
Czechoslovak Mathematical Journal

Torben Maack Bisgaard; Nobuhisa Sakakibara
Stieltjes perfect semigroups are perfect

Czechoslovak Mathematical Journal, Vol. 55 (2005), No. 3, 729–753

Persistent URL: http://dml.cz/dmlcz/128018

Terms of use:
© Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/128018
http://dml.cz


Czechoslovak Mathematical Journal, 55 (130) (2005), 729–753
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Abstract. An abelian ∗-semigroup S is perfect (resp. Stieltjes perfect) if every positive
definite (resp. completely so) function on S admits a unique disintegration as an integral of
hermitian multiplicative functions (resp. nonnegative such). We prove that every Stieltjes
perfect semigroup is perfect. The converse has been known for semigroups with neutral
element, but is here shown to be not true in general. We prove that an abelian ∗-semigroup S
is perfect if for each s ∈ S there exist t ∈ S and m, n ∈ � 0 such that m + n > 2 and
s + s∗ = s∗ +mt + nt∗. This was known only with s = mt + nt∗ instead. The equality
cannot be replaced by s + s∗ + s = s + s∗ +mt + nt∗ in general, but for semigroups with
neutral element it can be replaced by s + p(s + s∗) = p(s + s∗) +mt + nt∗ for arbitrary
p ∈ � (allowed to depend on s).

Keywords: perfect, Stieltjes perfect, moment, positive definite, conelike, semi-∗-divisible,
∗-semigroup

MSC 2000 : 43A35, 44A60

0. Introduction

Perfect semigroups are abelian involution semigroups on which every positive defi-
nite function admits a unique disintegration as an integral of hermitian multiplicative

functions; such as abelian groups with the inverse involution (the discrete version of
the Bochner-Weil Theorem [23], [24], [30], of which the first instance was Herglotz’

Theorem [20] of 1911). The simplest example of a perfect semigroup admitting un-
bounded positive definite functions is the additive semigroup of nonnegative rationals

with its unique involution, the identity [2]. In [8] it was shown that with an abelian
involution semigroup S with zero one can associate a family of subsemigroups of

rational vector spaces with the identical involution such that S is perfect if and only
if each of these semigroups is ‘Stieltjes perfect’, and that every perfect semigroup
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with zero is Stieltjes perfect. We shall show that every Stieltjes perfect semigroup

(even without zero) is perfect. The example of ]1,∞[ ∩ � will show that a perfect
semigroup without zero need not be Stieltjes perfect. We shall show that an abelian
involution semigroup is Stieltjes perfect if and only if it is perfect and ‘Stieltjes flat’.

Quasi-perfect semigroups are abelian involution semigroups S that enjoy a similar
unique disintegration of arbitrary positive definite functions but required only on

the subset S + S + S. An abelian involution semigroup is perfect if and only if it
is quasi-perfect and ‘flat’ [11]. An abelian involution semigroup is quasi-perfect if

and only if the semigroup obtained by adjoining a zero is perfect [16]. The class of
quasi-perfect semigroups has some stability properties that are superior to those of

the class of perfect semigroups [16].

For every abelian involution semigroup S we will define a quotient semigroup %(S)
such that S is perfect if and only if S is flat and %(S) is quasi-perfect. Moreover,
%(S) carries the identical involution and is a disjoint union of subsemigroups of
rational vector spaces. It is quasi-perfect if and only if each of these subsemigroups

is quasi-perfect.

Since perfectness and Stieltjes perfectness are equivalent for semigroups with zero
it may be of interest to note that Stieltjes perfectness is sometimes easier to establish

directly. For example, completely positive definite functions on subgroups of rational
vector spaces carrying the identical involution are automatically continuous on every

finite-dimensional linear subspace and even extend to completely positive definite
functions on the closure of the group with respect to the ‘topology of finitely open

sets’ [5].

Let us call an abelian involution semigroup S densely cosetlike if the nonnegative
characters on S separate points in S and for each archimedean component H of S

the enveloping rational vector space of H is the sum of those of its linear subspaces U
such that H contains a nonempty open subset of a coset (in U) of a dense subgroup

of U . Every densely cosetlike semigroup is quasi-perfect [12]. It follows that a ∗-
semigroup S is perfect if it is flat and %(S) is densely cosetlike. The result covers
all known examples of perfect semigroups, or at least the classical ones (Herglotz’
Theorem, etc.) and those published by the school following Berg, Christensen and

Ressel [4].

1. Preliminaries

Let (S, +, ∗) be an abelian ∗-semigroup, i.e., an abelian semigroup equipped with
an involution ∗, so (s + t)∗ = s∗ + t∗ and (s∗)∗ = s for all s, t ∈ S. We call S

simply a ∗-semigroup, even abbreviated to ‘semigroup’, e.g., in ‘perfect semigroup’.
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Let S + S = {s + t : s, t ∈ S} and define
N︷ ︸︸ ︷

S + . . . + S similarly for arbitrary N ∈ � .
A function ϕ : S +S →  is positive definite if

n∑
j,k=1

cjckϕ(sj + s∗k) > 0 for all n ∈ � ,
s1, . . . , sn ∈ S, and c1, . . . , cn ∈  . The set of all such functions is denoted byP(S).
Each ϕ ∈ P(S) satisfies the Cauchy-Schwarz inequality, cf. [4], Chapter 3, which has

the special case
∣∣∣

n∑
j=1

cjϕ(e + sj)
∣∣∣
2

6 ϕ(e + e∗)
n∑

j,k=1

cjckϕ(sj + s∗k) for e ∈ S, n ∈ � ,
si ∈ S, and ci ∈  . A function ϕ : S →  is hermitian if ϕ(s∗) = ϕ(s) for all s ∈ S.

Each ϕ ∈ P(S) is hermitian, cf. [4], Chapter 3.

Let S∗ (resp. S∗+) be the set of all characters on S, i.e., the hermitian complex-
valued function σ on S, not identically zero, such that σ(s + t) = σ(s)σ(t) for all
s, t ∈ S (resp. nonnegative such). Let Γ be any subset of S∗ (having in mind S∗

or S∗+). Let A (Γ) be the least σ-ring of subsets of Γ rendering measurable (in the
sense of Halmos [18]) for each s ∈ S the function ŝ on Γ defined by ŝ(σ) = σ(s)
for σ ∈ Γ. Since Γ can be either S∗ or S∗+ then the symbol ‘ŝ’ has (at least) two

senses but when writing an integral, the measure determines which space is meant.
Clearly, A (S∗

+) = {A ∩ S∗+ : A ∈ A (S∗)}. Denote by F+(Γ) (resp. G+(Γ)) the set
of all measures on A (Γ) integrating |ŝ|2 (resp. |ŝ|) for all s ∈ S. Then F+(S∗+)
(resp. G+(S∗+)) is the set of those measures µ on A (S∗

+) for which the measure
A 7→ µ(A ∩ S∗+) on A (S∗) is in F+(S∗) (resp. G+(S∗)). (We shall explain presently
why it is essential to use a σ-ring that need not be a σ-algebra.)

For s ∈ S and n ∈ � let Gs,n (resp. G+
s,n) be the set of those σ in S∗ (resp. S∗+)

for which |σ(s)| > 1/n. Clearly, G+
s,n = Gs,n ∩ S∗+. Let A0(Γ) be the subring

of A (Γ) consisting of those measurable sets which are contained in the union of
finitely many Gs,n. Clearly, A0(S∗+) = {A ∩ S∗+ : A ∈ A0(S∗)}. As in [9], p. 57,
the subring A0(Γ) generates A (Γ) as a σ-ring, so every measure on A0(Γ) which is
finite (on each set in A ∈ A0(Γ)) extends to a unique measure on A (Γ) (a measure
is positive by definition except in ‘complex measure’). If µ ∈ F+(Γ) (in particular,
if µ ∈ G+(Γ)) then µ

∣∣A0(Γ) is finite since µ(Γ ∩Gs,n)/n2 6
∫
|ŝ|2 dµ < ∞ for s ∈ S

and n ∈ � . The linear hull of F+(Γ) (resp. G+(Γ)) is denoted by F (Γ) (resp. G(Γ))
and consists of complex measures defined on A0(Γ). For µ ∈ F (Γ) (resp. G(Γ)) we
define L µ : S + S →  (resp. S →  ) by L µ(s) =

∫
Γ

σ(s) dµ(σ) for s ∈ S + S

(resp. S).

A function ϕ : S + S →  (resp. S →  ) is a moment function (resp. Stieltjes
moment function) if ϕ = L µ for some µ ∈ F+(S∗) (resp. µ ∈ G+(S∗+)), and a
moment function (resp. Stieltjes moment function) ϕ is determinate (resp. Stieltjes

determinate) if there is only one such µ. The set of all moment functions (resp. deter-
minate moment functions, Stieltjes moment functions, Stieltjes determinate Stieltjes
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moment functions) is denoted byH (S) (resp.Hdet(S), HS(S), HS,det(S)). We have
Hdet(S) ⊂ H (S) ⊂ P(S), as a simple computation shows. The ∗-semigroup S is
semiperfect if H (S) = P(S), and perfect if Hdet(S) = P(S).
(The reason why we use the σ-ring A (S∗) rather than the similarly defined

σ-algebra, call it Ã , is that we want the ∗-semigroup S = ( � ( ! )
+ \ {0}, +, s∗ = s) to

be perfect (as it provably is with the definitions we use), which would not be the case
if in the definition of perfectness we had used Ã instead of A (S∗) since then the zero
measure(!) on A (S∗) would have had two extensions to a measure on Ã , viz., the
zero measure and the one which is the constant∞ on Ã \A (S∗). It would not do to
require all measures to be finite-valued since there are perfectly respectable moment
functions that require for their integral representation measures that do assume the

value∞; such as the moment function n 7→ n−1 on the ∗-semigroup ( � , +, n∗ = n).)
A ∗-semigroup H is ∗-archimedean (resp. archimedean) if for all x, y ∈ H there

exist n ∈ � and z ∈ H such that n(x + x∗) = y + z (resp. nx = y + z). If H is
∗-archimedean then every character on H is nowhere zero, so if H∗ separates points

in H then H is cancellative [7]. A ∗-subsemigroup of a ∗-semigroup is a subsemigroup
stable under the involution. A ∗-archimedean component of a ∗-semigroup is a
maximal ∗-archimedean ∗-subsemigroup. Every ∗-semigroup is the disjoint union of
its ∗-archimedean components, cf. [17], Section 4.3. If the involution is the identity
then we (consistently) drop the ‘∗-’ of ‘∗-archimedean’. The decomposition of an
abelian semigroup into its archimedean components was first established by Tamura

and Kimura, see the bibliography of [17].

A face of a ∗-semigroup S is a ∗-subsemigroup X of S such that if x, y ∈ S and

x + y ∈ X then x, y ∈ X . If H is a ∗-archimedean component of S and if X is the
least face of S containing H then X + H ⊂ H (see, e.g., [9]).

A ∗-semigroup S is perfect if it is an abelian inverse semigroup, i.e., s = s+ s∗+ s

for each s ∈ S. This is probably an old result, but we cannot give a reference

(however, see Paterson [22]). More generally, a ∗-semigroup S is perfect if it is
∗-divisible, i.e., for each s ∈ S there exist t ∈ S and m, n ∈ � 0 = {0, 1, 2, . . .} such
that m + n > 2 and s = mt + nt∗ (see the papers by Ressel and the first-mentioned
author [15], and by the present authors [16]).

We shall show that a ∗-semigroup S is perfect if it is semi-∗-divisible, i.e., for each
s ∈ S there exist t ∈ S and m, n ∈ � 0 such that m+n > 2 and s+s∗ = s∗+mt+nt∗.

The next step would be to replace the equality with s+s∗+s = s+s∗+mt+nt∗. The
condition so obtained, however, is not sufficient even for semiperfectness. Indeed,

the condition is clearly satisfied if S carries the identical involution and 3s = 5s for
all s ∈ S. Let S be the abelian semigroup {1, 2, 3} with s⊕ t := (s + t) ∧ 3, s, t ∈ S.

Clearly, 3s = 5s for all s ∈ S. Note: S ⊕S = {2, 3}. Let ϕ be the indicator function
of the set {2} as a subset of S + S. Then ϕ ∈ P(S). Indeed, if c1, c2, c3 ∈  then
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3∑
j,k=1

cjckϕ(j ⊕ k) = |c1|2 > 0. If σ ∈ S∗ then σ(1)3 = σ(3) = σ(4) = σ(1)4, so

σ(1) ∈ {0, 1}. Since σ 6= 0 and since 1 generates S we have σ(1) = 1, so σ is the
constant 1. Thus every moment function on S is a constant. Since the function ϕ is

not constant then it is not a moment function. Thus S is not semiperfect.

However, if S is a ∗-semigroup with zero such that for each s ∈ S there exist t ∈ S,
p ∈ � , and m, n ∈ � 0 such that m + n > 2 and

(∗) s + p(s + s∗) = p(s + s∗) + mt + nt∗

then S is perfect. Indeed, suppose ϕ ∈ P(S). If s, t ∈ S and σ(s) = σ(t) for all
σ ∈ S∗ then ϕ(s) = ϕ(t) [6]. Thus we can pass to a quotient semigroup by collapsing s

and t for all such (s, t). In other words, we may assume that S∗ separates points
in S. Given s ∈ S, let H be the ∗-archimedean component of S containing s. Since

S∗ separates points in S, the set H∗ separates points in H , so H is cancellative. Let
X be the least face of S containing H . Then X + H ⊂ H . In the identity (∗), since
the left-hand side is in H , hence in particular in X , so is the right-hand side. By the
definition of a face it follows that mt+nt∗ ∈ X . Hence s∗+mt+nt∗ ∈ H +X ⊂ H .

Adding s∗ to both sides of (∗), we obtain s+s∗+p(s+s∗) = p(s+s∗)+(s∗+mt+nt∗).
Since H is cancellative it follows that s + s∗ = s∗ + mt + nt∗. Since this argument

applies to all s ∈ S, S is semi-∗-divisible, hence perfect.
Instead of S having a zero it suffices that S is ‘flat’ as defined below. Indeed, as

shown in [11] it then suffices to show that S is ‘quasi-perfect’ as defined in [16], which

is equivalent to the ∗-semigroup S ∪ {0} being perfect. Obviously, this semigroup
satisfies the hypothesis on S, so it is perfect by the preceding.

The semigroup ( � 0 , +) with its unique involution, the identity, is semiperfect by
Hamburger’s Theorem ([19], see [27] or [1]) but is not perfect since there exist indeter-
minate moment sequences, such as the example n 7→ (4n + 3)! given by Stieltjes [28]
in 1894. The semigroup � 2

0 is non-semiperfect as shown by Berg, Christensen and
Jensen [3] and independently by Schmüdgen [26], see [4, Chapter 6].

An ideal of a ∗-semigroup S is a nonempty ∗-stable subset T of S such that

S +T ⊂ T . Every ideal of S is a ∗-subsemigroup of S. Let S̃ be the set S∪{0} where
0 is some element outside S, made into a ∗-semigroup by setting 0 + s = s + 0 = s

for all s ∈ S ∪ {0} and 0∗ = 0. Then S is an ideal of S̃. For ϕ ∈  S and r ∈ S

we define Erϕ ∈  S̃ by Erϕ(x) = ϕ(r + x) for x ∈ S̃. A function ϕ : S →  
is completely positive definite if Erϕ ∈ P(S̃) for all r ∈ S. Denote by Pc(S)
the set of all such functions. Note that each ϕ ∈ Pc(S) is nonnegative. Now
HS,det(S) ⊂ HS(S) ⊂ Pc(S), as a simple computation shows. The ∗-semigroup S is
Stieltjes semiperfect if HS(S) = Pc(S), and Stieltjes perfect if HS,det(S) = Pc(S).
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As shown in [8], every perfect semigroup with zero is Stieltjes perfect. We will

show that conversely, every Stieltjes perfect semigroup (even without zero) is perfect.
In contrast, among finitely generated abelian semigroups with zero and the identical
involution, there are both one which is semiperfect but not Stieltjes semiperfect and

one which is Stieltjes semiperfect but not semiperfect [13].

We will define ‘Stieltjes flat’ semigroups in such a way that every Stieltjes semiper-
fect semigroup is Stieltjes flat and every Stieltjes flat perfect semigroup is Stieltjes

perfect. Thus, a ∗-semigroup is Stieltjes perfect if and only if it is perfect and Stielt-
jes flat. We will consider in detail the semigroup (]1,∞[∩ � , +), which will turn out
to be perfect but not Stieltjes flat (hence not Stieltjes perfect).

When a function ϕ and a measure µ are related by the equation ϕ = L µ, the
measure µ is called a representing measure of ϕ. For background on positive definite

and (Radon) moment functions on semigroups, see Berg, Christensen, and Ressel [4].

2. The main result

A complex-valued function on a ∗-semigroup S is Stieltjes singular if it vanishes
on S + S. For s ∈ S define Gs = {σ ∈ S∗ : σ(s) 6= 0} and G+

s = Gs ∩ S∗+, so

Gs =
∞⋃

n=1
Gs,n. Note: if s, t ∈ S then Gs∗ = Gs and Gs+t = Gs ∩ Gt, hence

Gs+s∗ = Gs. A ∗-semigroup is Stieltjes flat if it admits no nonzero Stieltjes singular
completely positive definite function.

Lemma 1. A ∗-semigroup S is Stieltjes flat if and only if S = S + S.

"$#&%'%)(
. The ‘if’ part is trivial. For the converse, suppose S 6= S + S. Choose

a ∈ S \ (S + S) and let ϕ be the indicator function of the set {a} as a subset of S.
Then ϕ is completely positive definite ([13, Theorem 1]). Since ϕ vanishes on S + S

but does not vanish identically, this proves that S is not Stieltjes flat. �

Lemma 2. No nonzero Stieltjes singular function is a Stieltjes moment function.

"$#&%'%)(
. Suppose ϕ is a Stieltjes singular Stieltjes moment function on a ∗-semi-

group S; we have to show ϕ = 0. Choose µ ∈ G+(S∗+) such that ϕ = L µ. For s ∈ S,
since ϕ is Stieltjes singular we have 0 = ϕ(2s) =

∫
S∗

+
σ(2s) dµ(σ) =

∫
S∗

+
σ(s)2 dµ(σ),

so µ(G+
s ) = 0, hence 0 =

∫
S∗

+
σ(s) dµ(σ) = ϕ(s), as desired. �
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Corollary 1. Every Stieltjes semiperfect semigroup (in particular, every Stieltjes
perfect semigroup) is Stieltjes flat.

If S is a perfect semigroup then so is S̃ [25]. If S is a ∗-semigroup having a zero 0
then σ(0) = 1 for all σ ∈ S∗, as is readily seen. Let us call S determinate if for one,
hence for all (see [16]), N ∈ � , if µ and ν are measures on A (S∗) integrating |ŝ|N

for all s ∈ S and such that
∫

ŝ dµ =
∫

ŝ dν for all s ∈
N︷ ︸︸ ︷

S + . . . + S then µ = ν. Let us

call S quasi-perfect if S is determinate and for one, hence for all (see [16]), N > 3,
if ϕ ∈ P(S) then there is a measure µ on A (S∗) such that ϕ(s) =

∫
ŝ dµ for all

s ∈
N︷ ︸︸ ︷

S + . . . + S. A function ϕ : S →  is singular if ϕ∣∣S + S + S = 0. No nonzero
singular function is a moment function (see the proof of Lemma 2). A ∗-semigroup
is flat if it admits no nonzero singular positive definite function. By the preceding,

every semiperfect semigroup (in particular, every perfect semigroup) is flat. In fact,
a ∗-semigroup is perfect if and only if it is quasi-perfect and flat [11]. Every ideal
of a quasi-perfect semigroup is quasi-perfect [16]. A measure µ is concentrated on a
set X if µ(A) = 0 for every measurable set A disjoint with X .

Lemma 3. Every Stieltjes flat perfect semigroup is Stieltjes perfect. The condi-
tion of Stieltjes flatness is strictly necessary.
"$#&%'%)(

. Suppose S is a Stieltjes flat perfect semigroup; we have to show that

S is Stieltjes perfect. Suppose ϕ ∈ Pc(S); we have to show ϕ ∈ HS,det(S). If r ∈ S

then Erϕ ∈ P(S̃). Since S is perfect, so is S̃. Thus there is a unique µr ∈ F+(S̃∗)
such that Erϕ = L µr, that is,

(1) ϕ(r + x) =
∫

S̃∗
ξ(x) dµr(ξ)

for x ∈ S̃. If r, s ∈ S then
∫

S̃∗ ξ(x) dµr+s(ξ) = ϕ(r + s + x) =
∫

S̃∗ ξ(s + x) dµr(ξ) =∫
S̃∗ ξ(x)ξ(s) dµr(ξ) for all x ∈ S̃. By the uniqueness of µr+s it follows that

(2) µr+s = ξ(s) dµr(ξ),

cf. [4, 6.5.2]. Applying this twice, we get

(3) ξ(s) dµr(ξ) = ξ(r) dµs(ξ).

Hence, if we define Gr = {ξ ∈ S̃∗ : ξ(r) 6= 0} and λr = ξ(r)−1 dµr(ξ)
∣∣Gr for r ∈ S

then

(4) λr

∣∣(Gr ∩Gs) = λs

∣∣(Gr ∩Gs)
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for all r, s ∈ S. Therefore, if we define G =
⋃

r∈S

Gr and denote by A∗(G) the σ-ring

of subsets of G consisting of those sets in A (S̃∗) which are contained in the union
of countably many Gr then there is a unique measure µ on A∗(G) such that

(5) λr = µ
∣∣Gr

for each r ∈ S. We claim that

(6) µr

∣∣A∗(G) = ξ(r) dµ(ξ)

for each r ∈ S. To see that this is so, since every set in A∗(G) is contained in the
union of countably many Gs, it suffices to verify µr

∣∣Gs = ξ(r) dµ(ξ)
∣∣Gs for s ∈ S.

By (5) this is equivalent to µr

∣∣Gs = ξ(r) dλs(ξ) = ξ(r)ξ(s)−1µs

∣∣Gs. But this follows
from (3). This proves (6).

Since S is Stieltjes flat we have by Lemma 1 that S = S + S, that is, an arbitrary
t ∈ S can be written t = r + s with r, s ∈ S. Substituing x = s in (1) (and using

the fact that the function ξ 7→ ξ(s) lives on the set Gs which, together with all its
measurable subsets, is in A∗(G)), we get (using also (6))

(7) ϕ(t) =
∫

G

ξ(t) dµ(ξ)

for t ∈ S. Let us show that µ is concentrated on S̃∗+. As in [8] it suffices to verify
that if r ∈ S̃ then µ is concentrated on the set {ξ ∈ S̃∗ : ξ(r) > 0}. If r = 0 then
this is so since every character on S̃ takes the value 1 at 0. Thus we may assume
r ∈ S. We then have to show that the measure ξ(r) dµ(ξ) is positive. But it is equal
to µr

∣∣A∗(G), which is positive. What we have just shown implies, by (7), that ϕ is
a Stieltjes moment function. To see that it is Stieltjes determinate, it suffices to

note that the semigroup S, being perfect, is determinate, hence trivially ‘Stieltjes
determinate’. (The converse implication will be shown in Lemma 10.)

We have used without proof the fact that the mapping σ 7→ σ̃ : S∗ → S̃∗ defined
by σ̃

∣∣S = σ(σ ∈ S∗) is an isomorphism between the measurable spaces (S∗, A (S∗))
and (G, A∗(G)).
To see that the condition of Stieltjes flatness cannot be omitted, it suffices to ex-

hibit a ∗-semigroup which is perfect but not Stieltjes perfect. Consider the semigroup
S = ]1,∞[ ∩ � , which is a subsemigroup of the additive group of nonnegative ratio-
nals. Let us first show that S is perfect. It suffices to show that S is quasi-perfect
and flat. It was shown by Berg [2] that every countable 2-divisible abelian semigroup
with zero and the identical involution is perfect. This applies to � + . In particular,
� + is quasi-perfect. Hence, its ideal S is quasi-perfect. To see that S is flat, suppose
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ϕ is a singular positive definite function on S; we have to show that ϕ = 0. Since
]3,∞[ ∩ � = S + S + S, ϕ vanishes on ]3,∞[ ∩ � . Given u ∈ S + S, we can choose
s, t ∈ S such that u = s + t. Then ϕ(u)2 6 ϕ(2s)ϕ(2t). Thus it suffices to show
ϕ(2s) = 0 for all s ∈ S. Define sequences (sn)n=0 and (tn)∞n=1 of rationals by the con-

ditions that s0 = s and that if n ∈ � then tn = 1
2 (1+sn−1) and 2sn−1 = sn + tn. Let

us show by induction that these are sequences in S. First, s0 = s ∈ S. Now suppose

that n ∈ � and sn−1 ∈ S. Since sn−1 > 1, we have tn = 1
2 (1 + sn−1) > 1, so tn ∈ S.

Now sn = 2sn−1 − tn = 2sn−1 − 1
2 (1 + sn−1) > 2sn−1 − 1

2 (sn−1 + sn−1) = sn−1 > 1,
so sn ∈ S. For each n, we have ϕ(2sn−1)2 = ϕ(sn + tn)2 6 ϕ(2sn)ϕ(2tn). Thus, if
ϕ(2sn) = 0 for some n then also for n− 1 instead of n, leading by induction to the
desired conclusion. Therefore, it suffices to show that ϕ(2sn) = 0 for all sufficiently
large n. Since we have already shown that ϕ vanishes on ]3,∞[ ∩ � it suffices to
show that sn → ∞ as n → ∞. But sn = 2sn−1 − 1

2 (1 + sn−1) = 1
2 (3sn−1 − 1), so

sn − 1 = 3
2 (sn−1 − 1), whence by induction sn − 1 =

(
3
2

)n(s0 − 1) → ∞. Thus S is

perfect. It remains to be shown that S is not Stieltjes perfect. By Corollary 1 and
Lemma 1, it suffices to show S 6= S + S, which is obvious. �

The Dirac measure at a point x is denoted by εx.

Theorem 1. If S is a Stieltjes perfect semigroup, so is S̃.
"$#&%'%)(

. Since the paper is already quite long, we merely refer to the correspond-
ing result for perfectness instead of Stieltjes perfectness [25]. �

A ∗-semigroup S is quasi-perfect if and only if S̃ is perfect [16].
A homomorphism h of one ∗-semigroup into another is a ∗-homomorphism if

h(s∗) = h(s)∗ for all s in the domain.

Lemma 4. Suppose h is a ∗-homomorphism of a ∗-semigroup S into a ∗-semi-
group T . If ϕ ∈ Pc(T ) then ϕ ◦ h ∈ Pc(S).
"$#&%'%)(

. The zeros of S̃ and T̃ can both be denoted by 0 with no risk of confusion.
Extend h to a ∗-homomorphism h̃ of S̃ into T̃ by setting h̃(0) = 0. If r ∈ S then
Er(ϕ ◦ h) = (Eh(r)ϕ) ◦ h̃ ∈ P(S̃). We have used the well-known fact that positive
definiteness is preserved under composition with ∗-homomorphisms. �

Theorem 2. Every ∗-homomorphic image of a flat semigroup is flat. Similarly
for Stieltjes flatness.
"$#&%'%)(

. Suppose h is a ∗-homomorphism of a flat semigroup S onto a ∗-semi-
group T ; we have to show that T is flat. Suppose ϕ ∈ P(T ) and ϕ

∣∣(T +T +T ) = 0;
we have to show ϕ = 0 on T + T . We have ϕ ◦ h ∈ P(S). Since h(S + S + S) =
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h(S) + h(S) + h(S) = T + T + T we have (ϕ ◦ h)
∣∣(S + S + S) = 0. Since S is flat

it follows that ϕ ◦ h = 0 on S + S. Since h(S) = T it follows that ϕ = 0 on T + T .
The case of Stieltjes flatness is obvious from Lemma 1. �

For every ∗-semigroup S we define S# = {s + s∗ : s ∈ S}. Note that S# is the
image of S under the ∗-homomorphism s 7→ s + s∗ : S → S. In particular, S# is a

∗-semigroup. Note that it carries the identical involution.

Lemma 5. If S is a ∗-semigroup and ϕ ∈ P(S) then ϕ
∣∣S# ∈ Pc(S#).

"$#&%'%)(
. For ease of notation, write T = S#. Since T is a ∗-subsemigroup of S,

we can identify T̃ with a ∗-subsemigroup of S̃ by identifying the zeros of the two
semigroups. Suppose r ∈ T ; we have to show Erϕ ∈ P(T̃ ). Choose a ∈ S such that

r = a + a∗. Suppose n ∈ � , x1, . . . , xn ∈ T̃ , and c1, . . . , cn ∈  ; we have to show
n∑

j,k=1

cjckϕ(r + xj + x∗k) > 0. But the left-hand side is equal to
n∑

j,k=1

cjckϕ(sj + s∗k)

where sj = a + xj ∈ S for j = 1, . . . , n; hence it is nonnegative by the positive
definiteness of ϕ. �

Theorem 3. Every Stieltjes flat semigroup is flat. The converse is false.
"$#&%'%)(

. By Lemma 1, every Stieltjes flat semigroup S satisfies S = S +S, hence
S = S + S + S, whence S is trivially flat. The converse is false by Lemma 3 and the

fact that every perfect semigroup is flat. �

Suppose S is a ∗-semigroup. A family (λs)s∈S+S of complex-valued functions on

a set A is positive definite if for each A ∈ A the function s 7→ λs(A) : S + S →  
is positive definite.

If A and B are σ-rings then A ⊗B denotes the σ-ring generated by the set of all
sets of the form A×B with A ∈ A and B ∈ B. A function θ : A ×B → [0,∞] is a
bimeasure if for each A ∈ A the function B 7→ θ(A, B) : B → [0,∞] is a measure and
for each B ∈ B the function A 7→ θ(A, B) : A → [0,∞] is a measure. A bimeasure θ

is induced by a measure µ on A ⊗B (or on some larger σ-ring) if θ(A, B) = µ(A×B)
for all A ∈ A and B ∈ B. Even a finite bimeasure on the product of two σ-fields is

not always induced by a measure, cf. [4, 2.1.31]. However, if A and B are A (S∗)
and A (T ∗) for two ∗-semigroups S and T with zeros then the answer is affirmative

for finite bimeasures, cf. [15, Lemma 1]. We shall need the fact that zeros are not
needed and that the result remains true for bimeasures that are only assumed to be

finite on A0(S∗) × A0(T ∗). No new ideas are needed for the proof; see [15]. Also,
one can replace S∗ by S∗+, or T ∗ by T ∗

+, or both. In this case, if (say) S∗ is replaced

by S∗+ then at the point in the proof in [15] where ‘saturated subsemigroups’ are used,
apply Lemma 3.1 in [8]. (Or consider the following argument: if ω is a nonnegative
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character on U and if σ is a character on S that extends ω then |σ| is a nonnegative
character on S that extends ω.)
The indicator function of a set X is denoted by 1X .
A ∗-semigroup S is Stieltjes determinate of order N ∈ � if whenever µ and ν are

measures on A (S∗
+) integrating ŝN for all s ∈ S and such that

∫
ŝ dµ =

∫
ŝ dν for

all s ∈
N︷ ︸︸ ︷

S + . . . + S then µ = ν. As in the case of ordinary determinacy (see [16]),
a ∗-semigroup is Stieltjes determinate of some order if and only if it is Stieltjes
determinate of every order. It is then said to be Stieltjes determinate. Clearly, a
∗-semigroup is Stieltjes perfect if and only if it is Stieltjes semiperfect and Stieltjes
determinate.
Given a subsetM of  , a ∗-semigroup S is said to beM -separative if theM -valued

characters on S separate points in S. The greatest M -separative ∗-homomorphic
image of S is the quotient ∗-semigroup S/∼ where ∼ is the congruence relation in S

defined by the condition that s ∼ t if and only if σ(s) = σ(t) for every M -valued
character σ on S. If f is a ∗-homomorphism of S into an M -separative semigroup T

then there is a unique ∗-homomorphism g of S/∼ into T such that f = g ◦ h where
h is the quotient mapping of S onto S/∼.
Let * be the complex unit circle and write * 0 = * ∪{0} for brevity. A ∗-semigroup

is * 0-separative if and only if it is an abelian inverse semigroup (see Warne and

Williams [29]). Note that every character on an abelian inverse semigroup is * 0-
valued. For every ∗-semigroup S we denote by π (or πS , if S has to be specified) the

quotient mapping of S onto its greatest * 0-separative ∗-homomorphic image.

Lemma 6. If S is a ∗-semigroup then π(S) can be identified with the quotient
∗-semigroup S/∼ where ∼ is the least equivalence relation containing the binary
relation R in S defined by the condition that sRt if and only if there exist a ∈ S and

b ∈ S̃ such that s = a + b and t = a + a∗ + a + b.
"$#&%'%)(

. We first verify that ∼ is a congruence relation and S/∼ is * 0-separative.

Since ∼ is an equivalence relation by definition, in order to verify that it is a con-
gruence relation we need only verify that if s, t ∈ S are such that s ∼ t then s∗ ∼ t∗

and s + u ∼ t + u for all u ∈ S. If sRt, choose a ∈ S and b ∈ S̃ such that s = a + b

and t = a + a∗ + a + b. Then s∗ = a∗ + b∗ and t∗ = a∗ + (a∗)∗ + a∗ + b∗, so s∗Rt∗

and in particular, s∗ ∼ t∗. Since the binary relationM in S defined by the condition
that sMt if and only if s∗ ∼ t∗ is thus an equivalence relation containing R, and since

∼ is the least such equivalence relation, we infer that M contains ∼, that is, if s ∼ t

then s∗ ∼ t∗. By a similar argument, in order to show that if s ∼ t then s+u ∼ t+u

for u ∈ S, it suffices to show the conclusion under the hypothesis sRt. Choosing
a ∈ S and b ∈ S̃ such that s = a + b and t = a + a∗ + a + b, we have s + u = a + c
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and t + u = a + a∗ + a + c where c = b + u, hence s + uRt + u and in particular,

s + u ∼ t + u. Thus ∼ is a congruence relation. Therefore S/∼ is a ∗-semigroup.
Denote the quotient mapping of S onto S/∼ by h. If a ∈ S then aRa + a∗ + a and
in particular, a ∼ a + a∗ + a, that is, h(a) = h(a + a∗ + a) = h(a) + h(a)∗ + h(a).
This being so for every such a, since S/∼ = h(S) we infer that u = u + u∗ + u

for all u ∈ S/∼, that is, S/∼ is an abelian inverse semigroup. By the above, this
means that S/∼ is * 0-separative. Since h is a ∗-homomorphism of S into the * 0-
separative semigroup S/∼, there is a unique ∗-homomorphism g of π(S) into S/∼
such that h = g ◦ π. Since S/∼ = h(S) we have S/∼ = g(π(S)). To see that
g is an isomorphism we only need to verify that it is one-to-one. Let us define a

mapping f of S/∼ into π(S) by the condition that f(h(s)) = π(s) for s ∈ S. To
see that this is a proper definition, we have to verify that if s, t ∈ S are such that

s ∼ t then π(s) = π(t). Since the binary relation L in S defined by the condition
that sLt if and only if π(s) = π(t) is an equivalence relation, we may assume sRt.

Choose a ∈ S and b ∈ S̃ such that s = a + b and t = a + a∗ + a + b. Suppose
σ is a * 0-valued character on S. Since |σ(a)| ∈ {0, 1} then σ(a) = σ(a)|σ(a)|2, so
σ(s) = σ(a)σ(b) = σ(a)|σ(a)|2σ(b) = σ(t). This being so for every such σ, we infer
π(s) = π(t), as desired. Thus f is well-defined. Since h = g ◦ π and π = f ◦ h we

have π = f ◦ (g ◦ π) = (f ◦ g) ◦ π. Since π maps S onto π(S), we conclude that f ◦ g

is the identity on π(S). Therefore g is one-to-one. This completes the proof. �

If µ is a measure and f a mapping then we denote by µf the image measure of µ
under f whenever this makes sense. If f and g are complex-valued functions on

sets X and Y , respectively, then f ⊗ g denotes the function (x, y) 7→ f(x)g(y) on
X × Y . The absolute value of a measure µ is denoted by |µ|. If X is a topological

space then its Borel field is denoted by B(X).

Lemma 7. Suppose S is a ∗-semigroup. For σ ∈ S∗ define a * 0-valued charac-

ter sgn σ on S by

sgnσ(s) =

{
σ(s)/|σ(s)| if σ(s) 6= 0,

0 otherwise.

Then there is a unique character f(σ) on π(S) such that sgnσ = f(σ)◦π. The map-

ping f : S∗ → π(S)∗ is measurable with respect to the σ-rings A (S∗) and A (π(S)∗).
The mapping σ 7→ |σ| : S∗ → S∗+ is measurable with respect to the σ-rings A (S∗)
and A (S∗+), so the mapping g : S∗ → π(S)∗ × S∗+ defined by g(σ) = (f(σ), |σ|)
for σ ∈ S∗ is measurable with respect to the σ-rings A (S∗) and A (π(S)∗)⊗A (S∗+).
The mapping h : π(S)∗ × S∗+ → S∗ defined by h(ω, %) = (ω ◦ π)% for ω ∈ π(S)∗

and % ∈ S∗+ is measurable with respect to the σ-rings mentioned (in reverse order).

Moreover, h ◦ g is the identity on S∗. Hence, the mapping ν 7→ νg taking mea-
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sures on A (S∗) to measures on A (π(S)∗) ⊗A (S∗+) is one-to-one. A measure µ on

A (π(S)∗) ⊗A (S∗+) which is finite on sets of the form A × B with A ∈ A0(π(S)∗)
and B ∈ A0(S∗+) is the image under g of a measure on A (S∗) if and only if
µ((Gπ(t) ×G+

s ) \ (Gπ(s+t) ×G+
s+t)) = 0 for all s, t ∈ S. When this is so, the unique

measure ν on A (S∗) such that µ = νg is given by ν = µh.

Now suppose ν ∈ F+(S∗). Define µ = νg . For B ∈ A0(S∗+) define a measure µB

on A (π(S)∗) by µB(A) = µ(A× B) for A ∈ A (π(S)∗). Then µB ∈ F+(π(S)∗). For
u ∈ π(S) define a mapping µu : A0(S∗+) →  by µu(B) = L µB(u) for B ∈ A0(S∗+).
Then µu is a complex measure. For s ∈ S the measure |µπ(s)| is concentrated on
the set G+

s . For s ∈ S define µs = %(s) dµπ(s). Then µs ∈ F (S∗+) and L ν(s + x) =
L µs(x) for all x ∈ S#.

"$#&%'%)(
. To see that sgnσ is a character if σ ∈ S∗, first note that since σ is

nonzero, so is sgnσ. Obviously sgnσ is hermitian. It remains to be shown that
sgnσ(s + t) = sgnσ(s) sgn σ(t) for s, t ∈ S. If either σ(s) or σ(t) is zero then both
sides are zero. In the complementary case, sgnσ(s + t) = σ(s + t)/|σ(s + t)| =
σ(s)σ(t)/|σ(s)σ(t)| = sgn σ(s) sgn σ(t), as desired. Thus sgnσ is a character. The

existence and uniqueness of f(σ) follows by the definition of π(S). Since we are
considering only one σ-ring on each set, we shall just speak of ‘measurability’ of a

mapping without specifying the σ-ring. To see that f is measurable, by the definition
of A (π(S)∗) it suffices to verify that for u ∈ π(S) the mapping fu : S∗ →  defined
by fu(σ) = f(σ)(u) for σ ∈ S∗ is measurable. Choosing s ∈ S such that u = π(s), we
have fu(σ) = f(σ)(π(s)) = sgn σ(s). Since the mapping σ 7→ σ(s) is measurable by
the definition of A (S∗), it now suffices to note that the mapping z 7→ z/|z| of  \{0}
into itself is measurable. Thus f is measurable. The measurability of the mapping

σ 7→ |σ| follows by a similar argument. To see that h is measurable it suffices to
verify that for s ∈ S the function (ω, %) 7→ (ω ◦ π(s))%(s) is measurable. But it is
the product of two measurable functions. To see that h ◦ g is the identity on S∗,
suppose σ ∈ S∗; we have to show σ = h(g(σ)), that is, σ(s) = h(g(σ))(s) for s ∈ S.

But h(g(σ))(s) = h(f(σ), |σ|)(s) = (f(σ) ◦π)(s)|σ|(s) = sgnσ(s)|σ(s)| = σ(s). Since
h ◦ g is the identity on S∗ we have ν = νh◦g = (νg)h for every measure ν on A (S∗),
showing that the mapping ν 7→ νg is one-to-one.

Suppose µ is a measure on A (π(S)∗)⊗A (S∗+) which is finite on sets of the form
A × B with A ∈ A0(π(S)) and B ∈ A0(S∗+); we have to show that µ is the image

under g of a measure onA (S∗) if and only if it satisfies the condition in the statement.
If ν is any measure on A (S∗) such that µ = νg then, since h◦g is the identity on S∗,

it follows that ν = νh◦g = (νg)h = µh. Thus there is only one candidate for such a
measure. We see that a necessary and sufficient condition is that µ = (µh)g = µg◦h.
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Since A (π(S)∗) ⊗ A (S∗+) is generated (as a σ-ring) by the set of all sets of the

form A × B with A ∈ A0(π(S)) and B ∈ A0(S∗+), a formally weaker but in fact
equivalent condition is that µ(A× B) = µ((g ◦ h)−1(A ×B)) for all A ∈ A0(π(S)∗)
and B ∈ A0(S∗+). (We are using the fact that a measure on a σ-ring is uniquely

determined by its restriction to a generating subring on which it is finite, cf. [18,
Theorem A, p. 53].)

To get further, we need to study the mapping g ◦ h. For ω ∈ π(S)∗ and % ∈ S∗+
we have g ◦ h(ω, %) = g(h(ω, %)) = g((ω ◦ π)%) = (f((ω ◦ π)%), |(ω ◦ π)%|). Now
f((ω ◦ π)%) is characterized by the fact that f((ω ◦ π)%) ◦ π = sgn((ω ◦ π)%). It
is a trivial exercise to verify that sgn(στ) = (sgnσ) sgn τ for all σ, τ ∈ S∗. Thus
f((ω ◦ π)%) ◦ π = (sgn(ω ◦ π)) sgn %. Since ω ◦ π already takes values in * 0 we have

sgn(ω ◦π) = ω ◦π, so f((ω ◦π)%)◦π = (ω ◦π) sgn % = (ω ◦π)(f(%)◦π) = (ωf(%))◦π.
Since the range of π is the domain of definition of f((ω ◦ π)%), it follows that f((ω ◦
π)%) = ωf(%). Thus g ◦ h(ω, %) = (ωf(%), |(ω ◦ π)%|). But since % is nonnegative we
have |(ω ◦ π)%| = |ω ◦ π|% = (|ω| ◦ π)%. Thus g ◦ h(ω, %) = (ωf(%), (|ω| ◦ π)%).
We see from this that a necessary and sufficent condition is that µ(A × B) =

µ({(ω, %) ∈ π(S)∗ × S∗+ : ωf(%) ∈ A, (|ω| ◦ π)% ∈ B}) for all A ∈ A0(π(S)∗) and
B ∈ A0(S∗+). By the definition of A (π(S)∗), this σ-ring is generated by sets of

the form {ω ∈ π(S)∗ : ω(u) ∈ X} with u ∈ π(S) and X ∈ B( * ). Thus we may
assume that A has this form. Similarly for B. In other words, it is necessary

and sufficient that µ({(ω, %) ∈ π(S)∗ × S∗+ : ω(u) ∈ X, %(s) ∈ Y }) = µ({(ω, %) ∈
π(S)∗ × S∗+ : ω(u)f(%)(u) ∈ X, |ω(π(s))|%(s) ∈ Y }) for all u ∈ π(S), X ∈ B( * ),
s ∈ S, and Y ∈ B([0,∞[). Since u = π(t) for some t ∈ S, an equivalent condition
is that µ({(ω, %) ∈ π(S)∗ × S∗+ : ω(π(t)) ∈ X, %(s) ∈ Y }) = µ({(ω, %) ∈ π(S)∗ ×
S∗+ : ω(π(t)) sgn %(t) ∈ X, |ω(π(s))|%(s) ∈ Y }) for all s, t ∈ S, X ∈ B( * ), and
Y ∈ B(]0,∞[). Now since % is nonnegative, sgn % is {0, 1}-valued. Since 0 /∈ X it

follows that ω(π(t)) sgn %(t) ∈ X if and only if ω(π(t)) ∈ X and %(t) > 0. Similarly,
|ω(π(s))|%(s) ∈ Y if and only if %(s) ∈ Y and ω(π(s)) 6= 0. Thus a necessary and
sufficient condition is that µ({(ω, %) ∈ π(S)∗ × S∗+ : ω(π(t)) ∈ X, %(s) ∈ Y }) =
µ({(ω, %) ∈ π(S)∗ × S∗+ : ω(π(t)) ∈ X, %(s) ∈ Y, %(t) > 0, ω(π(s)) 6= 0}) for all data
as above.

Now the set on the right-hand side is a subset of the one in the left-hand side, so

if the latter has finite measure then the condition is equivalent to the measure of the
set difference being 0. By the hypothesis on µ, if the condition is satisfied then we

can apply it with X = * and Y = [1/n,∞[ for any n ∈ � . Then the set difference
mentioned has measure 0, and letting n → ∞ we get µ((Gπ(t) × G+

s ) \ [(Gπ(t) ∩
Gπ(s))× (G+

s ∩G+
t )]) = 0.

Conversely, if the last condition holds then it clearly follows that we have the
desired identity for all X and Y . To get the condition in the statement it now
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suffices to note that Gπ(s) ∩Gπ(t) = Gπ(s)+π(t) = Gπ(s+t) and similarly for the other

set.

Now suppose ν ∈ F+(S∗). To see that µB ∈ F+(π(S)∗) for B ∈ A0(S∗+), we have
to show

∫
|û| dµB < ∞ for u ∈ π(S). Since π(S) is an abelian inverse semigroup

we have |û| 6 1, so it suffices to show µB(Gu) < ∞, that is, µ(Gu × B) < ∞.
By the definition of A0(S∗+) it suffices to show µ(Gu × G+

s,n) < ∞ for s ∈ S and
n ∈ � . But since ν ∈ F+(S∗) we have ∞ >

∫
|σ(s)| dν(σ) =

∫
%(s) dµ(ω, %) >∫

Gu×G+
s,n

%(s) dµ(ω, %) > µ(Gu ×G+
s,n)/n. Thus µB ∈ F+(π(S)∗). To see that µu is

a complex measure for u ∈ π(S), suppose (Bn)∞n=1 is a sequence of pairwise disjoint

sets in A0(S∗+) such that the set B =
∞⋃

n=1
Bn is again in A0(S∗+); we have to show

that L µB(u) =
∞∑

n=1
L µBn(u), that is,

∫
û ⊗ 1B dµ =

∞∑
n=1

∫
û ⊗ 1Bn dµ. Since the

function û is bounded (by 1), this follows by bounded convergence, recalling that
µ(Gu ×B) < ∞.
We next have to show that if s ∈ S then the measure |µπ(s)| is concentrated on

the set G+
s , or equivalently, on the set Gs. Suppose A is a measurable set disjoint

with Gs; we have to show |µπ(s)|(A) = 0. There is a sequence (Hn)∞n=1 of sets in

{Gt,n : t ∈ S, n ∈ � } such that A ⊂
∞⋃

n=1
Hn. Now A =

∞⋃
n=1

(A ∩Hn). Moreover, for

each n the set A ∩Hn is in A0(S∗+) and is disjoint with Gs.

Thus it suffices to show that if B ∈ A0(S∗+) and B ∩Gs = ∅ then |µπ(s)|(B) = 0.
By the definition of the absolute value of a measure, this amounts to showing that
if B ∈ A0(S∗+) and B ∩ Gs = ∅ then µπ(s)(B) = 0. (We are using the fact that
A0(S∗+) is a hereditary subset of A (S∗

+), i.e., every measurable subset of a set in
A0(S∗+) is again in A0(S∗+).) By the definition of µu for u ∈ π(S), this amounts to
showing that L µB(π(s)) = 0, that is,

∫
π(S)∗ ω(π(s)) dµB(ω) = 0. Since the function

ω 7→ ω(π(s)) vanishes off Gπ(s), it suffices to show µB(Gπ(s)) = 0. By the definition
of µB , we have to show µ(Gπ(s)×B) = 0. Since µ = νg , this is equivalent to showing
ν(C) = 0 where C is the set of those σ ∈ S∗ such that f(σ) ∈ Gπ(s) and |σ| ∈ B.

Since ν is a measure it suffices to show C = ∅. So suppose σ ∈ C; we shall derive
a contradiction. Since f(σ) ∈ Gπ(s) we have 0 6= f(σ)(π(s)) = sgnσ(s). This is
equivalent to σ(s) 6= 0. It follows that |σ(s)| 6= 0, so |σ| ∈ Gs, contradicting the facts
that |σ| ∈ B and that B is disjoint with Gs.

For A ∈ A0(π(S)∗) and B ∈ A0(S∗+) we have
∫

1A dµB = µB(A) = µ(A × B) =∫
1A⊗1B dµ. The identity

∫
f dµB =

∫
f⊗1B dµ, which thus holds if f is the indica-

tor function of a measurable set, extends by standard measure-theoretic arguments
first to simple measurable functions, then to nonnegative measurable functions, and

finally to arbitrary measurable functions such that one of the integrals exists. Ap-
plying it to f = û with u ∈ π(S), we obtain

∫
û ⊗ 1B dµ =

∫
û dµB = L µB(u) =
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µu(B) =
∫

1B dµu. The identity
∫

û ⊗ g dµ =
∫

g dµu, which thus holds if g is

the indicator function of a measurable set, extends, etc. Applying it to g = ŝ with
s ∈ π−1(u), we obtain L µs(x) =

∫
x̂ dµs =

∫
%(x)%(s) dµu(%) =

∫
%(s + x) dµu(%) =∫

ω(u)%(s + x) dµ(ω, %) =
∫

f(σ)(s)|σ(s + x)| dν(σ) =
∫

sgnσ(s)|σ(s)|σ(x) dν(σ) =∫
σ(s)σ(x) dν(σ) =

∫
σ(s + x) dν(σ) = L ν(s + x) for x ∈ S#, as desired. We have

used the fact that σ(x) > 0 for σ ∈ S∗ since x ∈ S#. This completes the proof. �

If h is a ∗-homomorphism of a ∗-semigroup S into a ∗-semigroup T , we define
the dual mapping h∗ : T ∗ → S∗ ∪ {0} by h∗(τ) = τ ◦ h for τ ∈ T ∗. We cannot

claim that h∗ maps T ∗ into S∗ in general, but note that if h(S) = T , the mapping
h∗(T ∗) ⊂ S∗. If µ is a measure on A (T ∗), by abuse of notation we denote by µh∗

the image measure of the measure µ
∣∣(h∗)−1(S∗) under the mapping h∗

∣∣(h∗)−1(S∗).
Clearly, if µ ∈ F+(T ∗) then µh∗ ∈ F+(S∗) and L (µh∗) = (L µ) ◦ h. Similarly for

measures on T ∗
+.

If T is a ∗-subsemigroup of a ∗-semigroup S then we define pS,T : S∗ → T ∗ ∪ {0}
by pS,T (σ) = σ

∣∣T for σ ∈ S∗. If µ is a measure on A (S∗) then by abuse of notation
we denote by µpS,T the image measure of the measure µ

∣∣p−1
S,T (T ∗) under the mapping

pS,T

∣∣p−1
S,T (T ∗). If µ ∈ F+(S∗) then µpS,T ∈ F+(T ∗) and L (µpS,T ) = (L µ)

∣∣(T + T ).
Similarly for measures on S∗

+.

Lemma 8. Every ∗-homomorphic image of a Stieltjes semiperfect semigroup is
Stieltjes semiperfect.

"$#&%'%)(
. As the proof of the corresponding statement for semiperfectness ([15,

Proposition 1]). �

Lemma 9. Every ∗-homomorphic image of a Stieltjes determinate semigroup is
Stieltjes determinate.

"$#&%'%)(
. Suppose h is a ∗-homomorphism of a Stieltjes determinate semigroup S

onto a ∗-semigroup T ; we have to show that T is Stieltjes determinate. Suppose
µ, ν ∈ G+(T ∗

+) and L µ = L ν; we have to show µ = ν. We have µh∗ , νh∗ ∈ G+(S∗+)
and L (µh∗) = (L µ) ◦ h = (L ν) ◦ h = L (νh∗). Since S is Stieltjes determinate it
follows that µh∗ = νh∗ . Since h(S) = T then the mapping h∗ is one-to-one. It is

tempting to conclude directly that µ = ν, but we think this is unsafe. Instead, note
that (cf. [15])A (S∗) =

⋃
D∈D(S)

p−1
S,D(A (D∗)) where D(S) is the set of all countable ∗-

subsemigroups of S. Moreover, for D ∈ D(S) the σ-ringA (D∗) is just the Borel field
when D∗ is considered with the topology of pointwise convergence (cf. [15]). Thus it

suffices to show µpT,E = νpT,E for each E ∈ D(T ). Since E is countable and h(S) = T

we can choose D ∈ D(S) such that E = h(D). Then (µpT,E )(h|D)∗ = (µh∗)pS,D =
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(νh∗)pS,D = (νpT,E )(h|D)∗ . Since the mapping (h
∣∣D)∗ is a homeomorphism, we infer

µpT,E = νpT,E , as desired. �

Theorem 4. Every ∗-homomorphic image of a Stieltjes perfect semigroup is
Stieltjes perfect.

"$#&%'%)(
. A ∗-semigroup is Stieltjes perfect if and only if it is Stieltjes semiperfect

and Stieltjes determinate. Use Lemmas 8 and 9. �

Lemma 10. A ∗-semigroup is Stieltjes determinate if and only if it is determinate.
"$#&%'%)(

. The ‘if’ part is trivial. Suppose S is a Stieltjes determinate semigroup;
we have to show that S is determinate. The ∗-semigroup S#, being a ∗-homomorphic
image of S, is Stieltjes determinate (Lemma 9), and that is all that we shall use.
Suppose ν1, ν2 ∈ F+(S∗) and L ν1 = L ν2; we have to show ν1 = ν2. With g

as in Lemma 7, define µi = νg
i for i = 1, 2. By the same lemma it suffices to

show µ1 = µ2. Since the σ-ring A (π(S)∗) ⊗ A (S∗+) is generated by the set of all
sets of the form A × B with A ∈ A0(π(S)∗) and B ∈ A0(S∗+) it suffices to show
µ1(A × B) = µ2(A × B) for such A and B. For i = 1, 2 and B ∈ A0(S∗+), define a
measure µB

i on A (π(S)∗) by µB
i (A) = µi(A×B) for A ∈ A (π(S)∗). We then have to

show µB
1 = µB

2 . By the same lemma, µ
B
i ∈ F+(π(S)∗) for i = 1, 2. Since π(S), being

an abelian inverse semigroup, is perfect it suffices to showL µB
1 = L µB

2 . For i = 1, 2
and u ∈ π(S) define a complex measure µi,u on A0(S∗+) by µi,u(B) = L µB

i (u) for
B ∈ A0(S∗+), cf. the same lemma. We now have to show µ1,u = µ2,u. For i = 1, 2
and s ∈ S define µi,s = %(s) dµi,π(s)(%). By the same lemma, µi,s ∈ F (S∗+) and
L µ1,s(x) = L ν1(s + x) = L ν2(s + x) = L µ2,s(x) for x ∈ S#. Since S# is Stieltjes
determinate it follows that µ1,s = µ2,s, that is, %(s) dµ1,u(%) = %(s) dµ2,u(%) where
u = π(s). Hence µ1,u

∣∣G+
s = µ2,u

∣∣G+
s . This completes the proof since the measures

involved are concentrated on G+
s , by the lemma cited. �

If µ is a measure and f is a function then we denote by fµ the measure with
density f with respect to µ whenever this makes sense.

Theorem 5. A ∗-semigroup is Stieltjes perfect if and only if it is perfect and
Stieltjes flat.

"$#&%'%)(
. The ‘if’ part is Lemma 3. For the converse, since every Stieltjes perfect

semigroup is Stieltjes flat (Corollary 1) it suffices to show that every Stieltjes perfect
semigroup is perfect. We will show below that every Stieltjes perfect semigroup with

zero is perfect. Taking this for granted, we can now quickly complete the proof.
Suppose S is a Stieltjes perfect semigroup; we have to show that S is perfect. Since
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S is Stieltjes perfect, so is S̃ (Theorem 1). Since the latter semigroup has a zero it

is perfect, that is, S is quasi-perfect. Since S is Stieltjes flat it is flat (Theorem 3).
Being quasi-perfect and flat, S is perfect.
It remains to be shown that if S is a Stieltjes perfect semigroup with zero then S is

perfect. Suppose ϕ ∈ P(S); we have to show ϕ ∈ Hdet(S). By [8, Lemma 3.5], the
∗-subsemigroup T = S# of S is Stieltjes perfect. For s ∈ S and n ∈ {0, 1, 2, 3}, define
ϕs,n : S →  by ϕs,n(x) = ϕ(x)+ inϕ(s+x)+ i−nϕ(s∗+x)+ϕ(s+s∗+x) for x ∈ S.
Then ϕs,n ∈ P(S). To see this, suppose r ∈ � , x1, . . . , xr ∈ S, and c1, . . . , cr ∈  ;
we have to show

r∑
p,q=1

cpcqϕs,n(xp + x∗q) > 0. But the left-hand side is equal to

2r∑
p,q=1

cpcqϕ(xp + x∗q) where xr+p = s + xp and cr+p = incp for p = 1, . . . , r; hence it

is nonnegative since ϕ ∈ P(S). Thus ϕs,n ∈ P(S). By Lemma 5 it follows that
ϕs,n

∣∣T ∈ Pc(T ). Since T is Stieltjes perfect there is a unique measure µs,n ∈ F+(T ∗
+)

such that ϕs,n

∣∣T = L µs,n. Since ϕ(s + x) = 1
4

3∑
n=0

i−nϕs,n(x) for x ∈ T , it follows

that

(8) ϕ(s + x) =
∫

T∗
+

%(x) dµs(%)

for all x ∈ T where µs is the complex measure 1
4

3∑
n=0

i−nµs,n ∈ F (T ∗
+). Now the

family (µs)s∈S is positive definite (for the proof, to save space we refer to [4, p. 205,
l. 7–18).

From the positive definiteness of the family (µs), by [8, Lemma 3.7], it follows that

(9)
n∑

j,k=1

gjgkµsj+s∗
k

> 0

whenever n ∈ � , s1, . . . , sn ∈ S, and g1, . . . , gn ∈
n⋂

j,k=1

L2(µsj+s∗k ).

Define U = π(S) for brevity. Let R and ∼ be as in Lemma 6, so U is canonically
isomorphic to the quotient ∗-semigroup S/∼. Since U is an abelian inverse semigroup,
it is perfect.
For a, s ∈ S we have

(10) µa+a∗+s = %(a + a∗) dµs(%).

Indeed, for x ∈ T we have by (8),
∫

T∗
+

%(x) dµa+a∗+s(%) = ϕ(a + a∗ + s + x) =∫
T∗
+

%(a + a∗ + x) dµs(%) =
∫

T∗
+

%(x)%(a + a∗) dµs(%). The above equality follows by
the uniqueness of µs, cf. [4, 6.5.2].
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Given s, t ∈ S such that sRt, choose a, b ∈ S such that s = a+b and t = 2a+a∗+b.

Since t = a + a∗ + s, (10) implies µt = %(a + a∗) dµs(%). Since the mapping % 7→ %
∣∣T

is a bijection of S∗
+ onto T ∗

+ we see that T ∗
+ can be identified with S∗

+. With this
identification,

(11) %(t) dµs(%) = %(s) dµt(%).

Indeed, %(s) dµt(%) = %(a + b) dµt(%) = %(a + b)%(a + a∗) dµs(%) = %(2a + a∗ +
b) dµs(%) = %(t) dµs(%). Thus (11) holds if sRt. We shall see presently that it even

holds under the weaker assumption s ∼ t.

For s, t, a, and b as in the preceding paragraph, we have Gs = Ga∩Gb = Gt. Since
the binary relation Q in S defined by the condition that sQt if and only if Gs = Gt

is an equivalence relation containing R, and since ∼ is the least such equivalence
relation, we infer that if s, t ∈ S are such that s ∼ t then Gs = Gt. Hence, for u ∈ U

there is a unique subset Hu of S∗+ such that Hu = Gs for all s ∈ π−1(u).
If s, t ∈ S are such that sRt then by (11), %(s)−1 dµs(%)

∣∣Gs = %(t)−1 dµt(%)
∣∣Gt.

(We have used the fact that Gs = Gt.) Since the binary relation P in S defined
by the condition that sP t if and only if %(s)−1 dµs(%)

∣∣Gs = %(t)−1 dµt(%)
∣∣Gt is an

equivalence relation containing R, and since ∼ is the least such equivalence relation,
we infer that

(12) %(s)−1 dµs(%)
∣∣Gs = %(t)−1 dµt(%)

∣∣Gt

whenever s, t ∈ S are such that s ∼ t. It is now clear that (11) holds whenever
s, t ∈ S are such that s ∼ t.

By (10) we have, in particular, µs+s∗ = %(s + s∗) dµ0(%) for each s ∈ S. Since
the family (µs)s∈S is positive definite we have 0 6 µ0 + cµs + cµs∗ + |c|2µs+s∗ =
µ0 +cµs +cµs∗ + |c|2%(s)2 dµ0(%) for s ∈ S and c ∈  . Hence, if A is a measurable set
disjoint with Gs then 0 6 µ0(A)+2Re(cµs(A)) for all c ∈  , so µs(A) = 0. Thus µs is

concentrated on Gs. By (12) we infer that for each u ∈ U there is a unique complex
measure µu on A0(S∗+) such that µs = %(s) dµu(%) for all s ∈ π−1(u). Moreover,
µu is concentrated on Hu.

By (9), for s ∈ S and n ∈ {0, 1, 2, 3} we have 0 6 %(s)2 dµ0(%) + in%(s) dµs(%) +
i−n%(s) dµs∗(%) + µs+s∗ = 2%(s)2 dβn(%) where βn = µ0 + %(s)−1Re(inµs). If A is a
measurable subset of Gs then βn(A) > 0 by the above since the function % 7→ %(s)2

is positive on Gs. On the other hand, if A is a measurable set disjoint with Gs then
βn(A) = µ0(A) > 0. (The measure µ0 is positive since the family (µt)t∈S is positive

definite.) Collecting, we see that βn > 0. Since
3∑

n=0
βn = 4µ0 ∈ F+(S∗+), we see
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that βn ∈ F+(S∗+) for all n ∈ {0, 1, 2, 3}. Hence %(s)−1 dµs = 1
4

3∑
n=0

i−nβn ∈ F (S∗+).

Comparing with the definition of µu for u ∈ U , we see that µu ∈ F (S∗+) for all u ∈ U .

Let us show that the family (µu)u∈U is positive definite. Suppose n ∈ � ,
u1, . . . , un ∈ U , and c1, . . . , cn ∈  ; we have to show

n∑
j,k=1

cjckµuj+u∗
k

> 0. For each

j ∈ {1, . . . , n} we can choose sj ∈ π−1(uj), and then the left-hand side is equal to
n∑

j,k=1

fjfkµsj+s∗k where fj(%) = cj%(sj)−1. For N ∈ � and for each j, define

fj,N (%) =

{
fj(%) if |fj(%)| 6 N,

0 otherwise.

Since the measures |µsj+s∗k | are bounded and the functions fj,N are bounded, the

latter are in the space
n⋂

j,k=1

L2(µsj+s∗
k
), so by (9),

n∑
j,k=1

fj,Nfk,Nµsj+s∗
k

> 0. The

desired inequality follows by letting N → ∞, by bounded convergence. (We are
using the fact that %(sj)−1%(sk)−1 dµsj+s∗k = µπ(sj+s∗k), which is a finite measure.)

Thus the family (µu)u∈U is positive definite. That is, for each B ∈ A (S∗
+) the

function u 7→ µu(B) : U →  is positive definite. Since U is perfect, there is a unique

measure µB ∈ F+(U∗) such that µu(B) = L µB(u) for all u ∈ U .

As in the proof of [4, 6.5.4], the function (A, B) 7→ µB(A) : A (U∗)×A (S∗+) → + +

is a bimeasure. As in [15, Lemma 1], it follows that there is a unique measure µ on

A (U∗)⊗A (S∗+) such that µB(A) = µ(A × B) for all A ∈ A (U∗) and B ∈ A (S∗+).
(Since we have S∗

+ instead of S
∗ it is necessary to adapt the proof of [15, Lemma 1],

slightly.)

Defining g and h as in Lemma 7, set ν = µh. In order to be able to apply Lemma 7,

we need to verify that µ = νg . By Lemma 7 it suffices to show µ((Gπ(t) × G+
s ) \

(Gπ(s+t) × G+
s+t)) = 0 for s, t ∈ S. ‘Divide and conquer’. Since (Gπ(t) × G+

s ) \
(Gπ(s+t) × G+

s+t) = ((Gπ(t) \ Gπ(s+t)) × G+
s ) ∪ (Gπ(t) × (G+

s \ G+
s+t)) we precisely

have to show µ((Gπ(t) \Gπ(s+t))×G+
s ) = 0 and µ(Gπ(t)× (G+

s \G+
s+t)) = 0. For the

first identity, since G+
s =

∞⋃
n=1

G+
s,n, it suffices to show µ((Gπ(t) \Gπ(s+t))×G+

s,n) = 0

for n ∈ � . Now G+
s,n ∈ A0(S∗+) and ω(π(t + t∗)) = |ω(π(t))|2 = 1 for ω ∈ Gπ(t), so

µ(Gπ(t) ×G+
s,n) = µG+

s,n(Gπ(t)) = L µG+
s,n(π(t + t∗)) = µπ(t+t∗)(G+

s,n) and similarly
for s + t instead of t, so we have to show µπ(t+t∗)(G+

s,n) = µπ(s+s∗+t+t∗)(G+
s,n).

We can even show that the measures µπ(t+t∗) and µπ(s+s∗+t+t∗) coincide on the
setG+

s . Indeed, on this set, µπ(t+t∗) = %(t)−2 dµt+t∗(%) = %(s+t)−2%(s)2 dµt+t∗(%) =
%(s + t)−2 dµs+t∗+t+t∗(%) = µπ(s+s∗+t+t∗) where we have used (10) and the defining
property of µu for u ∈ π(S), noting that %(s + s∗) = |%(s)|2 = %(s)2. For the second
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identity, by the same token it suffices to show µ(Gπ(t)× (G+
s,n \G+

s+t)) = 0 for n ∈ � .
Now G+

s,n \ G+
s+t ∈ A0(S∗+) and µ(Gπ(t) × (G+

s,n \ G+
s+t)) = µG+

s,n\G+
s+t(Gπ(t)) =

L µG+
s,n\G+

s+t(π(t + t∗)) = µπ(t+t∗)(G+
s,n \ G+

s+t) = 0 since µπ(t+t∗) is concentrated

on the set G+
t and (G+

s,n \ G+
s+t) ∩ G+

t ⊂ (G+
s \ G+

s+t) ∩ Gt = (G+
s ∩ G+

t ) \ G+
s+t =

G+
s+t \G+

s+t = ∅.
Thus µ = νg . Arguing as in the proof of Lemma 7, we see that ν ∈ F+(S∗) and

L ν(s) = L ν(s + 0) = L µs(0) = ϕ(s + 0) = ϕ(s) for s ∈ S. Thus ϕ is a moment

function. It is determinate since the ∗-semigroup S, being Stieltjes perfect, is Stieltjes
determinate, which is equivalent to its being determinate (Lemma 10). �

By the proof of Theorem 5 and [8], Lemmas 3.2 and 3.5, we have the following
corollary.

Corollary 2. For an abelian ∗-semigroup S with zero the following four conditions

are equivalent:

(i) S is perfect;

(ii) S is Stieltjes perfect;

(iii) S# is perfect;

(iv) S# is Stieltjes perfect.

Remark. Stieltjes semiperfect finitely generated abelian semigroups with the
identical involution were characterized in [13]. As remarked above, even for finitely

generated abelian semigroups with zero and the identical involution, semiperfectness
and Stieltjes semiperfectness are not equivalent.

For every ∗-semigroup S we denote by χ (or χS , if S has to be specified) the
quotient mapping of S onto its greatest  -separative ∗-homomorphic image. If S has
a zero then every positive definite function on S factors via χ [9]. It easily follows
that in this case, S is perfect (or semiperfect) if and only if χ(S) is such.

Remark. For a ∗-semigroup S without zero, positive definite functions on S do

not in general factor via χ. For a sufficient condition, see [10].

For every ∗-semigroup S we denote by % (or %S , if S has to be specified) the

quotient mapping of S onto its greatest + + -separative ∗-homomorphic image. It is
trivial to verify that every + -separative ∗-semigroup carries the identical involution.
An abelian semigroup S carrying the identical involution is + + -separative if and only
if it is torsion-free in the sense that the conditions a, b ∈ S, k ∈ � , and ka = kb imply

a = b. Indeed, for an arbitrary abelian semigroup S carrying the identical involution
and for a, b ∈ S we have %(a) = %(b) if and only if there is some k ∈ � such that
ka = kb [6]. If S happens to be an abelian group then the term ‘torsion-free’ has its
usual sense. For every abelian semigroup S we write 2S = {2s : s ∈ S}.
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Corollary 3. A ∗-semigroup is perfect if and only if it is flat and its greatest
+ + -separative ∗-homomorphic image is quasi-perfect (or equivalently, perfect).
"$#&%'%)(

. Suppose S is a ∗-semigroup; we have to show that S is perfect if and

only if S is flat and %(S) is quasi-perfect (or equivalently, perfect). If S is perfect then
it is of course flat, and its ∗-homomorphic image %(S) is perfect [15]. Conversely,
suppose S is flat and %(S) is quasi-perfect; we have to show that S is perfect. Since
S is flat, it suffices to show that S is quasi-perfect, that is, S ∪ {0} is perfect. Since
this semigroup has a zero it suffices (as shown below) to show that %(S ∪ {0}) is
perfect. But the latter semigroup can be identified with %(S)∪ {0}, which is perfect
since %(S) is quasi-perfect.
It remains to be shown that if S is a ∗-semigroup with zero such that %(S) is

perfect then so is S. Since S has a zero, it suffices to show that χ(S) is perfect.
If s, t ∈ S are such that χ(s) = χ(t) then trivially, %(s) = %(t). Hence, there is a
unique mapping %′ : χ(S) → %(S) such that % = %′ ◦ χ. We leave it as an exercise to
verify that %′ can be identified with the quotient mapping of χ(S) onto its greatest
+ + -separative ∗-homomorphic image.
In other words, we may assume that S is  -separative. By Corollary 2 it suffices

to show that S# is perfect. By [14, Theorem 4], S# is isomorphic to %(S), hence
perfect. �

3. The perfectness of G-conelike semigroups for dense
subgroups G of �

If G is a subgroup of ( � , +) and if S is a subsemigroup of a � -vector space then
S is said to be G-conelike if for each s ∈ S there is some a ∈ � such that αs ∈ S for
all α ∈ G such that α > a. A � -conelike semigroup is called simply ‘conelike’.
The perfectness of conelike ∗-subsemigroups of finite-dimensional rational vector

spaces with arbitrary involution (containing the zero of the space) was shown by
Nishio and the second-mentioned author [21]. Since every ∗-semigroup which is
generated by the union of its perfect ∗-subsemigroups is perfect [15], the assumption
on the dimension is superfluous.

The following result generalizes this to semigroups that are G-conelike for some
dense subgroup G of � . Since a ∗-semigroup S with zero is perfect if and only

if %(S) is perfect it suffices to consider + + -separative semigroups. A G-conelike
semigroup without zero is of course quasi-perfect (hence perfect iff it is flat).
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Theorem 6. If G is a dense subgroup of � then every G-conelike semigroup with

zero is perfect.

"$#&%'%)(
. Suppose S is a G-conelike subsemigroup of some rational vector space

carrying the identical involution and such that 0 ∈ S; we have to show that S is

perfect. Since every ∗-semigroup which is generated by the union of its perfect
∗-subsemigroups is perfect it suffices to show that each s ∈ S belongs to some

perfect subsemigroup of S. Such a semigroup is the set {ns : n ∈ � } ∪ (S ∩ {αs :
α ∈ G}). Indeed, by an isomorphism it suffices to show that the semigroup Gs =
� ∪ {α ∈ G : αs ∈ S} is perfect. Since S is conelike, Gs contains the semigroup
Ga = {0}∪ (G∩ ]a,∞[) for some a > 0. Since every subsemigroup of � + containing

a perfect subsemigroup of � + properly containing {0} is perfect [8] it suffices to show
that Ga is perfect, or equivalently, the semigroup G ∩ ]a,∞[ is quasi-perfect. Since
every ideal of a perfect semigroup is quasi-perfect it suffices to note that by [15,
Proposition 2], the semigroup G ∩ � + is Stieltjes perfect, hence perfect. �

4. The perfectness of semi-∗-divisible ∗-semigroups

Theorem 7. Every semi-∗-divisible semigroup is perfect.
"$#&%'%)(

. Suppose S is a semi-∗-divisible semigroup; we have to show that S is
perfect, that is, flat and quasi-perfect. To see that S is flat, suppose ϕ is a singular

positive definite function on S; we have to show ϕ = 0. Since S is semi-∗-divisible
we have s + s∗ ∈ S + S + S, so ϕ(s + s∗) = 0 for s ∈ S. For arbitrary s, t ∈ S

we now have |ϕ(s + t)|2 6 ϕ(s + s∗)ϕ(t + t∗) by the Cauchy-Schwarz inequality, so
ϕ(s + t) = 0. Thus S is flat. It remains to be shown that S is quasi-perfect, that

is, S̃ is perfect. Now S̃ is obviously semi-∗-divisible. In other words, we may assume
that S has a zero. Since S has a zero it suffices to show that %(S) is perfect. Now
%(S), being a ∗-homomorphic image of the semi-∗-divisible semigroup S, is again
semi-∗-divisible. Thus we may assume that S is + + -separative. It follows that each

archimedean component of S is embeddable in a torsion-free abelian group [9].

Since every ∗-semigroup which is generated by the union of its perfect ∗-subsemi-
groups is perfect it suffices to show that each s ∈ S belongs to some perfect sub-

semigroup of S. Let H be the archimedean component of S containing s. Let G be
the group H −H , which is torsion-free by the above. Let X be the least face of S

containing H . Recall that X + H ⊂ H . Define a homomorphism g : X → G by
g(x) = (x + s) − s (difference in the group G) for x ∈ X . It easily follows that

x + h = g(x) + h for all h ∈ H . Define a sequence (sn)∞n=0 in X by induction as
follows. Firstly, s0 = s ∈ H ⊂ X . Secondly, suppose n > 1 and that sn−1 has
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been defined and belongs to X . Since S is semi-∗-divisible we can choose sn ∈ S

and kn ∈ � such that kn > 2 and 2sn−1 = sn−1 + knsn. Since the left-hand side is
in X , it follows by the definition of a face that sn ∈ X . This completes the induc-
tion. Let K be the subgroup of � generated by the set {(k1 . . . kn)−1 : n ∈ � 0}. (If
n = 0 then k1 . . . kn = 1 by definition.) Clearly, K is dense in � . For α ∈ K such
that α > 1, the element αs is well-defined (in the enveloping rational vector space

of G) and belongs to S. Indeed, with β = α − 1 we have β ∈ K and β > 0, hence
β = p/k1 . . . kn for some n, p ∈ � 0 . Now αs = (β + 1)s = βs + s. To see that this is

in S, since x + s = g(x) + s for all x ∈ X it suffices to show βs ∈ g(X). For m ∈ � ,
since 2sm−1 = sm−1 + kmsm we have 2g(sm−1) = g(2sm−1) = g(sm−1 + kmsm) =
g(sm−1) + kmg(sm). Since G is a group it follows that g(sm−1) = kmg(sm). Hence
by induction, s = g(s) = g(s0) = k1 . . . kng(sn), so βs = pg(sn) = g(psn) ∈ g(X).
We see that the set {0} ∪ {αs : α ∈ K, α > 1} is a well-defined subsemigroup of S

containing s. Since it is K-conelike and has a zero, it is perfect. This completes the

proof. �
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