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Abstract. A necessary and sufficient condition for the boundedness of a solution of the
third problem for the Laplace equation is given. As an application a similar result is given
for the third problem for the Poisson equation on domains with Lipschitz boundary.
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1. General open sets

For x, y ∈ � m , m > 2, denote

hx(y) =

{
(m− 2)−1A−1|x− y|2−m for x 6= y,

∞ for x = y,

where A is the area of the unit sphere in � m . For the finite real Borel measure ν
denote

U ν(x) =
∫
�

m

hx(y) dν(y),

the single layer potential corresponding to ν, for each x for which this integral has
sense.

Suppose that G ⊂ � m (m > 2) is an open set with a non-void compact bound-
ary ∂G such that ∂G = ∂( � m \G). Fix a nonnegative element λ of C ′(∂G) (= the
Banach space of all finite signed Borel measures with support in ∂G with the total

variation as a norm) and suppose that the single layer potential U λ is bounded and
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continuous on ∂G. It was shown in [26] that U λ is bounded and continuous on ∂G

if and only if

lim
r→0+

sup
y∈∂G

∫

Ωr(y)

hy(x) dλ(x) = 0.

According to [12], Lemma 2.18 this is true if there are constants α > m − 2 and
k > 0 such that λ(Ωr(x)) 6 krα for all x ∈ � m and all r > 0.
Suppose that for λ-a.a. x ∈ ∂G there is

dG(x) = lim
r↘0

Hm(G ∩ Ωr(x))
Hm(Ωr(x))

> 0.

Here Ωr(x) is the open ball with the centre x and the diameter r, Hk is the

k-dimensional Hausdorff measure normalized so that Hk is the Lebesgue measure
in � k .
For a Lebesgue measurable function u on a Borel set M and x with dM (x) > 0

define

aplimsup
y→x
y∈M

u(y) = inf{t ; d{z∈M ; u(z)>t}(x) = 0},

apliminf
y→x
y∈M

u(y) = sup{t ; d{z∈M ; u(z)<t}(x) = 0}.

We speak of the approximate limit of u at x over M in case

aplimsup
y→x
y∈M

u(y) = apliminf
y→x
y∈M

u(y),

and u is said to be approximately continuous at x with respect to M if

aplim
y→x
y∈M

u(y) = u(x).

If h is a harmonic function on G such that
∫

H

|∇h| dHm <∞

for all bounded open subsets H of G we define the weak normal derivative NGh of h

as the distribution
〈ϕ,NGh〉 =

∫

G

∇ϕ · ∇h dHm

for ϕ ∈ D (= the space of all compactly supported infinitely differentiable functions
in � m ).
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If H ⊂ � m is an open set with a compact smooth boundary, u ∈ C 1(clH) is a
harmonic function on H and

∂u

∂n
+ fu = g on ∂H

where f, g ∈ C (∂H) (= the space of all bounded continuous functions on ∂H

equipped with the maximum norm) and n is the exterior unit normal of H , then

for ϕ ∈ D we have

(1)
∫

∂H

ϕg dHm−1 =
∫

H

∇ϕ · ∇u dHm +
∫

∂H

ϕfu dHm−1.

(Here clH denotes the closure of H .) If we denote by H the restriction of Hm−1

to ∂H then (1) has the form

(2) NHu+ fuH = gH .

The formula (2) motivates our definition of the solution of the third problem for
the Laplace equation

∆u = 0 in G,(3)

NGu+ uλ = µ,

where µ ∈ C ′(∂G) (compare [12], [25]).
Let µ ∈ C ′(∂G). We say that a function u on clG is a weak solution of the third

problem for the Laplace equation (3) if u ∈ L1(λ), u is harmonic on G, |∇u| is
integrable over all bounded open subsets of G, u(x) is the approximmative limit of u
over G for λ-a.a. x ∈ ∂G, and NGu + uλ = µ. (If λ = 0 we say that u is a weak
solution of the Neumann problem for the Laplace equation.)

Notation. Let V ⊂ � m be an open set. For p > 1 denote by W 1,p(V ) the
collection of all functions f ∈ Lp(V ) the distributional gradient of which belongs to
[Lp(V )]m. ByW 1,p

loc (V ) denote the collection of all functions f such that f ∈ W 1,p(U)
for each bounded open set U with clU ⊂ V .

Suppose that G has a locally Lipschitz boundary and u ∈W 1,p(G), 1 < p <∞. It
is well-known that we can even suppose that u ∈W 1,p( � m ) (see [30], Remark 2.5.2).
We can choose such a representation of u that u is approximately continuous at
Hm−1-a.a. points of � m (see [30], Theorem 3.3.3, Theorem 2.6.16 and Remark 3.3.5).
The restriction of u to ∂G is the trace of u (see [30], p. 190). If H denotes the
restriction of Hm−1 to ∂G, then u ∈ Lp(H ) (see [22], Theorem 1.2). If f is a
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nonnegative bounded Baire function on ∂G and g ∈ Lp(H ), then u is called a weak
solution in W 1,p(G) of the problem ∆u = 0 in G, ∂u/∂n+ fu = g on ∂G if

∫

∂G

vg dHm−1 =
∫

G

∇v · ∇u dHm +
∫

∂G

fvu dHm−1

for each v ∈ W 1,q(G), where q = p/(p − 1) (compare [22], Example 2.12). Put
λ = fH , µ = gH . Using Hölder’s inequality we see that |∇u| is integrable over all
bounded open subsets of G. Since u is approximately continuous atHm−1-a.a. points
of � m and λ is absolutely continuous with respect to Hm−1, we obtain that u(x) is
the approximative limit of u at x over G for λ-a.a. x ∈ ∂G. If u is a weak solution
in W 1,p(G) of the problem ∆u = 0 in G, ∂u/∂n+ fu = g on ∂G, then u is a weak
solution of (3) because D ⊂ W 1,q(G). Since D is a dense subset of W 1,q(G), u is a
weak solution of the third problem for the Laplace equation (3) if and only if u is a
weak solution in W 1,p(G) of the problem ∆u = 0 in G, ∂u/∂n+ fu = g on ∂G.

It is usual to look for a solution u in the form of the single layer potential U ν,
where ν ∈ C ′(∂G). It was shown in [17] that U ν has all the properties of the

solution of the third problem with some boundary condition, but our “continuity”
on the boundary is replaced by the fine continuity at λ-a.a. points of the boundary. If

U ν is fine-continuous in x ∈ ∂G with respect to clG then u(x) is the approximative
limit of u at x over G (see [11], Theorem 10.15, Corollary 10.5). If U ν is a solution of

the third problem in the sense of [17] then it is a weak solution of the third problem.

The operator τ : ν 7→ NGU ν + (U ν)λ is a bounded linear operator on C ′(∂G) if
and only if V G <∞, where

V G = sup
x∈∂G

vG(x),

vG(x) = sup
{∫

G

∇ϕ · ∇hx dHm ; ϕ ∈ D , |ϕ| 6 1, sptϕ ⊂ � m − {x}
}

(see [12]). There are more geometrical characterizations of vG(x) in [12] which ensure

that V G < ∞ for G convex or for G with ∂G ⊂
k⋃
i=1

Li, where Li are (m − 1)-

dimensional Ljapunov surfaces i.e. of class C1+α.

If z ∈ � m and θ is a unit vector such that the symmetric difference of G and
the half-space {x ∈ � m ; (x − z) · θ < 0} has m-dimensional density zero at z then
nG(z) = θ is termed the exterior normal of G at z in Federer’s sense. If there is no
exterior normal of G at z in this sense, we denote by nG(z) the zero vector in � m .
The set {y ∈ � m ; |nG(y)| > 0} is called the reduced boundary of G and will be
denoted by ∂̂G.
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If G has a finite perimeter (which is fulfilled if V G < ∞) then Hm−1(∂̂G) < ∞
and

vG(x) =
∫
�
∂G

|nG(y) · ∇hx(y)| dHm−1(y)

for each x ∈ � m . Throughout the paper we shall assume that V G <∞.
If L is a bounded linear operator on the Banach space X we denote by ‖L‖ess

the essential norm of L, i.e. the distance of L from the space of all compact linear
operators on X . The essential spectral radius of L is defined by

ressL = lim
n→∞

(‖Ln‖ess)1/n.

Theorem ([17]). Let ress(τ − 1
2I) <

1
2 , where I is the identity operator, µ ∈

C ′(∂G). Then there is a harmonic function u on G, which is a weak solution of the
third problem

NGu+ uλ = µ,

if and only if µ ∈ C ′
0(∂G) (= the space of such ν ∈ C ′(∂G) that ν(∂H) = 0 for each

bounded component H of clG for which λ(∂H) = 0). Moreover, if µ ∈ C ′
0(∂G) then

there is a solution of this problem in the form of the single layer potential U ν, where

ν ∈ C ′(∂G).

Remark 1. It is well-known that the condition ress
(
τ − 1

2I
)
< 1

2 is fulfilled

for sets with a smooth boundary (of class C1+α) (see [13]) and for convex sets
(see [23]). R. S. Angell, R. E. Kleinman, J. Král and W.L. Wendland proved that
rectangular domains (i.e. formed from rectangular parallelepipeds) in � 3 have this

property (see [1], [14]). A. Rathsfeld showed in [27], [28] that polyhedral cones in � 3

have this property. (By a polyhedral cone in R3 we mean an open set Ω whose
boundary is locally a hypersurface (i.e. every point of ∂Ω has a neighbourhood in ∂Ω
which is homeomorphic to � 2 ) and ∂Ω is formed by a finite number of plane angles.
By a polyhedral open set with bounded boundary in � 3 we mean an open set Ω
whose boundary is locally a hypersurface and ∂Ω is formed by a finite number of
polygons). N.V. Grachev and V.G. Maz’ya obtained independently an analogous
result for polyhedral open sets with bounded boundary in � 3 (see [9]). (Let us note

that there is a polyhedral set in � 3 which does not have a locally Lipschitz boundary.)
In [16] it was shown that the condition ress(τ − 1

2I) <
1
2 has a local character. As

a conclusion we obtain that this condition is fullfiled for G ⊂ � 3 such that for each
x ∈ ∂G there are r(x) > 0, a domain Dx which is polyhedral or smooth or convex

or a complement of a convex domain and a diffeomorphism ψx : U (x; r(x)) → � 3

of class C1+α, where α > 0, such that ψx(G ∩ U (x; r(x))) = Dx ∩ ψx(U (x; r(x))).
V. G. Maz’ya and N.V. Grachev proved this condition for several types of sets with
“piecewise-smooth” boundary in the general Euclidean space (see [7], [8], [10]).
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In the rest of the paper we will suppose that ress(τ − 1
2I) <

1
2 . Since τ−NGU is a

compact operator (see [17], Remark 5), this condition is equivalent to the condition
ress(NGU − 1

2I) < 1
2 . Denote by H the restriction of Hm−1 onto ∂G. Then

H ( � m ) < ∞ (see [18], Lemma 2). If x ∈ ∂G then dG(x) exists and is strictly
positive (see [17], Lemma 14).

Notation. Let us denote by C ′
b(∂G) the set of all µ ∈ C ′(∂G) for which U µ is

bounded on � m \ ∂G.

Note that C ′
b(∂G) is the set of all µ ∈ C ′(∂G) for which there is a polar set M

such that U µ(x) is meaningful and bounded on � m \M , because Hm(∂G) = 0
by [17], Corollary 1 and therefore � m \ ∂G is finely dense in � m (see [2], Chap. VII,
§§ 2, 6, [15], Theorem 5.11, Theorem 5.10) and U µ = U µ+ − U µ− is finite and
fine-continuous outside of a polar set.

Remark 2. Let m− 1 < p <∞, f ∈ Lp(H ). Then µ = fH ∈ C ′
b(∂G) (see [17],

Remark 6).

Theorem 1. Let ν, µ ∈ C ′(∂G), NGU ν + (U ν)λ = µ. Then the following

assertions are equivalent:

a) ν ∈ C ′
b(∂G).

b) µ ∈ C ′
b(∂G).

c) U ν is bounded on G.

d) U µ is bounded on G.

e) There are a polar set K and a bounded function f on ∂G such that U ν = f on

∂G \K.
f) There are a polar set K and a bounded function f on ∂G such that U µ = f

on ∂G \K.
���������

. a) ⇒ c) Since U ν is bounded in � m \ ∂G it is bounded in G.
c) ⇒ e) Denote K = {x ∈ ∂G ; U |ν|(x) = ∞}. Then K is polar and U ν(x) is

the fine limit of U ν for each x ∈ ∂G \K. Put f(x) = U ν(x) for each x ∈ ∂G \K,
f(x) = 0 for x ∈ K. Since the density of G is positive at each point of ∂G by [17],
Corollary 1, every fine neighbourhood of x ∈ ∂G intersects G (see [2], Chap. VII, § 2,
§ 6, [15], Theorem 5.11, Theorem 5.10), and U ν is bounded on G, f is a bounded

function.
e) ⇒ a) Fix R > 0 such that ∂G ⊂ {x ; |x| < R}. Put H = {x ∈ G ; |x| < R},

M = {x ∈ � m \ clG ; |x| < R}. Using [19], Lemma 1 and [19], Lemma 2 for H and
M we get

sup
x∈H

|U ν(x)| 6 sup
x∈∂H

|f(x)|, sup
x∈M

|U ν(x)| 6 sup
x∈∂M

|f(x)|.

322



Since

lim
|x|→∞

U ν(x) = 0,

we get for R→∞
sup

x∈ � m\G
|U ν(x)| 6 sup

x∈∂G
|f(x)| <∞.

b) ⇔ d) ⇔ f) We have proved a) ⇔ c) ⇔ e). Since we can take arbitrary ν we
obtain b) ⇔ d) ⇔ f).

a) ⇒ b) See [17], Lemma 4.
b) ⇒ a) Let B denote the Banach space of all bounded Baire functions defined

on ∂G with the usual supremum norm. The symbolB′ stands for the dual space ofB.

According to [24], Proposition 8, [13] we may define on B continuous operators V ,
W by

V f(y) = U (fλ)(y),

Wf(y) = dG(y)f(y) +
1
A

∫

∂G

nG(x) · (y − x)
|x− y|m dHm−1(x).

According to [24], Proposition 8 the operator τ is the restiction of (W +V )′ (i.e. the
adjoint operator of W + V ) onto C ′(∂G). Since b) ⇒ f), there is UBµ ∈ B and a

polar set K such that U µ = UBµ in ∂G \K. We show that UBµ ∈ (W + V )(B).
Let σ ∈ Ker(W + V )′. Since dG(x) > 0 for each x ∈ ∂G, there exists a continuous

function Ucσ on � m coinciding with U σ on � m \ ∂G (see [16], Theorem 1.11, [17],
Lemma 13). According to [19], Lemma 3 the set G has finitely many components

G1, . . . , Gn and clGj ∩ clGk = ∅ for j 6= k. According to [18], Lemma 2 and [17],
Lemma 11 there are c1, . . . , cn ∈ � such that Ucσ = cj on clGj for j = 1, . . . , n
and cj = 0 for each j such that λ(∂Gj) 6= 0. Since U σ(x) → 0 as |x| → ∞, we
have cj = 0 for Gj unbounded. Since µ, σ have a finite energy (see [18], Lemma 2,
[24], Proposition 23, [15], Chapter I, Theorem 1.20), σ, µ do not charge polar sets
(see [15], Theorem 2.1, p. 222). Therefore

∫

∂G

UBµ dσ =
∫

∂G

U µ dσ =
∫

∂G

U σ dµ =
∫

∂G

Ucσ dµ =
n∑

j=1

cjµ(∂Gj).

Fix j such that cj 6= 0. Then Gj is bounded. Choose ϕ ∈ D such that ϕ = 1 on Gj
and ϕ = 0 on G \Gj . Since λ(∂Gj) = 0 we have

µ(∂Gj) = 〈τν, ϕ〉 =
∫

G

∇ϕ · ∇U ν dHm = 0.
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Since ress(W ′+V ′− 1
2I) = ress(τ− 1

2 I) <
1
2 by [16], Lemma 1.5, the operatorW

′+V ′

is Fredholm. Since 〈σ,UBµ〉 = 0, we conclude that UBµ ∈ (W + V )(B) by [29],
Chapter VII, Theorem 3.1.
Fix α > V G + 1 + sup U λ. Put

µk =
(
−τ − αI

α

)k µ
α
.

According to [17], Theorem 2 the series

ν0 =
∞∑

k=0

µk

converges and NGU ν0 + (U ν0)λ = µ. According to [26], Lemma 4 the measures

µn ∈ C ′
b(∂G) and UBµk = [−α−1(W + V ) + I ]kα−1UBµ.

Since {β ∈ � ; |β− 1
2 | < 1

2} ⊂ {β ∈ � ; |β − 1
α | < α}, ress(τ −αI) < α. Moreover,

if β ∈ � is an eigenvalue of τ , |β − α| > α then β > 0 by [17], Lemma 4, Lemma 11.
Since ‖τ‖ < α by [17], Lemma 2, there is no eigenvalue β 6= 0 of τ such that
|α−β| > α. According to [16], Lemma 1.2, Lemma 1.5 we have ress(W +V −αI) =
ress(W ′ + V ′ − αI) = ress(τ − αI) < α. If β is an eigenvalue of W + V then β is an

eigenvalue of τ ′, because W + V is the restriction of τ ′ to B. If |α − β| > α then
β is an eigenvalue of τ , because τ − βI , τ ′ − βI are Fredholm operators with index

zero. Therefore β = 0. If 0 is not an eigenvalue of W +V then the spectral radius of
W + V −αI is smaller than α (i.e. the spectral radius of α−1(W + V )− I is smaller
than 1) and there are constants M > 1, q ∈ (0, 1) such that

(4)
∥∥[
α−1(W + V )− I

]k
f
∥∥
B

6 Mqk‖f‖B

for each f ∈ B and nonnegative integer k. If 0 is an eigenvalue of W + V then

there are constants M > 1, q ∈ (0, 1) such that (4) holds for each f ∈ (W + V )(B)
(see [18], Proposition 3). Since UBµ ∈ (W + V )(B) and UBµk = [−α−1(W +
V ) + I ]kα−1UBµ, (4) gives that

∑ ‖UBµk‖B < ∞. Since moreover ∑ ‖µk‖ < ∞,
[26], Lemma 3 yields that ν0 ∈ C ′

b(∂G). Since τ(ν − ν0) = 0, there is a continuous
function Uc(ν−ν0) on � m coinciding with U (ν−ν0) on � m \∂G (see [17], Lemma 4,
Lemma 5, Lemma 10). Therefore ν ∈ C ′

b(∂G). �

Lemma 1. Let G be bounded, µ ∈ C ′(∂G), u ∈W 1,1( � m ) be a weak solution of
the Neumann problem for the Laplace equation with the boundary condition µ. Then

there is the approximate limit of u at Hm−1-a.a. points of ∂G. Suppose moreover

that

u(x) = aplim
y→x

u(y)
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at any point x ∈ ∂G where the right-hand side is defined. Then u ∈ L1(H ) and for
each x ∈ G

(5) u(x) = U µ(x) −Du(x),

where

Du =
∫

∂G

u(y)nG(y) · ∇hx(y) dHm−1(y)

is the double layer potential corresponding to the density u.

���������
. According to [4] there is a set E ⊂ ∂G with zero functional capacity

of degree 1 such that the approximate limit of u exists at each point of ∂G \ E.
SinceHm−1(E) = 0 by [5], Theorem 4.3, the approximate limit of u exists atHm−1-
a.a. points of ∂G.

Define u+(x) = max(u(x), 0), u−(x) = max(−u(x), 0). Acoording to [30], Corol-
lary 2.1.8 the functions u+, u− ∈ W 1,1( � m ). Since there is a positive constant M
such that H (Ωr(x)) 6 Mrm−1 for each x ∈ � m , r > 0 (see [12], Corollary 2.17
and [17], Corollary 1), [30], Theorem 5.12.4 yields that u+, u− ∈ L1(H ). Since
u(y) = u+(y)− u−(y) for H -a.a. y (see [30], Theorem 5.9.6) we have u ∈ L1(H ).
Fix x ∈ G. Choose a sequence Gj of open sets with C∞ boundary such that

clGj ⊂ Gj+1 ⊂ G, x ∈ G1 and
⋃
Gj = G. Fix r > 0 such that Ω2r(x) ⊂ G1.

Choose infinitely differentiable function ψ such that ψ = 0 on Ωr(x) and ψ = 1 on
� m \ Ω2r(x). According to Green’s identity

u(x) = lim
j→∞

[∫

∂Gj

hx(y)
∂u(y)
∂n

dHm−1(y)−
∫

∂Gj

u(y)n(y) · ∇hx(y) dHm−1(y)
]

= lim
j→∞

[∫

Gj

∇u(y) · ∇(hx(y)ψ(y)) dHm(y)

−
∫

Gj

∇(u(y)ψ(y)) · ∇hx(y) dHm(y)
]

=
∫

G

∇u(y) · ∇(hx(y)ψ(y)) dHm(y)−
∫

G

∇(u(y)ψ(y)) · ∇hx(y) dHm(y)

= U µ(x)−
∫

G

∇(u(y)ψ(y)) · ∇hx(y) dHm(y).

According to [30], Theorem 2.3.2 there is a sequence of infinitely differentiable
functions un ∈W 1,1( � m ) such that un → uψ in W 1,1( � m ). According to [12], § 2

u(x) = U µ(x)− lim
n→∞

∫

G

∇un(y) · ∇hx(y) dHm(y) = U µ(x)− lim
n→∞

Dun(x).
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For a Borel set M ⊂ � m put

ν1(M) =
∫

∂G∩M
max(0, nG(y) · ∇hx(y)) dHm−1(y),

ν2(M) =
∫

∂G∩M
min(0, nG(y) · ∇hx(y)) dHm−1(y).

According to [30], Theorem 5.12.4 there is a positive constant K such that

∣∣∣∣
∫

(uψ − un) dνj

∣∣∣∣ 6 K|uψ − un|W 1,1(
�

m) ,

for j = 1, 2. Since un → uψ in W 1,1( � m ), we have

lim
n→∞

Dun(x) = lim
n→∞

∫
un dν1 + lim

n→∞

∫
un dν2 =

∫
u dν1 +

∫
u dν2 = Du(x).

�

Lemma 2. Let G be unbounded, µ ∈ C ′(∂G), u ∈ W 1,1
loc ( � m ) be a weak solution

of the Neumann problem for the Laplace equation with the boundary condition µ.

Suppose moreover that

u(x) = aplim
y→x

u(y)

at any point x ∈ ∂G where the right-hand side is defined. Then u ∈ L1(H ). If
|u(x)| = O(1) as |x| → ∞ then there exists

u(∞) = lim
|x|→∞

u(x),

and for each x ∈ G

(6) u(x) = u(∞) + U µ(x) −Du(x).

���������
. Since u(y) = o(|y|) as |y| → ∞, [20], Lemma 3 yields that there exists

u(∞) = lim
|y|→∞

u(y).

Choose r > 0 such that ∂G ⊂ Ωr(x). Put Gr = G ∩ Ωr(x),

µr(M) = µ(M) +
∫

M∩∂Gr

∂u

∂n
dHm−1
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for each Borel set M . Then u is a weak solution of the Neumann problem for the

Laplace equation on Gr with the boundary condition µr. According to Lemma 1

u(x) = U µr(x) −
∫

∂Gr

u(y)n(y) · ∇hx(y) dHm−1(y)

= U µ(x) −Du(x) +
1

A(m− 2)

∫

∂Ωr(x)

∂u

∂n
r2−m dHm−1

+
1
A

∫

∂Ωr(x)

[u(y)− u(∞)]r1−m dHm−1 +
1
A

∫

∂Ωr(x)

u(∞)r1−m dHm−1.

Since |u(y) − u(∞)| = o(1) as |y| → ∞, [20], Lemma 3 yields that ∂u(y)/∂n =
O(|y|1−m). For r →∞ we get

u(x) = U µ(x)−Du(x) + u(∞).

�

Definition. Let H ⊂ � m be an open set, 1 6 p < ∞. We say that H is W 1,p-
extendible if there is a bounded linear operator P : W 1,p(H) →W 1,p( � m ) such that
Pf = f on H for each f ∈W 1,p(H).

Remark that G is W 1,1-extendible if ∂G is locally a graph of a Lipschitz function.

(See [30], Remark 2.5.2.)

Theorem 2. Let µ ∈ C ′
0(∂G). Then the following assertions are equivalent:

a) µ ∈ C ′
b(∂G).

b) There is u ∈ W 1,1
loc ( � m ), bounded in G, which is a weak solution of the third

problem for the Laplace equation (3).

If G is W 1,1-extendible then these assertions are equivalent to

c) There is a bounded function on G which is a weak solution of the third problem

for the Laplace equation (3).
���������

. a) ⇒ b) According to Theorem 1 there is ν ∈ C ′
b(∂G) such that U ν is

a solution of (3). But U ν ∈W 1,1
loc ( � m ) and bounded on G.

b) ⇒ a) Let u ∈W 1,1
loc ( � m ), bounded in G, be a weak solution of the third problem

for the Laplace equation (3). Put µ̃ = µ − uλ. Then u is a weak solution of the
Neumann problem for the Laplace equation on G with the boundary condition µ̃.

Fix a constant K such that |u| 6 K in G. Put v(x) = max(min(K,u(x)),−K) for
x ∈ � m \ ∂G,

v(x) = aplim
y→x

v(y) for x ∈ ∂G.

327



Then v ∈W 1,1
loc ( � m ) (see [30], Corollary 2.1.8). According to Lemma 1 and Lemma 2

there is a constant c such that

U µ̃(x) = v(x) + Dv(x) + c

for each x ∈ G. Since

|U µ̃(x)| 6 K +KvG(x) + |c| 6 K +K
(
V G +

1
2

)
+ |c|

for x ∈ G by [12], Theorem 2.16, we have µ̃ ∈ C ′
b(∂G) by Theorem 1. Since |u| 6 K

λ-a.e., u+λ, u−λ ∈ C ′
b(∂G) by [25], Proposition 6 and µ = µ̃+u+λ−u−λ ∈ C ′

b(∂G).
c) ⇒ b) Let u be a weak solution of the third problem for the Laplace equation (3),

bounded in G. Then uϕ ∈ W 1,1(G) for each ϕ ∈ D . Since G is W 1,1-extendible we

can extend u to � m so that u ∈W 1,1
loc ( � m ). �

Theorem 3. Let G be unbounded, λ(∂H) > 0 for the unbounded component H
of G. Put

(7) ν0 =
∞∑

n=0

(
−τ − αI

α

)n λ
α
,

where

α >
1
2

(
V G + 1 + sup

x∈∂G
U λ(x)

)
.

Then u = (U ν0 − 1) ∈ W 1,1
loc ( � m ) is a bounded weak solution of the third problem

for the Laplace equation with zero boundary condition, which is nonconstant on H .
���������

. According to [17], Theorem 2 the function U ν0 is a weak solution of

the third problem for the Laplace equation with the boundary condition λ. Since
λ ∈ C ′

b(∂G), the function U ν0 is bounded by Theorem 1. Therefore u is a bounded

weak solution of the third problem for the Laplace equation with zero boundary
condition. Suppose now that u is constant on H . Since u(x) → −1 as |x| → ∞ we
have u = −1 on H . Since clH ∩ cl(G \ H) = ∅ by [19], Lemma 3 we can choose
ϕ ∈ D such that ϕ = 0 on G \H and ϕ = 1 on ∂H . Then

0 =
∫

G

∇ϕ · ∇u dHm +
∫

∂G

ϕu dλ = −λ(∂H) < 0,

what is a contradiction. �

2. Lipschitz domains

In the rest of the paper we will suppose that ∂G is locally a graph of a Lipschitz

function.
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Theorem 4. Denote by G1, . . . , Gk all components of G. Let µ ∈ C ′
0(∂G). Then

there is a bounded weak solution of the Neumann problem for the Laplace equation

with the boundary condition µ if and only if µ ∈ C ′
b(∂G). The general form of this

solution is

(8) u = U ν +
k∑

j=1

cjχGj ,

where

(9) ν = µ+ 2
∞∑

j=0

(I − 2NGU )j(I −NGU )µ,

χGj are characteristic functions of Gj , and cj are arbitrary constants.
���������

. According to Theorem 2 there is a bounded function on G which is a

weak solution of the Neumann problem for the Laplace equation with the boundary
condition µ if and only if µ ∈ C ′

b(∂G).
Suppose now that µ ∈ C ′

b(∂G). According to Theorem 1 and [16], Theorem 1 the
function u given by (8) is a bounded weak solution of the Neumann problem for the
Laplace equation with the boundary condition µ, which is in W 1,1( � m ). Let v be a
bounded weak solution of the Neumann problem for the Laplace equation with the
boundary condition µ. Since v ∈ W 1,1(H) for each bounded open subset H of G and
G is W 1,1 extendible, we can suppose that v ∈ W 1,1

loc ( � m ). The function w = v−U ν

is a bounded weak solution of the Neumann problem for the Laplace equation with

zero boundary condition. Put w̃ = w for G bounded and w̃ = w − w(∞) for G
unbounded (see Lemma 2). According to Lemma 1 and Lemma 2 we have w̃ = −Dw̃

in G. Put

WGf(x) = dG(x)f(x) +
∫

∂G

f(y)nG(y) · ∇hx(y) dHm−1(y),

W
� m\Gf(x) = d � m\G(x)f(x) −

∫

∂G

f(y)nG(y) · ∇hx(y) dHm−1(y)

for x ∈ ∂G and f ∈ B, the space of all bounded Baire functions on ∂G. Since

w̃ = −Dw̃ in G we obtain w̃ = W
� m\Gw̃ on ∂G (see [21], Lemma 3) and therefore

WGw̃ = 0. Let G1, . . . , Gn be all bounded components of G. Then WGχ∂Gj = 0
for j = 1, . . . , n (see [16], Lemma 1.13). (Here χ∂Gj denotes the characteristic
function of ∂Gj .) According to [16], Lemma 1.5 the operator WG is a bounded

Fredholm operator with index 0 on B. Since NGU is the restriction of the adjoint
operator of WG to C ′(∂G) (see [24], Proposition 8) and the kernel of the adjoint

329



operator of WG is a subset of C ′(∂G) (see [16], Theorem 1.12), the dimension of
the kernel of WG is equal to the dimension of the kernel of NGU . Since NGU

is a Fredholm operator with index 0, the dimension of the kernel of WG is equal
to the codimension of the range of NGU . Since the codimension of the range of

NGU is equal to n by [16], Theorem 1.14, the functions χ∂G1 , . . . , χ∂Gn form a basis
of the kernel of WG. Since WGw̃ = 0 and w̃ = −Dw̃ in G, there are constants

a1, . . . , an such that w̃ = −a1Dχ∂G1 − . . . − anDχ∂Gn in G. Since χGj = −Dχ∂Gj

for j = 1, . . . , n by Lemma 1 and Lemma 2, we obtain w̃ = a1χG1 + . . . anχGn in G.

�

Theorem 5. Denote by G1, . . . , Gk all components of G such that λ(∂Gj) = 0.
Let µ ∈ C ′

0(∂G). Then there is a bounded weak solution of the third problem for the
Laplace equation (3) if and only if µ ∈ C ′

b(∂G).
a) If G \ (G1 ∪ . . . ∪Gk) is bounded then the general form of this solution is

(10) u = U ν +
k∑

j=1

cjχGj ,

where

ν =
∞∑

n=0

(
−τ − αI

α

)n µ
α
,(11)

α >
1
2

(
V G + 1 + sup

x∈∂G
U λ(x)

)
,(12)

and cj are arbitrary constants.

b) If G \ (G1 ∪ . . . ∪Gk) is unbounded then the general form of this solution is

(13) u = U ν +
k∑

j=1

cjχGj + ck+1(U ν0 − 1),

where ν is given by (11), ν0 is given by (7) and cj are arbitrary constants; (10) is
a general form of a bounded weak solution v of the third problem for the Laplace

equation with the boundary condition µ for which v(x) → 0 as |x| → ∞.
���������

. Since G is W 1,1-extendible by [30], Remark 2.5.2, there is a bounded

function on G which is a weak solution of the third problem for the Laplace equa-
tion (3) if and only if µ ∈ C ′

b(∂G). (See Theorem 2.)
Suppose now that µ ∈ C ′

b(∂G). According to Theorem 1, Theorem 3 and [17],
Theorem 2 the function u given by (10) or (13) is a bounded weak solution of the third
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problem for the Laplace equation with the boundary condition µ. If G\(G1∪. . .∪Gk)
is unbounded and u is given by (10) then u(x) → 0 as |x| → ∞.
Let v be a bounded weak solution of the third problem for the Laplace equation

with the boundary condition µ. Then w = v − U ν is a bounded weak solution of
the third problem for the Laplace equation with zero boundary condition. Then

w is a bounded weak solution of the Neumann problem for the Laplace equation
with the boundary condition −wλ. Let G1, . . . , Gn be all components of G. Ac-

cording to Theorem 4 there are ν̃ ∈ C ′(∂G) and constants c1, . . . , cn such that
w = U ν̃ + c1χ∂G1 + . . . + cnχ∂Gn . Let f be the characteristic function of the un-

bounded component of G for G unbounded; f ≡ 0 for G bounded. Since for each
bounded component H of G there is νH ∈ C ′(∂G) such that U νH = 1 on H and
U νH = 0 on G \ H (see [20], Lemma 1), there are ν ′ ∈ C ′(∂G) and a constant a
such that w = U ν′ + af . If G \ (G1 ∪ . . . ∪ Gk) is bounded then U ν′ = w − af is

a weak solution of the third problem for the Laplace equation with zero boundary
condition. Then U ν′ = a1χ∂G1 + . . .+akχ∂Gk

for some constants a1, . . . , ak by [16],

Theorem 1.12. Suppose now that G \ (G1 ∪ . . . ∪ Gk) is unbounded. Theorem 3
yields that w̃ = w + a(U ν0 − 1) is a bounded weak solution of the third boundary
problem with zero boundary condition and w̃(x) → 0 as |x| → ∞. As was shown
there are ν′′ ∈ C ′(∂G) and a constant b such that w̃ = U ν ′′ + bf . Since w̃(x) → 0
as |x| → ∞ we obtain b = 0. Therefore U ν ′′ = a1χ∂G1 + . . . + akχ∂Gk

for some
constants a1, . . . , ak by [16], Theorem 1.12. �

Lemma 3. Let u be a bounded weak solution of the third problem for the

Laplace equation with the boundary condition µ ∈ C ′(∂G). Then |∇u| ∈ L2(G). If
G is bounded then u ∈ W 1,2(G). If G is unbounded and m > 4 then u ∈ W 1,2(G)
if and only if u(x) → 0 as |x| → ∞. Let now m 6 4 and H be an unbounded
component of G. Denote by λ̃ the restriction of λ to ∂G. If U λ̃ is constant on ∂H

(for example if λ̃ = 0) then u ∈ W 1,2(G) if and only if u(x) → 0 as |x| → ∞ and
µ(∂H) = 0.

���������
. According to Theorem 5 the function u has the form (10) or (13). Since

ν, ν0 ∈ C ′
b(∂G) by Theorem 1 and Theorem 3, |∇U ν|, |∇U ν0| ∈ L2( � m ) by [26],

Proposition 23. Therefore |∇u| ∈ L2(G). If G is bounded then u ∈W 1,2(G), because
u is bounded. If G is unbounded and m > 4 then u ∈ L2(G) if and only if u(x) → 0
as |x| → ∞ by [20], Lemma 3. Suppose now that H is an unbounded component
of G, m 6 4 and U λ̃ is equal to a constant c on ∂H . If u ∈W 1,2(G) then u(x) → 0 as
|x| → ∞ by [20], Lemma 3. Suppose now that u(x) → 0 as |x| → ∞. Denote by µ̃ the
restriction of µ to ∂H . Then NHu+ uλ̃ = µ̃. Since V H <∞, ress(NHU − 1

2I) <
1
2
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(see [16], Theorem 2.3), Theorem 5 yields that u = U ν̃ on H , where

ν̃ =
∞∑

n=0

(
−τ

H − αI

α

)n µ̃
α
.

u ∈W 1,2(H) if and only if ν̃( � m ) = 0, because U ν̃(x) = ν̃( � m )|x|2−m +O(|x|1−m)
for |x| → ∞. If ν̃(∂H) = 0 then Fubini’s theorem and [18], Lemma 9 yield µ(∂H) =
µ̃(∂H) = τH ν̃(∂H) = NHU ν̃(∂H) +

∫
U ν̃ dλ̃ = 0 +

∫
U λ̃ dν̃ = cν̃(∂H) = 0. On

the other hand, if µ(∂H) = 0 we get by induction (I − α−1τH)nµ̃(∂H) = 0 and
therefore ν̃(∂H) = α−1

∑
(I − α−1τH )nµ̃(∂H) = 0. �

Example 1. Let G = � 3 \ cl Ω1([2, 0, 0]) \ clΩ1([−2, 0, 0]). For fixed constants
c ∈ (1/2, 1〉, a ∈ (0,∞) put u(x) = 1/|x− [2, 0, 0]| − c/|x− [−2, 0, 0]|,

λ(M) =
∫

∂Ω1([−2,0,0])∩M
a/|u| dH2,

µ(M) =
∫

∂G∩M

∂u

∂n
dH2 − aH2(M ∩ ∂Ω1([−2, 0, 0]))

for any Borel set M . Then u is a weak bounded solution of the third problem for
the Laplace equation with the boundary condition µ. If c < 1 and a = 1 − c then

u 6∈W 1,2(G) but µ(∂G) = H2(Ω1(0))[1− c− (1− c)] = 0. If c = 1 then u ∈W 1,2(G)
but µ(∂G) = −aH2(Ω1(0)) 6= 0.

Definition. Let f ∈ L∞(H ) be a nonnegative function. Let L be a bounded
linear functional on W 1,2(G) such that L(ϕ) = 0 for each ϕ ∈ D(G) = {ϕ ∈
D ; sptϕ ⊂ G}. We say that u ∈W 1,2(G) is a weak solution in W 1,2(G) of the third
problem

∆u = 0 on G,(14)
∂u

∂n
+ uf = L on ∂G,

if ∫

G

∇u · ∇v dHm +
∫

∂G

ufv dH = L(v)

for each v ∈ W 1,2(G).

Remark 3. Let u be a weak solution in W 1,2(G) of (14). If there is µ ∈ C ′(G)
such that L(ϕ) =

∫
ϕ dµ for each ϕ ∈ D then u is a weak solution of (3) with

λ = fH .
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Lemma 4. Let µ ∈ C ′
b(∂G). Then there is a unique bounded linear functional Lµ

on W 1,2(G) such that

Lµ(ϕ) =
∫

∂G

ϕ dµ

for each ϕ ∈ D .
���������

. Let G1, . . . , Gn are all components of G. Fix real numbers c1, . . . , cn
such that µ(∂Gj)− cjH (∂Gj) = 0 for j = 1, . . . , n. Put

µ̃(M) = µ−
n∑

j=1

cjH (M ∩ ∂Gj)

for each Borel setM . Since µ̃ ∈ C ′
b(∂G) by [17], Remark 6, there is ν ∈ C ′

b(∂G) such
that NGU ν = µ̃ by Theorem 5 and Theorem 1. Fix ψ ∈ D such that ψ = 1 in a
neighbourhood of ∂G. If ϕ ∈ D then Hölder’s inequality yields

∫

∂G

ϕ dµ̃ =
∫

∂G

ψϕ dNGU ν =
∫

G

∇(ψϕ) · ∇U ν dHm

6 sup |ψ|
(∫

G∩sptψ

|∇ϕ|2 dHm

)1/2(∫

G∩sptψ

|∇U ν|2 dHm

)1/2

+ sup |∇ψ|
(∫

G∩sptψ

|ϕ|2 dHm

)1/2(∫

G∩sptψ

|∇U ν|2 dHm

)1/2

6 C‖ϕ‖W 1,2(G),

where

C = 2(sup |ψ|+ sup |∇ψ|)
(∫

G∩sptψ

|∇U ν|2 dHm

)1/2

<∞

by Lemma 3. According to the Hahn-Banach theorem there is a bounded linear
functional Lµ̃ on W 1,2(G) such that

Lµ̃(ϕ) =
∫

∂G

ϕ dµ̃

for each ϕ ∈ D . If we define

Lµ(v) = Lµ̃(v) +
n∑

j=1

cj

∫

Gj

v dH

for v ∈W 1,2(G), then Lµ is a bounded linear operator onW 1,2(G) satisfying Lµ(ϕ) =∫
ϕ dµ for each ϕ ∈ D . Since D is dense in W 1,2(G) by [30], Remark 2.5.2 and [30],
Lemma 2.1.3, the functional Lµ is unique. �
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Lemma 5. Let f ∈ L∞(H ) be a nonnegative function, λ = fH . Let µ ∈
C ′

0(∂G). If u, v ∈ W 1,2(G) are weak solutions of (3) then w ≡ u−v is locally constant
in G and w = 0 on the unbounded component of G and on each component H of G
for which λ(∂H) > 0.
���������

. Fix a sequence ϕn ∈ D such that ϕn → w in W 1,2(G) (see [30],
Remark 2.5.2 and [30], Lemma 2.1.3). Then

0 = lim
n→∞

[∫

G

∇w · ∇ϕn dHm +
∫

∂G

wfϕn dH

]
=

∫

G

|∇w|2 dHm +
∫

∂G

w2f dH .

Since
∫
|∇w|2 dHm > 0,

∫
fw2 dH > 0, we have

∫
|∇w|2 dHm = 0 and therefore

w is locally constant on G. Since
∫
fw2 dH = 0 we obtain that w = 0 on each

component H of G for which λ(∂H) > 0. Since w ∈ W 1,2(G) and w is constant on
the unbounded component of G, w = 0 on this component. �

Theorem 6. Let f ∈ L∞(H ) be a nonnegative function, λ = fH . Let µ ∈
C ′

0(∂G) ∩ C ′
b(∂G), and let L be a bounded linear functional on W 1,2(G) such that

L(ϕ) =
∫
ϕ dµ for each ϕ ∈ D . If G is unbounded and m 6 4 suppose moreover that

µ(∂H) = 0 and f = 0 on ∂H , where H is the unbounded component of G. Then
there is a bounded weak solution u in W 1,2(G) of the third problem for the Laplace
equation (14). If G1, . . . , Gk are all components of G such that λ(∂Gj) = 0, then
the general solution of this problem has the form (10), where ν is given by (11) and

cj = 0 for Gj unbounded and cj is an arbitrary constant for Gj bounded.
���������

. Let ν be given by (11). Then U ν is a bounded weak solution of (3) by
Theorem 5. According to Lemma 3 we have U ν ∈ W 1,2(G). For fixed v ∈W 1,2(G)
choose ϕn ∈ D such that ϕn → v in W 1,2(G) as n→∞ (see [30], Remark 2.5.2 and
[30], Lemma 2.1.3). Then

L(v) = lim
n→∞

∫
ϕn dµ = lim

n→∞

[∫

G

∇ϕn · ∇U ν dHm +
∫

∂G

ϕnfU ν dH

]

=
∫

G

∇v · ∇U ν dHm +
∫

∂G

vfU ν dH .

U ν is a weak solution inW 1,2(G) of the third problem (14). If u has the form (10),
where cj = 0 for Gj unbounded, then u is a weak solution of this third problem.
Let u ∈ W 1,2(G) be a weak solution in W 1,2(G) of the third problem (14).

Lemma 5 yields that u has the form (10) with cj = 0 for Gj unbounded. �
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Theorem 7. Let f ∈ L∞(H ) be a nonnegative function. Let L be a bounded
linear functional on W 1,2(G) and µ ∈ C ′(∂G) be such that L(ϕ) =

∫
ϕ dµ for each

ϕ ∈ D . If u ∈ W 1,2(G) is a weak solution in W 1,2(G) of the third problem for the
Laplace equation (14) then u is bounded in G if and only if µ ∈ C ′

b(∂G).
���������

. Put λ = fH . Since NGu + uλ = µ, [17], Theorem 1 yields that

µ ∈ C ′
0(∂G). If the function u is bounded then µ ∈ C ′

b(∂G) by Theorem 2, because
G is W 1,1-extendible by [30], Remark 2.5.2. Suppose now that µ ∈ C ′

b(∂G). If G
is bounded put G̃ = G. If G is unbounded fix R > 0 such that ∂G ⊂ ΩR(0) and put
G̃ = G ∩ ΩR(0), µ̃ = µ+ ∂u/∂n(Hm−1/∂ΩR(0)), f = 0 on ∂ΩR(0). Since V G <∞
we have V G̃ < ∞. Since ress(NGU − 1

2I) <
1
2 and (NHU − 1

2I) is compact for
each bounded open set H with a smooth boundary (see [12], Theorem 4.1, Propo-

sition 2.20, [29], Theorem 4.1), [16], Theorem 2.3 yields that ress(N G̃U − 1
2I) <

1
2 .

Since N G̃u + uλ = µ̃, [17], Theorem 1 yields that µ̃ ∈ C ′
0(∂G). If G is unbounded

then ∂u/∂n(Hm−1/∂ΩR(0)) ∈ C ′
b(∂G̃) by [17], Remark 6 and therefore µ̃ ∈ C ′

b(∂G̃).
According to Theorem 6 there is a bounded v ∈ W 1,2(G) which is a weak solution
in W 1,2(G) of the third problem for the Laplace equation on G̃ with the boundary
condition Lµ̃

∆v = 0 in G̃,

∂v

∂n
+ fv = Lµ̃ on ∂G̃.

Since u − v is locally constant in G̃ by Lemma 5, the function u is bounded in G̃.
Since u ∈ W 1,2(G), u(x) → 0 as |x| → ∞ (see [20], Lemma 3). Therefore u is

bounded in G. �

Definition. Let f ∈ L∞(H ) be a nonnegative function. Let g ∈ L2(G) and let
L be a bounded linear functional onW 1,2(G) such that L(ϕ) = 0 for each ϕ ∈ D(G).
We say that u ∈W 1,2(G) is a weak solution in W 1,2(G) of the third problem for the
Poisson equation

∆u = g on G,(15)
∂u

∂n
+ uf = L on ∂G,

if ∫

G

∇u · ∇v dHm +
∫

∂G

ufv dH = L(v)−
∫

G

gv dHm

for each v ∈ W 1,2(G).
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Theorem 8. Let f ∈ L∞(H ) be a nonnegative function. Let g ∈ Lp( � m ), where
p > m, be a compactly supported function. Put λ = fH . Denote by G1, . . . , Gk all

bounded components of G such that λ(∂Gj) = 0. Let µ ∈ C ′
b(∂G) be such that

µ(∂Gj) =
∫

Gj

g dHm

for j = 1, . . . , k. If G is unbounded and m 6 4 suppose moreover that

∫
�

m

g dHm = 0,

µ(∂H) =
∫

H

g dHm,

λ(∂H) = 0 for the unbounded component H of G. Then there is u ∈ W 1,2(G) which
is a weak solution in W 1,2(G) of the third problem for the Poisson equation (15)
with the boundary condition L ≡ Lµ. The general form of this solution is

(16) u = U ν −U (gHm) +
k∑

j=1

cjχGj ,

where

ν =
∞∑

n=0

(
−τ − αI

α

)n µ̃
α
,(17)

µ̃ = µ+ [nG · ∇U (gHm)]H + U (gHm)λ,(18)

α >
1
2

(
V G + 1 + sup

x∈∂G
U λ(x)

)
.

���������
. Put

ϕ(x) =

{
C exp[−1/(1− |x|2)] for |x| < 1,

0 for |x| > 1,

where C is chosen so that
∫
ϕ = 1. For ε > 0 put ϕε(x) = ε−mϕ(xε). Since

U (gHm) ∈ C 1( � m ) (see [6], Theorem A.6, Theorem A.11), ϕε ∗ U (gHm) →
U (gHm), ϕε ∗ ∇U (gHm) → ∇U (gHm) locally uniformly as ε ↘ 0 (see [30],
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Theorem 1.6.1, [27], § 12). The Divergence Theorem (see [12], p. 49) and [6], Theo-

rem A.16 yield for j ∈ {1, . . . , k}

µ̃(∂Gj) = µ(∂Gj) +
∫

∂Gj

nG(y) · ∇U (gHm)(y) dH (y)

= µ(∂Gj) + lim
ε→0+

∫

∂Gj

nG(y) · (ϕε ∗ ∇U (gHm))(y) dH (y)

= µ(∂Gj) + lim
ε→0+

∫

∂Gj

nG(y) · ∇[ϕε ∗ (h0 ∗ g)](y) dH (y)

= µ(∂Gj) + lim
ε→0+

∫

∂Gj

nG(y) · ∇[h0 ∗ (ϕε ∗ g)](y) dH (y)

= µ(∂Gj) + lim
ε→0+

∫

Gj

∆U [(ϕε ∗ g)Hm] dHm

= µ(∂Gj)− lim
ε→0+

∫

Gj

(ϕε ∗ g) dHm = µ(∂Gj)−
∫

Gj

g dHm = 0.

If G is unbounded and m 6 4 then [6], Theorem A.16 and the Divergence Theorem
(see [12], p. 49) yield

µ̃(∂H) = lim
R→∞

{
lim
ε→0+

∫

∂(H∩ΩR(0))

nH∩ΩR(0) · [ϕε ∗ ∇U (gHm)] dHm−1

−
∫

∂ΩR(0)

nΩR(0)(y) · ∇U (gHm)(y) dHm−1(y)
}

+ µ(∂H)

= lim
R→∞

lim
ε→0+

∫

∂(H∩ΩR(0))

nH∩ΩR(0) · ∇[h0 ∗ (ϕε ∗ g)] dHm−1 + µ(∂H)

= lim
R→∞

lim
ε→0+

∫

H∩ΩR(0)

∆U [(ϕε ∗ g)Hm] dHm + µ(∂H)

= − lim
R→∞

lim
ε→0+

∫

H∩ΩR(0)

(ϕε ∗ g) dHm + µ(∂H)

= −
∫

H

g dHm + µ(∂H) = 0.

According to Theorem 6,

U ν +
k∑

j=1

cjχGj

is a weak solution in W 1,2(G) of the third problem for the Laplace equation (14)
with the boundary condition L ≡ Lµ̃. If u has the form (16) then [20], Lemma 5

yields that u is a weak solution in W 1,2(G) of the third problem for the Poisson
equation (15) with the boundary condition L ≡ Lµ.
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Let now u ∈ W 1,2(G) be a weak solution of the third problem for the Poisson
equation (15) with the boundary condition L ≡ Lµ. Then

w = u−U ν + U (gHm)

is a weak solution in W 1,2(G) of the third problem for the Laplace equation with the
zero boundary condition. According to Lemma 5 the function w is locally constant

and vanishes on G \ (G1 ∪ . . . ∪Gk). �

Theorem 9. Let f ∈ L∞(H ) be a nonnegative function. Let g ∈ Lp( � m ),
where p > m, be a compactly supported function. Let L be a bounded linear

functional on W 1,2(G) and µ ∈ C ′(∂G) be such that L(ϕ) =
∫
ϕ dµ for each ϕ ∈ D .

If u ∈ W 1,2(G) is a weak solution in W 1,2(G) of the third problem for the Poisson
equation (15) then u is bounded in G if and only if µ ∈ C ′

b(∂G).
���������

. Changing g on � m \G we can suppose that
∫
�

m

g dHm = 0.

Put λ = fH , % ≡ −[nG · ∇U (gHm)]H − U (gHm)λ. Then [20], Lemma 5 yields
that u + U (gHm) is a weak solution in W 1,2(G) of the Neumann problem for the
Laplace equation with the boundary condition L − L%. Since U (gHm) ∈ C1( � m )
(see [6], Theorem A.6 and Theorem A.11) and U (gHm)(x) → 0 as |x| → ∞, the
function U (gHm) is bounded. Therefore u is bounded if and only if u+U (gHm) is
bounded. According to Theorem 7 the function u+U (gHm) is bounded if and only
if µ − % ∈ C ′

b(∂G). Since % ∈ C ′
b(∂G) by [20], Lemma 5, the function u is bounded

in G if and only if µ ∈ C ′
b(∂G). �
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