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Abstract. In this paper we develop the monotone method in the presence of upper and
lower solutions for the 2nd order Lidstone boundary value problem

u(2n)(t) = f(t, u(t), u′′(t), . . . , u(2(n−1))(t)), 0 < t < 1,

u(2i)(0) = u(2i)(1) = 0, 0 6 i 6 n− 1,

where f : [0, 1] × � n → � is continuous. We obtain sufficient conditions on f to guarantee
the existence of solutions between a lower solution and an upper solution for the higher
order boundary value problem.

Keywords: n-parameter eigenvalue problem, Lidstone boundary value problem, lower
solution, upper solution

MSC 2000 : 34B15

1. Introduction

Consider the 2nd order Lidstone boundary value problem

u(2n)(t) = f(t, u(t), u′′(t), . . . , u(2(n−1))(t)), 0 < t < 1,(1.1)

u(2i)(0) = u(2i)(1) = 0, 0 6 i 6 n− 1,(1.2)

where f : [0, 1]× � n → � is continuous.

The project is supported by the Natural Science Foundation of China (10371030), by
the Science and Technology Research development foundation for Universities of Shanxi
Province (20051254), and by the Doctoral Program Foundation of Hebei Province
(B2004204).
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The fourth order boundary value problem

u(4)(t) = f(t, u(t), u′′(t)), 0 < t < 1,(1.3)

u(0) = u(1) = u′′(0) = u′′(1),(1.4)

has been studied by many authors. In [1]–[5], the authors showed the existence of

a positive solution to (1.3)–(1.4) under some growth conditions on f and a non-
resonance condition involving a two parameter linear eigenvalue problem by using

the Leray-Schauder continuation method and topological degree.
For an equation of the form

u(4)(t) = f(t, u(t)),

the upper and lower solution method has been studied by several authors [6]–[10].

Recently, Ma and Bai [11], [12] developed the monotone method in the presence of
upper and lower solutions for the problem (1.3)–(1.4).

For the 2nd order Lidstone boundary value problem (1.1)–(1.2), in [13]–[15], Davis
et al. showed the existence of multiple positive solutions under some growth con-

ditions by using the Leggett-Williams fixed point theorem and the five functionals
fixed point theorem. Note that [14] and [15] are the only two works which have

allowed f to depend on higher order derivatives of u. Motivated by Bai [11], in
this paper we present an upper and lower solution type theorem for the boundary

problem (1.1)–(1.2) without any growth restriction on f . The problem (1.1)–(1.2) is
formulated without constants ai (or ri) which play a substantial role in Theorem 3.1.

These constants specify a possible qualitative behavior of the function f . Our result
relaxes the monotone conditions on f , and this approach is better than the simplest

one—choosing ai = 0, i.e., the monotone conditions on f (see Example).

2. Preliminary results

Lemma 2.1. Given (a1, a2, . . . , an) ∈ � n , the problem

u(2n) − a1u
(2(n−1)) + . . . + (−1)n−1an−1u

′′ + (−1)nanu = 0,(2.1)

u(2i)(0) = u(2i)(1) = 0, 0 6 i 6 n− 1(2.2)

has a non-trivial solution if and only if

(2.3)
a1

(kπ)2
+

a2

(kπ)4
+ . . . +

an

(kπ)2n
+ 1 = 0

for some k ∈ � .
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���������
. Let Au = u′′. Then

u(2n) − a1u
(2(n−1)) + . . . + (−1)n−1an−1u

′′ + (−1)nanu =
( n∏

i=1

(A− ri)
)

u

for some ri ∈ C, 1 6 i 6 n. It is easy to see that if (2.1)–(2.2) possesses a nontrivial

solution, then one of the ri (1 6 i 6 n) is equal to −(kπ)2 for some k ∈ � , k 6= 0. So
sin kπt is a nontrivial solution of (2.1)–(2.2). By substituting this solution into (2.1),

(2.3) follows. Reciprocally, if (2.3) holds, then clearly sin kπt is a nontrivial solution
of (2.1)–(2.2).

Lemma 2.2 [11]. If u(t) satisfies

u′′(t) + g(t)u′(t) + h(t)u(t) > 0, t ∈ (a, b),

where h(t) 6 0, g, h are bounded in any closed subset of (a, b), and there is c ∈
(a, b) such that M = u(c) = max

a6t6b
u(t) is a nonnegative maximum, then u(t) ≡ M .

Moreover, if h(t) 6 0 and h(t) 6≡ 0, then M = 0.
Let for

F = {u ∈ C2n[0, 1] : (−1)iu2i(0) > 0, (−1)iu(2i)(1) > 0, 0 6 i 6 n− 1}

the operator

L : F → C[0, 1]

be defined by Lu = u(2n) − a1u
(2(n−1)) + . . . + (−1)n−1an−1u

′′ + (−1)nanu, u ∈ F .

Here ai (1 6 i 6 n) are such that the equation xn − a1x
n−1 + . . . + (−1)n−1an−1x +

(−1)nan = 0 has only nonnegative real roots.

Lemma 2.3. If u ∈ F satisfies (−1)nLu > 0, then u > 0 in [0, 1].

���������
. Let Au = u′′. Suppose ri (1 6 i 6 n) are n nonnegative real roots of

the equation xn − a1x
n−1 + . . . + (−1)n−1an−1x + (−1)nan = 0; we have

(−1)nLu = (−1)n(A− rn)(A − rn−1) . . . (A− r1)u > 0.

Let yi = (A − ri) . . . (A − r1)u, 1 6 i 6 n − 1. Then (−1)n(A − rn)yn−1 > 0,
i.e., (−1)ny′′n−1 − (−1)nrnyn−1 > 0. On the other hand, ri > 0, 1 6 i 6 n − 1, and
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u ∈ F yield

(−1)nyn−1(0) = (−1)n

[
u(2(n−1))(0)−

n−1∑

i=1

riu
(2(n−2))(0) + . . . + (−1)n−1

n−1∏

i=1

riu(0)
]

6 0,

(−1)nyn−1(1) = (−1)n

[
u(2(n−1))(1)−

n−1∑

i=1

riu
(2(n−2))(1) + . . . + (−1)n−1

n−1∏

i=1

riu(1)
]

6 0.

By Lemma 2.2, we have

(−1)nyn−1 6 0 for t ∈ [0, 1],

i.e.,

(−1)n−1yn−1 > 0 for t ∈ [0, 1].

By inductive method and using Lemma 2.2, the result follows. �

3. Main results

Definition 3.1. Suppose α ∈ C2n[0, 1]. We say α is an upper solution for the
problem (1.1)–(1.2) if α satisfies

(−1)nα(2n)(t) > (−1)nf(t, α(t), α′′(t), . . . , α(2(n−1))(t)), 0 < t < 1,

(−1)iα(2i)(0) > 0, (−1)iα(2i)(1) > 0, 0 6 i 6 n− 1.

Definition 3.2. Suppose β ∈ C2n[0, 1]. We say β is a lower solution for the
problem (1.1)–(1.2) if β satisfies

(−1)nβ(2n)(t) 6 (−1)nf(t, β(t), β′′(t), . . . , β(2(n−1))(t)), 0 < t < 1,

(−1)iβ(2i)(0) 6 0, (−1)iβ(2i)(1) 6 0, 0 6 i 6 n− 1.

If the equation xn − a1x
n−1 + . . . + (−1)n−1an−1x + (−1)nan = 0 has only non-

negative real roots, then ai > 0, 1 6 i 6 n. Let

(3.1) f1(t, u0, . . . , un−1) = f(t, u0, . . . , un−1)−a1un−1+ . . .+(−1)n−1u1+(−1)nu0.

Then (1.1) is equivalent to

(3.2) Lu = f1(t, u, u′′, . . . , u(2(n−1))).
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Remark 1. In Definition 3.1, we say α is an upper solution for the problem (3.2)–

(1.2) if α satisfies

(−1)n(Lα)(t) > (−1)nf1(t, α(t), α′′(t), . . . , α(2(n−1))(t)), 0 < t < 1,

(−1)iα(2i)(0) > 0, (−1)iα(2i)(1) > 0, 0 6 i 6 n− 1.

Similarly, we may define a lower solution for the problem (3.2)–(1.2). Therefore,

α, β are upper and lower solutions of the problem (1.1)–(1.2) if and only if α, β are
upper and lower solutions of the problem (3.2)–(1.2).

Definition 3.3. If . . . 6 αm 6 . . . 6 α1 6 α0 = α are upper solutions converging

uniformly to a solution u for the problem (1.1)–(1.2), we say u is an extremal solution
for the problem (1.1)–(1.2).

Similarly, for an lower solutions β = β0 6 β1 6 . . . 6 βm 6 . . ., we may define an
extremal solution for the problem (1.1)–(1.2).

Let
k∏

i=1

(A− ri)u = u(2k) − akku(2(k−1)) + . . . + (−1)kak1u,

where A = u′′, ri > 0, aki > 0 (i = 1, 2, . . . , k; k = 1, 2, . . . , n). Set b11 = a11 = r1,
bkk = akk , bk,k−1 = akkbk−1,k−1 + ak,k−1, bk,k−2 = akkbk−1,k−2 + ak,k−1bk−2,k−2 +
ak,k−2, . . ., bk1 = akkbk−1,1 + ak,k−1bk−2,1 + . . . + ak2b11 + ak1 (k = 2, 3, . . . , n).

Theorem 3.1. Let there exist upper and lower solutions α and β respectively for

the problem (1.1)–(1.2) which satisfy

(1) β 6 α, β(2k) 6 α(2k) +
k−1∑
i=0

(−1)ibk,i+1(α−β)(2i) (k = 2, 4, 6, . . ., and k 6 n−1),

α(2k) 6 β(2k) +
k−1∑
i=0

(−1)ibk,i+1(α− β)(2i) (k = 1, 3, 5, . . ., and k 6 n− 1); and if

f : [0, 1]× � n → � is continuous and satisfies
(2) (−1)n

[
f
(
t, y

(2)
0 , y1, . . . , yn−1

)
− f

(
t, y

(1)
0 , y1, . . . , yn−1

)]
> −an

(
y
(2)
0 − y

(1)
0

)
for

β(t) 6 y
(1)
0 6 y

(2)
0 6 α(t), y1, . . . , yn−1 ∈ � , and t ∈ [0, 1];

(3) (−1)n−k
[
f
(
t, y0, . . . , y

(2)
k , . . . , yn−1

)
− f

(
t, y0, . . . , y

(1)
k , . . . , yn−1

)]
> −an−k ×

(
y
(2)
k −y

(1)
k

)
for y(1)

k 6 y
(2)
k +

k−1∑
i=0

(−1)ib′k,i+1(α−β)(2i) and α(2k)−
k−1∑
i=0

(−1)ib′k,i+1×

(α− β)(2i) 6 y
(1)
k , y

(2)
k 6 β(2k) +

k−1∑
i=0

(−1)ib′k,i+1(α− β)(2i) if k = 1, 3, 5, . . ., k 6

n−1, β(2k)−
k−1∑
i=0

(−1)ib′k,i+1(α−β)(2i) 6 y
(1)
k , y

(2)
k 6 α(2k) +

k−1∑
i=0

(−1)ib′k,i+1(α−

β)(2i) if k = 2, 4, . . ., k 6 n− 1, y1, . . . , yk−1, yk+1, . . . , yn−1 ∈ � , and t ∈ [0, 1],
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where b′ki = 2bki − aki (k = 1, 2, . . . , n− 1; i 6 k), a1, a2, . . . , an such that the

equation xn−a1x
n−1 + . . .+(−1)n−1an−1x+(−1)nan = 0 has only nonnegative

real roots, which are ri (i = 1, 2, . . . , n).

Then there exist two monotone sequences {αn} and {βn}, non-increasing and non-
decreasing, with α0 = α and β0 = β, which converge uniformly to the extremal

solutions in [β, α] of the problem (1.1)–(1.2).

���������
. (1) implies (−1)k(α−β)(2k) +

k−1∑
i=0

(−1)ibk,i+1(α−β)(2i) > 0 for 1 6 k 6
n− 1. Thus, for 1 6 k 6 n− 1, we have

k−1∑

i=0

ak,i+1

[
(−1)i(α− β)(2i) +

i−1∑

j=0

(−1)jbi,j+1(α− β)(2j)

]
> 0,

i.e.,

k−1∑

i=0

(−1)i

[
ak,i+1 +

k−1∑

j=i+1

ak,j+1bj,i+1

]
(α− β)(2i) =

k−1∑

i=0

(−1)ibk,i+1(α− β)(2i) > 0,

and

k−1∑

i=0

(−1)ib′k,i+1(α− β)(2i)(∗)

=
k−1∑

i=0

(−1)ibk,i+1(α − β)(2i) + akk

k−2∑

i=0

(−1)ibk−1,i+1(α− β)(2i)

+ ak,k−1

k−3∑

i=0

(−1)ibk−2,i+1(α− β)(2i) + . . . + ak2b11(α− β)

>
k−1∑

i=0

(−1)ibk,i+1(α − β)(2i) > 0.

Consider the problem

u(2n)(t)− a1u
(2(n−1))(t) + . . . + (−1)n−1an−1u

′′(t) + (−1)nanu(t)(3.3)

= f1(t, η(t), η′′(t), . . . , η(2(n−1))(t)), t ∈ (0, 1),

u(2i)(0) = u(2i)(1) = 0, 0 6 i 6 n− 1,(3.4)

where η ∈ C2(n−1)[0, 1].
It is easy to see that if xn − a1x

n−1 + . . . + (−1)n−1an−1x + (−1)nan = 0 has
only nonnegative real roots, then ai > 0, 1 6 i 6 n. By Lemma 2.1 and the
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Fredholm alternative [16], the problem (3.3)–(3.4) has a unique solution u. Define

T : C2(n−1)[0, 1] → C2n[0, 1] by

(3.5) Tη = u.

We first prove

(3.6) TC ⊆ C.

Here, C = {η ∈ C2(n−1)[0, 1] : β 6 η 6 α, α(2k) −
k−1∑
i=0

(−1)ib′k,i+1(α − β)(2i) 6

η(2k) 6 β(2k) +
k−1∑
i=0

(−1)ib′k,i+1(α − β)(2i) if k = 1, 3, 5, . . ., k 6 n − 1 and β(2k) −
k−1∑
i=0

(−1)ib′k,i+1(α− β)(2i) 6 η(2k) 6 α(2k) +
k−1∑
i=0

(−1)ib′k,i+1(α− β)(2i) if k = 2, 4, . . .,

k 6 n− 1}.
By (∗), it is easy to see that α, β ∈ C. Therefore, C is a nonempty bounded

closed subset of C2(n−1)[0, 1].

For η ∈ C, set u = Tη. By conditions (2)–(3) and (3.3), we have

(−1)n[(α − u)(2n)(t)− a1(α− u)(2(n−1))(t) + . . . + (−1)nan(α− u)(t)](3.7)

> (−1)n[f1(t, α(t), α′′(t), . . . , α(2(n−1))(t))

− f1(t, η(t), η′′(t), . . . , η(2(n−1))(t))]

= (−1)n[f(t, α(t), α′′(t), . . . , α(2(n−1))(t))

− f(t, η(t), η′′(t), . . . , η(2(n−1))(t))− a1(α− η)(2(n−1))(t) + . . .

+ (−1)n−1an−1(α− η)′′(t) + (−1)nan(α − η)(t)]

=
n−1∑

k=0

(−1)n[f(t, η(t), . . . , η(2(k−1)), α(2k)(t), . . . , α(2(n−1))(t))

− f(t, η(t), . . . , η(2k)(t), α(2(k+1))(t), . . . , α(2(n−1))(t))

+ (−1)n−kan−k(α− η)(2k)(t)]

=
n−1∑

k=0

(−1)k{(−1)n−k[f(t, η(t), . . . , η(2(k−1)), α(2k)(t), . . . , α(2(n−1))(t))

− f(t, η(t), . . . , η(2k)(t), α(2(k+1))(t), . . . , α(2(n−1))(t))]

+ an−k(α− η)(2k)(t)} > 0,
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(−1)n[(u− β)(2n)(t)− a1(u− β)(2(n−1))(t) + . . . + (−1)nan(u− β)(t)](3.7 ′)

> (−1)n[f1(t, η(t), η′′(t), . . . , η(2(n−1))(t))

− f1(t, β(t), β′′(t), . . . , β(2(n−1))(t))]

= (−1)n[f(t, η(t), η′′(t), . . . , η(2(n−1))(t))

− f(t, β(t), β′′(t), . . . , β(2(n−1))(t))− a1(η − β)(2(n−1))(t) + . . .

+ (−1)n−1an−1(η − β)′′(t) + (−1)nan(η − β)(t)]

=
n−1∑

k=0

(−1)n[f(t, β(t), . . . , β(2(k−1)), η(2k)(t), . . . , η(2(n−1))(t))

− f(t, β(t), . . . , β(2k)(t), η(2(k+1))(t), . . . , η(2(n−1))(t))

+ (−1)n−kan−k(η − β)(2k)(t)]

=
n−1∑

k=0

(−1)k{(−1)n−k[f(t, β(t), . . . , β(2(k−1)), η(2k)(t), . . . , η(2(n−1))(t))

− f(t, β(t), . . . , β(2k)(t), η(2(k+1))(t), . . . , η(2(n−1))(t))]

+ an−k(η − β)(2k)(t)} > 0,

(−1)i(α− u)(2i)(0) > 0, (−1)i(α− u)(2i)(1) > 0, 0 6 i 6 n− 1,(3.8)

(−1)i(u− β)(2i)(0) > 0, (−1)i(u− β)(2i)(1) > 0, 0 6 i 6 n− 1.(3.8 ′)

(3.7) and (3.8) imply α > u by Lemma 2.3. Similarly, (3.7)′ and (3.8)′ imply u > β.

Next we prove

α(2k) −
k−1∑

i=0

(−1)ibk,i+1(α− β)(2i) 6 u(2k)(3.9)

6 β(2k) +
k−1∑

i=0

(−1)ibk,i+1(α− β)(2i)

for k = 1, 3, 5, . . ., k 6 n− 1, and

β(2k) −
k−1∑

i=0

(−1)ibk,i+1(α− β)(2i) 6 u(2k)(3.10)

6 α(2k) +
k−1∑

i=0

(−1)ibk,i+1(α− β)(2i)

for k = 2, 4, 6, . . ., k 6 n− 1.
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By the proof of Lemma 2.3, combining (3.7) and (3.8), (3.7)′ and (3.8)′, for 1 6
k 6 n− 1 we get

(−1)k[(α− u)(2k)(t) +
k−1∑

i=0

(−1)k−iak,i+1(α− u)(2i)(t)] > 0, t ∈ [0, 1],(3.11)

(−1)k[(u− β)(2k)(t) +
k−1∑

i=0

(−1)k−iak,i+1(u− β)(2i)(t)] > 0, t ∈ [0, 1].(3.11 ′)

Therefore,

u′′(t) > α′′(t)− a11(α− u)(t) > α′′(t)− b11(α− β)(t), t ∈ [0, 1].

Similarly,

u′′(t) 6 β′′(t) + b11(α− β)(t), t ∈ [0, 1].

Thus,

u(4)(t) 6 α(4)(t)− a22(α− u)′′(t) + a21(α− u)(t)

= α(4)(t)− a22α
′′(t) + a22u

′′(t) + a21(α− u)(t)

6 α(4)(t)− a22(α− β)′′(t) + (a22b11 + a21)(α − β)(t)

= α(4)(t)− b22(α− β)′′(t) + b21(α− β)(t)

for t ∈ [0, 1]. Similarly,

u(4)(t) > β(4)(t) + b22(α− β)′′(t)− b21(α− β)(t), t ∈ [0, 1].

Suppose (3.9)–(3.10) hold for i from 1 to k−1. When k is an odd number, using (3.11)

we obtain

u(2k)(t) > α(2k)(t) +
k−1∑

i=0

(−1)k−iak,i+1(α− u)(2i)(t)

= α(2k)(t) +
k−1∑

i=0

(−1)k−iak,i+1α
(2i)(t)−

k−1∑

i=0

(−1)k−iak,i+1u
(2i)(t)
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> α(2k)(t)−
k−1∑

i=0

(−1)iak,i+1α
(2i)(t)

+
k−1∑

i=1

(−1)iak,i+1

[
β(2i)(t) + (−1)i−1

i−1∑

j=0

(−1)jbi,j+1(α− β)(2j)(t)
]
+ ak1β(t)

= α(2k)(t)−
k−1∑

i=0

(−1)i(ak,i+1 + ak,i+2bi+1,i+1 + . . . + akkbk−1,i+1)(α− β)(2i)(t)

= α(2k)(t)−
k−1∑

i=0

(−1)ibk,i+1(α − β)(2i)(t).

Similarly,

u(2k)(t) 6 β(2k)(t) +
k−1∑

i=0

(−1)ibk,i+1(α− β)(2i)(t).

When k is an even number, using (3.11) we get

u(2k)(t) 6 α(2k)(t) +
k−1∑

i=0

(−1)k−iak,i+1(α− u)(2i)(t)

= α(2k)(t) +
k−1∑

i=0

(−1)iak,i+1α
(2i)(t)−

k−1∑

i=0

(−1)iak,i+1u
(2i)(t)

6 α(2k)(t) +
k−1∑

i=0

(−1)iak,i+1α
(2i)(t)

−
k−1∑

i=1

(−1)iak,i+1

[
β(2i)(t) + (−1)i−1

i−1∑

j=0

(−1)jbi,j+1(α− β)(2j)(t)
]
− ak1β(t)

= α(2k)(t) +
k−1∑

i=0

(−1)ibk,i+1(α− β)(2i)(t).

Similarly,

u(2k)(t) > β(2k)(t)−
k−1∑

i=0

(−1)ibk,i+1(α− β)(2i)(t).

By inductive method, (3.9)–(3.10) hold. Thus, (3.6) holds.
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Let u1 = Tη1, u2 = Tη2, where η1, η2 ∈ C satisfy

η1 6 η2,

η
(2k)
2 6 η

(2k)
1 +

k−1∑

i=0

(−1)ib′k,i+1(α− β)(2i) (k = 1, 3, 5, . . . , k 6 n− 1),

η
(2k)
1 6 η

(2k)
2 +

k−1∑

i=0

(−1)ib′k,i+1(α− β)(2i) (k = 2, 4, 6, . . . , k 6 n− 1).

Next we show

u1 6 u2,(3.12)

u
(2k)
2 6 u

(2k)
1 +

k−1∑

i=0

(−1)ib′k,i+1(α− β)(2i) (k = 1, 3, 5, . . . , k 6 n− 1),

u
(2k)
1 6 u

(2k)
2 +

k−1∑

i=0

(−1)ib′k,i+1(α− β)(2i) (k = 2, 4, 6, . . . , k 6 n− 1).

In fact, by conditions (2)–(3),

(−1)nL(u2 − u1)(t)

= (−1)n
[
f1(t, η2(t), . . . , η

(2(n−1))
2 (t))− f1(t, η1(t), . . . , η

(2(n−1))
1 (t))

]
> 0,

(u2 − u1)(2i)(0) = (u2 − u1)(2i)(1) = 0, 1 6 i 6 n− 1.

By virtue of Lemma 2.3, we obtain u1 6 u2, and

(−1)k

[
(u2 − u1)(2k) +

k−1∑

i=0

(−1)k−iak,i+1(u2 − u1)(2i)

]
> 0, 1 6 i 6 n− 1.

When k is an odd number, we have

u
(2k)
2 6 u

(2k)
1 −

k−1∑

i=0

(−1)k−iak,i+1(u2 − u1)(2i)

6 u
(2k)
1 +

k−1∑

i=0

(−1)iak,i+1

[
(α − β)(2i) + 2(−1)i

i−1∑

j=0

(−1)jbi,j+1(α − β)(2j)

]

= u
(2k)
1 +

k−1∑

i=0

(−1)iak,i+1(α− β)(2i) + 2
k−1∑

i=0

i−1∑

j=0

(−1)jak,i+1bi,j+1(α− β)(2j)

= u
(2k)
1 +

k−1∑

i=0

(−1)i(ak,i+1 + 2(akkbk−1,i+1 + . . . + ak,i+2bi+1,i+1)(α− β)(2i)

= u
(2k)
1 +

k−1∑

i=0

(−1)ib′k,i+1(α− β)(2i).
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Similarly, when k is an even number, we have

u
(2k)
1 6 u

(2k)
2 +

k−1∑

i=0

(−1)ib′k,i+1(α− β)(2i).

Therefore, (3.12) holds.

Let α0 = α, β0 = β, αm = Tαm−1, βm = Tβm−1, m ∈ � . By (3.6) and (3.12), we
have

β = β0 6 β1 6 . . . 6 βm 6 . . . 6 αm 6 . . . 6 α1 6 α0 = α,(3.13)

α(2k) −
k−1∑

i=0

(−1)ib′k,i+1(α− β)(2i) 6 α(2k)
m ,(3.14)

β(2k)
m 6 β(2k) +

k−1∑

i=0

(−1)ib′k,i+1(α − β)(2i)

for k = 1, 3, 5, . . ., k 6 n− 1, and

β(2k) −
k−1∑

i=0

(−1)ib′k,i+1(α− β)(2i) 6 α(2k)
m ,(3.15)

β(2k)
m 6 α(2k) +

k−1∑

i=0

(−1)ib′k,i+1(α− β)(2i)

for k = 2, 4, . . ., k 6 n− 1. From the definition of T we get

α(2n)
m (t) = f1(t, αm−1(t), α′′

m−1(t), . . . , α
(2(n−1))
m−1 (t)) + a1α

(2(n−1))
m (t)− . . .(3.16)

− (−1)n−1an−1α
′′
m(t)− (−1)nanαm(t),

α(2i)
m (0) = α(2i)

m (1) = 0, 1 6 i 6 n− 1.(3.17)

From (3.13)–(3.16), we have that there exists Mn > 0 depending only on α and β

(but not on m or t) such that

(3.18) |α(2n)
m (t)| 6 Mn for all t ∈ [0, 1].

Using the boundary condition (3.17), we get that there exists ξm ∈ (0, 1) such that
α

(2n−1)
m (ξm) = 0 for each m ∈ � . This together with (3.18) yields

(3.19) |α(2n−1)
m (t)| =

∣∣∣∣α(2n−1)
m (ξm) +

∫ t

ξm

α(2n)
m (s) ds

∣∣∣∣ 6 Mn for all t ∈ [0, 1].
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By (3.14) and (3.15), we can similarly get that there are Mi > 0, 1 6 i 6 n − 1,
depending only on α and β (but not on m or t) such that

(3.20) |α(2i)
m (t)| 6 Mi, |α(2i−1)

m (t)| 6 Mi for all t ∈ [0, 1].

Thus, from (3.13) and (3.18)–(3.20) we know that {αm} is bounded in C2n[0, 1]. Sim-
ilarly, {βm} is bounded in C2n[0, 1]. Therefore, {αm}, {βm} converge uniformly to
the extremal solutions in [β, α] of the problem (3.2)–(1.2), i.e., {αm}, {βm} converge
uniformly to the extremal solutions in [β, α] of the problem (1.1)–(1.2).

Example. Consider the boundary value problem

u(6)(t) = 5u(4)(t)− 8u′′(t) + (u(t) + 1)2 − (sin πt + 1)2,(3.21)

u(0) = u(1) = u′′(0) = u′′(1) = u(4)(0) = u(4)(1) = 0.(3.22)

It is easy to check that α = sin πt, β = 0 are respectively upper and lower solutions
of (3.21)–(3.22). Let a1 = 5, a2 = 8, a3 = 4, r1 = 1, r2 = r3 = 2. Clearly, all
conditions of Theorem 3.1 are fulfilled. Hence the problem (3.21)–(3.22) has at least

one solution u which satisfies 0 6 u 6 sin πt.

Remark 2. If a1 = a2 = a3 = 0, we can not conclude that the above problem
has at least one solution. Thus, our result is better than the approach ai = 0.
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