with (30)1 we obtain γ1 − εγ2 6 γ1 − εγ2 and hence
γ1 6 γ1. Combining the last inequality and (30)1 with the monotonicity of f̃ we

obtain

(31) f̃(γ) 6 f̃(γ).

On the other hand, applying the rank1 convexity inequality to the A, B, C from
Proposition 5.2 we obtain

(32) f̃(γ) 6 (1− t)f̃(α) + tf̃(β)

and thus (31) and (32) imply (25). Conversely, let f̃ satisfy the condition stated in

the theorem, let A,B,C ∈ M2×2, t ∈ [0, 1] satisfy

C = (1− t)A + tB, rank(A−B) = 1

and denote by α, β, γ the signed singular values of A, B, C. Then (23) hold, (26)1
holds as a consequence of the rank 1 convexity of the determinant and (26)2 holds
as a consequence of the convexity of τ1 + ετ2. Hence (25) holds which reads

f(C) 6 (1− t)f(A) + tf(B).

�
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Remark 5.4. It is interesting to compare optically the necessary condition for
the polyconvexity in Proposition 4.2 with the equivalent condition for the rank 1
convexity in Theorem 5.3. The only difference is the requirement (23), which makes
the class of representations f̃ satisfying Proposition 4.2 a subset of those f̃ which

satisfy Theorem 5.3. It is well-known that the set of invariant rank 1 convex functions
is really wider than that of invariant polyconvex functions [2], [9], [1]. A recent

example [19] also shows that the rank 1 convexity and polyconvexity are also different
in the narrower class of fully invariant functions.
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