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Abstract. In this paper we deal with weakly upper semi-continuous set-valued maps,
taking arbitrary non-empty values, from a non-metric domain to a Banach space. We
obtain selectors having the point of continuity property relative to the norm topology for a
large class of compact spaces as a domain. Exact conditions under which the selector is of
the first Borel class are also investigated.
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0. Introduction

A map F from a topological space X to the power set of a topological space E is

said to be upper semi-continuous (usc, for short) if for every x ∈ X and every open
set U in E such that F (x) ⊂ U , there exists an open neighbourhood V of x such

that F (V ) ⊂ U . When F takes non-empty values, a map f : X → E is said to be a
selector for F if f(x) ∈ F (x) for every x ∈ X .

We are primarily interested in the case when E is a Banach space endowed with

its weak topology. In this case we shall talk about weakly upper semi-continuous
maps to avoid any confusion with the norm topology.

The case of X being a metric space and F : X → 2E a weak usc map, has been

studied by several authors in a series of papers [9], [3], [7], [13]. The definitive result
was given by Srivatsa in [13]: If F is as above, then it admits a selector f which is
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a pointwise ‖ · ‖-limit of ‖ · ‖-continuous functions, i.e., f is in the first Baire class
relative to the norm topology. Later, in [8] Srivatsa’s result was extended to some
duals to Asplund spaces, in the sense that, if F : X → 2(E∗,weak∗) is upper semi-
continuous, then F admits a selector which is of the first Baire class relative to the

norm topology.

In [13, Remark 2.7], the author asks whether his main theorem could be extended
to non-metric domains, and particularly to the case of Eberlein compact spaces.

However, not even the single-valued version of the Main Theorem of [13] holds when
the domain space is a non-metrizable Eberlein compact. For example, if K is weakly

compact, then the identity, id : (K, weak) → (K, ‖·‖) is Baire 1 only ifK is metrizable
(compare the footnote on page 622 of [13]). In this paper we give a best possible

answer in terms of generalized first class selectors by proving the following:

Main Theorem. Let K be an Eberlein or Gul’ko compact space, E a Banach

space and F : K → 2E a weak upper semi-continuous map taking non-empty arbi-

trary values. Then F admits a selector f which is, relative to the norm topology

on E, (F ∧ G )σ-measurable and has the point of continuity property.

1. Some definitions and notation

All topological spaces are assumed to be Hausdorff. Let us begin by recalling some

definitions. A family A of subsets of a topological space X is said to be:

• Scattered if A can be well ordered A = {Aα : α < λ} in such a way that there
exists a family {Uα : α < λ} of open subsets of X such that for all α < λ

Aα ⊂ Uα \
⋃

β<α

Uβ.

• Discrete if for each x ∈ X there exists U ⊂ X open with x ∈ U such that

U intersects at most one element from A .

• Relatively discrete if A is discrete in its union with the relative topology.

• σ-scattered (resp. σ-discrete, σ-relatively discrete) if A =
⋃

n∈ � Nn where each

family Nn is scattered (resp. discrete, relatively discrete).

• A network if each open set in X can be written as a union of members from A .

Scattered collections can also be characterized intrinsically. One can show that
a collection A of subsets of a space X is scattered if, and only if, each non-empty

H ⊂ ⋃
A has a non-empty relatively open subset of the form H ∩A for some A ∈ A

(for a proof of this and other properties of scattered collections see § 2 of [6]).
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Let f : X → Y be a map, and B a family of subsets of X . Then B is said to be

a function base for f if, whenever V is open in Y , f−1(V ) can be written as a union
of members from B. Also, f is said to be B-measurable if f−1(V ) ∈ B whenever
V is open in Y .

As usual F will denote the family of closed sets and G the family of open subsets
of a fixed topological space X . By an F ∧ G -set of X we mean a set that is the

intersection of a closed with an open set (equivalently, the difference of two closed or
two open sets) of X . By an (F ∧ G )σ-set we mean a set that is a countable union
of F ∧ G -sets.

By an H-set in X we mean a set that is the union of a scattered collection of
F ∧ G -sets of X . Our Lemma 2.1 below shows that our definition of an H-set is

equivalent to that used in [2]. It also follows from this lemma that the H-sets form
an algebra of subsets of the space, a fact that is critical to the proof of our Main
Theorem. Let us also note that, if {Aα : α < λ} is a scattered collection of subsets
of X with associated open sets Uα, then

{
A

X

α ∩Uα : α < λ
}
(where the bar denotes

closure in X) is a scattered collection of F ∧ G -sets of X . In particular, note that
the members of a scattered partition of X are necessarily F ∧ G -sets in X .

Finally, a map f : X → Y is said to be F ∧ G -simple if X has a σ-scattered

partition into F ∧ G -sets such that f is constant on each element of the partition.

2. Preliminaries

Let us continue with some preliminary lemmas which will lead us to the proof of

our Main Theorem.

The following lemma can be viewed as an extension of Lemma 2.2 of [2] where
the equivalence of (a) and (b) is established. The equivalence of (b) and (c) in effect

shows that any scattered collection of F ∧ G -sets in a space X can be extended
to a scattered partition of X , a fact we use in the proof of Lemma 2.2. From the

equivalence of (a) and (c) we see that the H-sets of a space form an algebra of subsets
of the space (compare also Proposition 2.1 of [2]).

Lemma 2.1. For any subset H of a topological space X the following are equiv-

alent.

(a) H has the property that for any non-empty A ⊂ X , A has a non-empty relatively

open subset U ⊂ A such that either U ⊂ H or U ⊂ X \H .

(b) There is a scattered partition P of X such that

H =
⋃
{P ∈ P : P ∩H 6= ∅}.
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(c) H is an H-set of X (that is, H is the union of a scattered collection ofF∧G -sets

of X).
���������

. (a) ⇔ (b). This is Lemma 2.2 of [2].
(b) ⇒ (c). This is obvious since a subcollection of a scattered collection is again

scattered, and the members of a scattered partition of a space are necessarilyF ∧G -
sets of the space.

(c) ⇒ (a). Let H = {Hα : α < λ} be a scattered collection of F ∧ G -sets in X ,
with associated open sets {Uα : α < λ}, such that H =

⋃
H . Since each Hα is an

F ∧ G -set in X , choose open sets Gα of X such that

Hα = H
X

α ∩Gα (α < λ),

where we may (and do) assume that Gα ⊂ Uα. To see that H satisfies (a), let

∅ 6= A ⊂ X be given. If A ⊂ X \ H , then (a) holds with U = A. Otherwise, there
exists a least α < λ such that A ∩Hα 6= ∅. Now, if A ∩ (Gα \Hα) = ∅, then

∅ 6= A ∩Gα ⊂ Hα ⊂ H,

hence (a) holds with U = Gα ∩ A. Otherwise,

∅ 6= A ∩ (Gα \Hα) ⊂ X \H,

hence (a) holds with U = (Gα \Hα) ∩ A. �

Corollary 2.2. Every σ-scattered cover byF ∧G -sets of a space X can be refined

to a σ-scattered partition of F ∧ G -sets.
���������

. Let
⋃

n∈ � Hn be a cover of X where each Hn is a scattered collection of

F ∧ G -sets of X . By (c) ⇒ (b) of Lemma 2.1, for each n

X \
⋃

Hn =
⋃

Kn

where Kn is a scattered collection F ∧ G -sets of X .

Now we define L1 = H1 and

Ln = {H ∩K : H ∈ Hn and K ∈ Kn−1},

for n > 2. It follows that
⋃

n∈ � Ln is a σ-scattered collection of X by F ∧ G -sets and

is a refinement of
⋃

n∈ � Hn. �
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Lemma 2.3. If X is a regular topological space with a σ-scattered network, then

X has a σ-scattered network of F ∧G -sets. If X has a σ-scattered network ofF ∧G -

sets, then X has a network
⋃

n∈ � Nn where each Nn is a scattered partition of X and

Nn+1 is a refinement of Nn for each n.
���������

. Let N be any scattered collection in X . Then, as noted above, there
is a scattered collection of F ∧ G -sets {HN : N ∈ N } such that, for each N ∈ N ,

N ⊂ HN ⊂ N
X

.

Using this and the fact that each point in a regular space has a base of closed
neighbourhoods, it easily follows that X will have a σ-scattered network of F ∧ G -

sets whenever X has a σ-scattered network.
Let N =

⋃
n∈ � Nn be a network for X where each Nn is a scattered collection of

F ∧ G -sets in X . By (c) ⇒ (b) of Lemma 2.1 we may assume that each Nn is a
partition of X . Replacing Nn by the scattered partition

{N1 ∩N2 ∩ . . . ∩Nn : Ni ∈ Ni, i = 1, 2, . . . , n}

yields the desired σ-scattered network of X . �

Lemma 2.4. Let f be a map from a topological space X to a metric space (Y, d).
Then the following are equivalent.

(a) f has a σ-scattered function base of F ∧ G -sets of X .

(b) There exists a sequence of F ∧G -simple maps fn : X → (Y, d) which converges
uniformly to f .
���������

. (a) ⇒ (b). Let B be a σ-scattered function base for f consisting of
F ∧ G -sets in X . Fix n ∈ � . By the property of a function base there exists a
σ-scattered collection Bn ⊂ B which is a refinement of the family

{
f−1(B(y, 1

2n )) : y ∈ Y
}
,

where B(y, ε) denotes the open ball about y of radius ε in (Y, d).
By Corollary 2.2, Bn can be refined by a σ-scattered partition Kn of F ∧ G -sets.

For each non-empty K ∈ Kn fix a point xK ∈ K and define fn : X → Y by

fn(x) = f(xK) for each x ∈ K.

It follows that fn is F ∧ G -simple and, for each x ∈ K, d(f(x), fn(x)) < 1/n. Thus,
the maps fn converge uniformly to f as required.
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(b) ⇒ (a). For each n ∈ � , letHn be a σ-scattered partition ofX and let fn : X →
Y be a map that is constant on each member of Hn. Suppose the sequence 〈fn〉
converges uniformly to the map f . It suffices to show thatH =

∞⋃
n=1

Hn is a function

base for f . Thus let V be an open subset of Y and consider any x0 ∈ X such that

f(x0) ∈ V . Let ε > 0 be such that the ball B(f(x0); ε) ⊂ V . We need to show that
for some H ∈ H we have x0 ∈ H and f(H) ⊂ V .

For the given ε there exists m ∈ � such that d(fm(x), f(x)) < 1
2ε for any x ∈ X .

Now choose H ∈ Hm such that x0 ∈ H . To see that H ⊂ f−1(V ), let x ∈ H and
note that, since fm is constant on H , we have

d(f(x0), f(x)) 6 d(f(x0), fm(x0)) + d(fm(x0), fm(x)) + d(fm(x), f(x))

<
ε

2
+

ε

2
= ε.

Thus, f(x) ∈ B(f(x0); ε) ⊂ V as required. �

The following lemma is similar to Lemma 2.1 of [13] and Theorem 5 of [8] and

makes crucial use of the fact that the H-sets form an algebra of the space.

Lemma 2.5. Let (X, τ) be a topological space with a σ-scattered network of

F ∧ G -sets, let (E, ‖ · ‖) be a Banach space, and let F : X → 2E be a weak upper

semi-continuous set-valued map with non-empty values. Then, for every ε > 0, there
exists a F ∧ G -simple map fε : X → E such that

‖ · ‖ -dist(fε(x), F (x)) < ε for all x ∈ X.

���������
. Let N =

⋃
n∈ � Nn be a network for X of the type given in Lemma 2.3

so that each Nn is a partition of X . For each n ∈ � and N ∈ Nn, fix xN ∈ N and

yN ∈ F (xN ) arbitrarily and define F ∧ G -simple maps fn : X → E by defining

fn(x) = yN for all x ∈ N ∈ Nn.

Let 〈hn〉 denote the sequence of all finite rational linear combinations of the se-
quence 〈fn〉. One can easily see that each of the maps hn is also F ∧ G -simple. For
each n ∈ � let

An =
{
x ∈ X : B(hn(x); ε) ∩ F (x) 6= ∅

}
,

where B(y; ε) = {z ∈ E : ‖z − y‖ 6 ε}.
Our first objective is to show that X =

⋃
n∈ � An. Fix x ∈ X . The point x belongs to

exactly one Nn ∈ Nn (n ∈ � ), thus {Nn : n ∈ � } forms a local network at x, and it
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follows that 〈xNn〉 τ -converges to x. Now, if F (x) were contained in the complement
of the weak closure of {fn(x) : n ∈ � } then, by the upper semi-continuity of F ,
for some m we would have F (Nm) contained in the complement as well. But this
would contradict the fact that fm(x) = yNm ∈ F (xNm). Thus the sequence 〈fn(x)〉
has a weak cluster point in F (x), and therefore there is a subsequence of 〈hn(x)〉
converging in the norm to a point in F (x). It follows that for some n ∈ � we have
B(hn(x); ε) ∩ F (x) 6= ∅, thus proving that X =

⋃
n∈ � An.

As hn is F ∧ G -simple, X has a σ-scattered partition Mn into F ∧ G -sets such

that hn takes a constant value, say yM , on each M ∈ Mn. Thus

An =
⋃

M∈Mn

M ∩
{
x ∈ X : B(yM ; ε) ∩ F (x) 6= ∅

}
.

As F is weakly usc,
{
x ∈ X : B(yM ; ε) ∩ F (x) 6= ∅

}
is closed in X , and it follows

that each An is an H-set in X . Since by Lemma 2.1 the H-sets form an algebra we
can find disjoint H-sets Bn ⊂ An so that X =

⋃
n∈ � Bn. Defining

fε(x) = hn(x) whenever x ∈ Bn,

it follows that fε is a F ∧ G -simple map and ‖ · ‖ -dist(fε(x), F (x)) 6 ε, for each

x ∈ X . �

For convenience, let us call a partition of a space X amenable if it is σ-scattered
and consists of F ∧ G -sets in X . The following lemma isolates the technical part of

the proof of Theorem 3.1 below.

Lemma 2.6. Let X be a topological space with a σ-scattered network of F ∧G -

sets, and let (E, ‖ · ‖) be a Banach space. Suppose given an amenable partition H

of X , weakly closed sets {BH : H ∈ H }, and a set-valued map F : X → 2E such

that, for every H ∈ H , the restriction F
∣∣H is weakly usc and F (x) ∩ BH 6= ∅ for

all x ∈ H . Then, for any ε > 0, there exists an amenable partition M of X which

is a refinement of H , a set-valued map G : X → 2E, and a F ∧ G -simple map

g : X → E such that, for each M ∈ M with M ⊂ H ∈ H , the following hold:

(i) for each x ∈ M

G(x) =

{
{g(x)} if g(x) ∈ F (x),

F (x) ∩BH ∩ B(g(x); ε) otherwise;

(ii) there exists at least one xM ∈ M such that G(xM ) = {g(xM )};
(iii) ‖ · ‖ -dist(g(x), G(x)) 6 ε for all x ∈ M ;

(iv) the restriction G
∣∣M is weakly usc.
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���������
. For each H ∈ H the assumptions of Lemma 2.5 apply to the set-valued

map FH : H → 2E where FH(x) = F (x) ∩ BH for each x ∈ H , hence there is an
F ∧ G -simple map fH : H → E such that ‖ · ‖ -dist(fH(x), FH (x)) < 1

2ε for each
x ∈ H . Let MH be an amenable partition of H associated with fH and note that

each member of MH is an F ∧ G -set in X since H has this property. For each
M ∈ MH fix

xM ∈ M and yM ∈ F (xM ) ∩ BH ∩ B(fH(xM ); 1
2ε),

and define
M+ = {x ∈ M : yM ∈ F (x)} and M− = M \M+.

Since F
∣∣H is weakly usc,M+ is closed inM and so bothM+ andM− areF ∧G -sets

in X . Now let

M =
⋃

H∈H

⋃

M∈MH

{M+, M−}

and define g : X → E and G : X → 2E as follows: If x ∈ M ∈ MH , then

g(x) = yM and G(x) =

{
{yM} x ∈ M+

F (x) ∩ BH ∩ B(yM ; ε) x ∈ M−.

Note that, if fH takes the fixed value wM on M ∈ MH , then

yM ∈ B(wM ; 1
2ε) and ‖ · ‖ -dist(wM , F (x) ∩BH) < 1

2ε

for all x ∈ M , so

F (x) ∩ BH ∩ B(yM ; ε) 6= ∅ for all x ∈ M.

The remainder of the property (i) follows from the above definitions and the fact

that each member of M has either the form M+ or M− for some M ∈ MH .
The property (ii) follows from the fact that xM ∈ M+ for each M ∈ MH and

H ∈ H . One easily verifies thatM is an amenable partition ofX that is a refinement
of H and that g is an F ∧ G -simple map associated with M .

Finally, (iii) holds since G(x) ⊂ B(g(x); ε) for each x ∈ X , and (iv) follows
immediately from the definition of G. �
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3. Selection theorems for upper semicontinuous

set-valued maps

Now we are able to prove our main result.

Theorem 3.1. Let X be a topological space with a σ-scattered network ofF ∧G -

sets, and let (E, ‖ · ‖) be a Banach space. If F : X → 2(E,weak) is an upper semi-

continuous set-valued map with non-empty values, then F has a selector that is a

norm uniform limit of F ∧ G -simple maps defined on X .

���������
. Let N =

⋃
n∈ � Nn be a network for X of the type given in Lemma 2.3.

We will call the triple 〈G, g, M 〉 a partial selector for F of order ε associated with
{BH : H ∈ H } if the components G, g andM have the properties ascribed to them
in the conclusion of Lemma 2.6. Note that if N is any amenable partition that is

a refinement for M , then 〈G, g, N 〉 is a partial selector for F of order ε associated
with {BH : H ∈ H } whenever 〈G, g, M 〉 is.
We begin by applying Lemma 2.6 to F with H = {X} and BX = X to obtain

a partial selector 〈F1, f1, M1〉 of F of order 2−1, and we may assume that M1 is a
refinement of N1. Applying Lemma 2.6 again to F , the amenable partitionM1, and

the weakly closed sets BM1 = B(yM1 ; ε), where yM1 is the fixed value taken by f1 on
M1 ∈ M1, we obtain a partial selector 〈F2, f2, M2〉 of F of order 2−2, and we may

assume that M2 is a refinement of N2. Repeating this for each n ∈ � we obtain
a partial selector 〈Fn, fn, Mn〉 for F of order 2−n such that Mn is a refinement of

both Mn−1 and Nn. Note that by (i) of Lemma 2.6 we have, for each x ∈ X ,

Fn(x) =

{
{fn(x)} if fn(x) ∈ F (x),

F (x) ∩ B
(
f1(x); 2−1) ∩ . . . ∩B(fn(x); 2−n

)
otherwise.

Furthermore, by (i) and (iii) of Lemma 2.6,

‖ · ‖ -dist(fn(x), Fn(x)) 6 2−n, Fn+1(x) ⊂ Fn(x)

for each n ∈ � , and ‖ · ‖ − diam(Fn(x)) 6 2−n+1, and thus it follows that

‖fn+1(x)− fn(x)‖ 6 3 · 2−n

for all x ∈ X and n ∈ � . Hence the sequence 〈fn〉 uniformly converges to some
f : X → E relative to the norm topology. It remains to show that f is a selector
for F .
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Fix x ∈ X and let Mn be the member of the partition Mn which contains x. If

for some m we have fm(x) ∈ F (x), then it follows that

fn(x) = fm(x) ∈ F (x) ∀n > m,

and in this case we clearly have f(x) ∈ F (x). Otherwise, we have fn(x) /∈ F (x) for
each n. By (ii) of Lemma 2.6 we can choose xn ∈ Mn such that Fn(xn) = {fn(xn)},
and thus fn(x) = fn(xn) ∈ F (xn) for each n. Suppose f(x) /∈ F (x). Then F (x) is
contained in the weak open set

U = E \ {f(x), f1(x), f2(x), . . .}.

By the weak usc of F and the fact that the sets {Mn : n ∈ � } form a local network
at x (since Mn is a refinement of Nn), we must have F (x′) ⊂ U for all x′ ∈ Mn for

some n. But this contradicts the fact that fn(x) ∈ F (xn). Thus f(x) ∈ F (x) for all
x ∈ X showing that f is the desired selector. �

Now if X is a hereditary Baire space (that is, every closed subspace is a Baire
space), Y a metric space and f : X → Y has a σ-scattered function base of F ∧ G -

sets then, by Theorem 2.2 in [5], f has the point of continuity property, i.e., f
∣∣A has

a point of continuity for each non-empty closed set A ⊂ X (such maps are called PC

functions in [5]).

Corollary 3.2. Let (E, ‖ · ‖) be a Banach space, K a compact space with a σ-

scattered network and F : K → 2E a weak usc map with non-empty values. Then

F admits a selector with the point of continuity property.

The class of compact spaces to which the Corollary above applies is quite large: Ev-

ery compact space that is fragmented (or even σ-fragmented) by a metric whose topol-
ogy is finer than the topology of the space, has a σ-scattered network of F ∧ G -sets

by Theorem 6.4 of [4]; in particular Eberlein, Radon-Nikodým [10] and Gul’ko [12]
compact spaces. However, in order to obtain a Borel measurable selector something

more is required as the following example shows.

Example 3.3. The identity map Id: [0, ω1] → ([0, ω1], discrete topology) is not
measurable, since the Borel sets in [0, ω1] do not coincide with the Borel sets for
the discrete topology [14]. Yet, the identity map has a σ-scattered function base of
F ∧ G -sets [4].

Definition 3.4. A topological spaceX is said to be hereditary weakly θ-refinable
if each open collection in X has a σ-relatively discrete refinement.
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A result in [5] shows that if f : X → (Y, d) is a PC map and X is hereditary

weakly θ-refinable, then f is (F ∧ G )σ-measurable and has a σ-relatively discrete
function base of (F ∧G )-sets in X . It is known that Eberlein compact spaces [4], [11]
and Gul’ko compact spaces [1] are hereditary weakly θ-refinable, and so our Main

Theorem in the introduction has been proved.
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