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Abstract. The notion of a partially ordered partial abelian monoid is introduced and
extensions of partially ordered abelian monoids by partially ordered abelian groups are
studied. Conditions for the extensions to exist are found. The cases when both the above
mentioned structures have the Riesz decomposition property, or are lattice ordered, are
treated. Some applications to effect algebras and MV-algebras are shown.
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1. Introduction

In algebraic categories, the diagram

0 −→ A
τ−→ C

π−→ B −→ 0

where A,B,C are objects in a category C and τ and π are morphisms such that τ
is injective, π is surjective with kernel A, is called a short exact sequence. This short

exact sequence is called an extension of B by A (or of A by B) in the category C .
Usually, it is convenient to identify the extension with the middle object C.

The extension theory of algebraic systems was started by O. Schreier [33], who

proposed and solved the problem of group extensions: given two groups N and F ,
find all possible groups G such that N is an invariant subgroup of G and G/N

is isomorphic to F (see [18] for a general theory of group extensions). Analogous
problems have been discussed on some other algebraic systems. For example, the
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extension theory for rings was given in [9]. Extensions of C*-algebras have been

studied in [19], [16], [26].

A general discussion of the extensions of partially ordered groups is in [12], for
extensions of Riesz groups see [13], [15], for extensions of lattice ordered groups see

[34].

The theory of partial abelian monoids is a relatively new part of algebra. In recent
literature, it is followed with increasing interest, and finds applications in different

fields, as a common generalization of abelian groups, boolean algebras, clans, certain
BCK-algebras, orthomodular lattices and posets, MV-algebras, effect algebras. See,

e.g., [10], [23], [32], [35], [8], [30], [17], [7], [21].

Extensions of a partial abelian monoid by an abelian group were introduced and

studied in [14]. It was shown, in particular, that every cancellative, unital abelian
monoid is an extension of an effect algebra by an abelian group. (See [11] for effect

algebras and [35] for partial abelian monoids.)

An alternative theory for an abelian group and a D-set replacing the partial abelian
monoid was given in [29]. It has been shown there that every unital D-set ([27]) is an

extension of a D-poset by an abelian group (see [22] for the definition of a D-poset).

The special case of cohomology of power sets with applications in quantum prob-

ability was studied in [24].

In the present paper we introduce the notion of a partially ordered partial abelian
monoid, as a common generalization of partially ordered abelian groups and effect al-

gebras. A general theory of extensions in the category of (partially ordered) abelian
monoids and the corresponding morphisms has not been developed yet. Here we

start with some special cases. In particular, we study extensions of partially ordered
abelian monoids by partially ordered abelian groups. Necessary and sufficient condi-

tions are found under which the extension of an abelian monoid by an abelian group,
both with the Riesz decomposition properties, also enjoys the Riesz decomposition

property.

Also, necessary conditions are found under which an extension of a lattice ordered
partial abelian monoid by a lattice ordered abelian group is lattice ordered.

Some applications to extensions of effect algebras and MV-algebras by partially
ordered abelian groups are given.

2. Ordered partial abelian monoids

Definition 1. A partial abelian monoid (PAM, for short) is a nonempty set P
endowed with a partial binary operation ⊕ with a neutral element 0 such that
(P1) a⊕ b = b⊕ a,
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(P2) (a⊕ b)⊕ c = a⊕ (b⊕ c),
(P3) a⊕ 0 = a, ∀a ∈ P .

In (P1) and (P2), we assume that if one side of the equality is defined, so is the

other, and the equality holds.

For convenience, we will write a ⊥ b if a⊕ b is defined.

A PAM P is cancellative if

a⊕ b = a⊕ c⇒ b = c.

Definition 2. A subset P+ of a PAM P is called a positive cone of P if the
following conditions are satisfied.

(C1) 0 ∈ P+.

(C2) a, b ∈ P+, a ⊥ b implies a⊕ b ∈ P+.

(C3) a, b ∈ P+, a⊕ b = 0 implies a = 0 = b.

Lemma 1. Let P be a cancellative PAM with a positive cone P+. Define a binary

relation 6 on P by a 6 b if there is a c ∈ P+ such that a⊕ c = b. Then 6 is a partial
order on P .

���������
. Reflexivity follows from a ⊕ 0 = a (P3) and 0 ∈ P+ (C1). To prove

antisymmetry, let a 6 b and b 6 a. Then there are c, d ∈ P+ such that a⊕ c = b and
b ⊕ d = a. It follows that a = (a ⊕ c) ⊕ d = a ⊕ (c ⊕ d) by associativity (P2), and
by cancellativity, c⊕ d = 0. By (C3), c = d = 0, which entails a = b. The proof of
transitivity is similar. �

In what follows, we assume that P is a cancellative PAM and P+ is its positive
cone. We will call (P, P+) an ordered PAM (a p.o. PAM for short).
Let P and Q be PAMs. A mapping ν : P → Q is a morphism (of PAMs) if a ⊥ b,

a, b ∈ P implies ν(a) ⊥ ν(b) and ν(a ⊕ b) = ν(a) ⊕ ν(b). Clearly ν(0) = 0 owing
to 0 ⊥ 0 and cancellativity. A morphism ν is faithful if ν(a) ⊥ ν(b) implies a ⊥ b.

A bijective faithful morphism is an isomorphism, i.e., its inverse mapping is also a
morphism.

If P and Q are ordered PAMs, a morphism ν : P → Q is a positive morphism if
a ∈ P+ implies ν(A) ∈ Q+. Clearly, a positive morphism preserves order (a 6 b

implies ν(a) 6 ν(b)). A morphism will be called strongly positive if a 6 b iff ν(a) 6
ν(b). A surjective strongly positive morphism is an order isomorphism.

Definition 3. Let G be a p.o. PAM. A subset A of G will be called a group
order ideal (g.o. ideal) if it satisfies the following conditions.

(I1) For every a in A there is ā in A such that a⊕ ā = 0.
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(I2) For every a ∈ A and every g ∈ G, a⊕ g is defined.

(I3) If a, b belong to A, then a⊕ b belongs to A.

(I4) If a⊕ b belongs to A and a and b are positive, then a and b belong to A.

It is easy to check that A, with the operation ⊕ and the partial order inherited
from G, is an abelian p.o. subgroup of G. Moreover, A is a convex subgroup of G in
the sense that a 6 x 6 b and a, b ∈ A imply x ∈ A. Indeed, b	a = (b	x)⊕ (x	a),
and b	 a ∈ A, b	 x > 0, x 	 a > 0 implies by (I4) that x 	 a ∈ A, which together
with a ∈ A and x = a⊕ (x 	 a) implies by (I3) that x ∈ A.
Define a binary relation ∼A on G by a ∼A b if there are x, y ∈ A such that

a ⊕ x = b ⊕ y. Owing to the group structure of A, we have a ∼A b iff a = b ⊕ x

for some x ∈ A. In the next theorem, we prove that for any g.o. ideal A of G, ∼A is
an equivalence. The set of all equivalence classes will be denoted by G/A and called

the quotient of G with respect to A. The next theorem also shows that G/A can be
naturally equipped with a structure of a p.o. PAM.

Theorem 1. Let A be a g.o. ideal of a p.o.PAM G. The binary relation ∼A is an

equivalence, and the quotient G/A can be equipped with a structure of a p.o.PAM.

Moreover, the canonical mapping π : G → G/A is a faithful morphism such that

π(G+) = (G/A)+.
���������

. We will write ∼ instead of ∼A. We also will replace a⊕ b by a+ b iff at
least one of a, b is in A. Reflexivity and symmetry of ∼ follow from the definition.
To check transitivity, assume u ∼ v and v ∼ w. Then there are a, b ∈ A such that
v = u+ a and w = v + b, so that w = (u+ a) + b. Using associativity and (I3), we

obtain u ∼ w.

Let [u] denote the equivalence class containing u. In G/A, define the binary
relation ⊥ by [u] ⊥ [v] iff there are u1 ∈ [u] and v1 ∈ [v] with u1 ⊥ v1 in G. In this
case we define [u]⊕ [v] = [u1 ⊕ v1]. This definition does not depend on the choice of
the representatives u1, v1. Indeed, let u2 ∈ [u], v2 ∈ [v], and u2 ⊥ v2. Then u1 ∼ u2,
v1 ∼ v2 imply that there are a, b ∈ A such that u2 = u1 + a, v2 = v1 + b, hence

u2 ⊕ v2 = u1 ⊕ v1 + (a+ b), the latter equality entails that u2 ⊕ v2 ∼ u1 ⊕ v1.

The operation ⊕ on G/A defined above is clearly commutative, and [0]⊕ [u] = [u]
for all u ∈ G. Obviously, the class [u] can be identified with the set u+A = {u+a : a ∈
A}. If [u] ⊥ [v], there are a, b ∈ A such that u+ a ⊥ v + b, so that (u+ a)⊕ (v + b)
is defined. For any other representatives u+ x, v + y of [u], [v], respectively, we can
write u+x = u+a+(x−a), v+y = v+b+(y−b), owing to the group structure of A.
As x−a, y− b belong to A, the element (u+a)⊕ (v+ b)+(x−a)+(y− b) is defined
and equals (u+x)⊕ (v+ y). It follows that [u] ⊥ [v] iff for any two representantives
u1, v1 of [u], [v], respectively, u1 ⊥ v1 holds.
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To check the associativity of ⊕, assume that ([u] ⊕ [v]) ⊕ [w] is defined. This is
equivalent to the existence of ((u+ a)⊕ (v+ b))⊕ (w+ c) for any a, b, c ∈ A. Owing
to the associativity of ⊕ in G, the associativity in G/A follows.
To prove cancellativity, assume [u]⊕ [v] = [u]⊕ [z]. This entails (u+a)⊕ (v+ b) ∼

(u+ c)⊕ (z+d) for any a, b, c, d ∈ A, that is, u⊕ v = u⊕ z+ e, e = c+d−a− b ∈ A,
where we write −x for the element x̄, x ∈ A, and by cancellativity in G we obtain

v ∼ z.
We have proved that G/A is a cancellative PAM. Moreover, the mapping π : G→

G/A, g 7→ [g] is a faithful morphism of PAMs.
To introduce ordering in G/A, define [g] > [0] if g + a ∈ G+ for some a ∈ A,

i.e., if [g] has a positive representative. Let (G/A)+ = {[g] : [g] > [0]}. Clearly,
[0] ∈ (G/A)+. If [g], [h] ∈ (G/A)+ and [g] ⊥ [h], then g + a, h + b ∈ G+ for some

a, b ∈ A, which implies that g ⊕ h + a + b ∈ G+, and hence [g] ⊕ [h] ∈ (G/A)+.
Finally, if [g]⊕ [h] = [0] and [g], [h] ∈ (G/A)+, then (g + a) ⊕ (h + b) ∈ A for some
a, b ∈ A where g + a, h+ b ∈ G+, which entails, by (I4), that g + a, h + b ∈ A, and
hence g, h ∈ A. This proves that (G/A)+ satisfies conditions (C1), (C2), (C3) of a
positive cone, and so it induces a partial order in (G/A). Evidently, g ∈ G+ implies
[g] ∈ (G/A)+, hence π is a positive morphism. Conversely, if [g] ∈ (G/A)+, then
there is a representative g + a ∈ G+, consequently, π(G+) = (G/A)+ �

The partial order in G/A induced by (G/A)+ will be called the quotient ordering.
Following [14] we define, in analogy with the extensions of abelian groups, an

extension of a partially ordered PAM by a partially ordered abelian group.

Definition 4. Let A be a partially ordered abelian group. Let G and ∆ be
p.o. PAMs. We say that G is an ordered extension of ∆ by A if there is an injective
positive morphism τ of A into G such that A+ = τ−1(G+), and there is a morphism
π of G onto ∆ with kernel A such that π(G+) = ∆+.

So we have the sequence

(1) 0 −→ A
τ−→ G

π−→ ∆ −→ 0.

Since τ is injective and π is surjective with kernel A, (1) is a short exact sequence in
the category of ordered PAMs and positive morphisms.

Like in the category of p.o. abelian groups, the extensions of A by ∆ can be
described by cocycles and special subsets of A.

Definition 5. Let (∆,∆+) be an ordered PAM (with the neutral element
denoted by θ), and let (A,A+) be an abelian partially ordered group (with the
group operation denoted by + and the neutral element 0). Let

f : {(α, β) ∈ (∆×∆): α ⊥ β} → A
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be a mapping satisfying

(c1) f(α, θ) = 0 for all α ∈ ∆,
(c2) f(α, β) = f(β, α) for all α, β ∈ ∆ such that α⊕ β is defined,
(c3) f(α, β)+f(α⊕β, γ) = f(α, β⊕γ)+f(β, γ) for all α, β, γ ∈ ∆ such that α⊕β⊕γ

is defined.

Then f is called an A-cocycle on ∆.

Definition 6. Let (∆,∆+) be an ordered PAM and (A,A+) an abelian partially
ordered group. We say that

G = {(α, a) : α ∈ ∆, a ∈ A}

with a partially defined binary operation ⊕ is an f -product of ∆ by A if the following
conditions are satisfied:
(E1) (α, a) = (β, b) iff a = b and α = β,
(E2) (α, a)⊕ (β, b) is defined iff α⊕ β is defined, and

(α, a)⊕ (β, b) = (α⊕ β, a+ b+ f(α, β)),

where f is any A-cocycle on ∆.

Lemma 2. Let G be an f-product of a PAM ∆ by a group A. Then G is a PAM.
���������

. We have to check conditions (P1), (P2) and (P3).
(P1): Assume α ⊥ β. Then, for any a, b ∈ A, (α, a)⊕ (β, b) is defined, and

(α, a) ⊕ (β, b) = (α⊕ β, a+ b+ f(α, β)) = (β ⊕ α, b+ a+ f(β, α)) = (β, b)⊕ (α, a)

by (c2).
(P2): Assume that α⊕ β ⊕ γ is defined. Then

[(α, a)⊕ (β, b)]⊕ (γ, c) = (α⊕ β, a+ b+ f(α, β)) ⊕ (γ, c)

= ((α ⊕ β)⊕ γ, a+ b+ c+ f(α, β) + f(α⊕ β, γ))

= ((α ⊕ (β ⊕ γ), a+ b+ c+ f(α, β ⊕ γ) + f(β, γ))

= ((α, a) ⊕ (β ⊕ γ, b+ c+ f(β, γ))

= (α, a)⊕ [(β, b)⊕ (γ, c)].

(P3):

(α, a) ⊕ (0, θ) = (α⊕ θ, a+ 0 + f(α, θ)) = (α, a).

�
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Like in partially ordered groups, the order relation in G can be given in terms of

the sets Pα = {the set of all a ∈ A such that (α, a) > (θ, 0)}, where the system of
sets Pα, α ∈ ∆ satisfies

(p1) Pα 6= ∅ iff α ∈ ∆+,

(p2) Pθ = A+,

(p3) Pα + Pβ + f(α, β) ⊆ Pα⊕β whenever α ⊥ β.

Lemma 3. Put G+ = ∪α∈∆+(α, Pα). Then G+ is a positive cone in G.

���������
. We have to check the properties (C2) and (C3). To check (C2), assume

that (α, a), (β, b) ∈ G+ and (α, a) ⊥ (β, b). Then α ⊥ β and a ∈ Pα, b ∈ Pβ . By

(p3), Pα + Pβ + f(α, β) ⊂ Pα⊕β , and since

(α, a)⊕ (β, b) = (α⊕ β, a+ b+ f(α, β)),

we obtain a+ b+ f(α, β) ∈ Pα⊕β . Hence (α, a)⊕ (β, b) ∈ G+.

As for (C3), assume that (α, a) ⊕ (β, b) = 0 for some (α, a), (β, b) ∈ G+. Then

(α ⊕ β, a + b + f(α, β) = (θ, 0), hence α ⊕ β = θ and a + b + f(α, β) = 0. Since
a ∈ Pα, b ∈ Pβ , we get by (p1) that α, β ∈ ∆+, and from α ⊕ β = θ we get

α = β = θ, hence f(α, β) = 0. Now a, b ∈ A+, a+b = 0 implies a = b = 0. Therefore
(α, a) = (β, b) = (θ, 0). �

Observe that (α, a) > (β, b) iff there is (δ, d) ∈ G+ such that (α, a) = (β, b) ⊕
(δ, d) = (β ⊕ δ, b+ d+ f(β, δ)), and this yields

δ = α	 β ∈ ∆+, d = a− b− f(β, α	 β) ∈ Pα	β .

We note that Pα is an upper class, i.e., a ∈ Pα, a 6 b implies b ∈ Pα, α ∈ ∆,
a, b ∈ A. Indeed,

(α, b)	 (α, a) = (α	 α, b− a− f(α, α)) = (θ, b− a) > (θ, 0),

so that (α, b) > (α, a) > (θ, 0).

Let ∆ = G/A. In agreement with [4], we will call a subset S ⊂ G a transversal in
G for G/A if every class in ∆ intersects S in exactly one element.
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Theorem 2. Let A be a p.o. abelian group, ∆ a p.o. PAM. A p.o.PAM G is a

p.o. extension of ∆ by A if and only if there are a cocycle f and a family of sets P
such that G is an f-product of A by ∆ ordered by P .
���������

. First assume that G is a p.o. extension of ∆ by A. Then there is an
order preserving embedding of A into G. Without loss of generality we may assume

that A ⊂ G. We will prove that A is a g.o. ideal of G. Properties (I1), (I2) and
(I3) of Definition 5 follow directly from the group structure of A. Let x, y ∈ G+ and
x ⊕ y ∈ A. Since π(G+) = ∆+, we have π(x), π(y) ∈ ∆+ and π(x) ⊕ π(y) = θ, so

that π(x) = π(y) = θ, and hence x, y ∈ A, so (I4) holds. This proves that A is a
g.o. ideal of G. Assume that g ∈ G is such that π(g) = α ∈ ∆. Then π(g+a) = α for

every a ∈ A. If π(g) = π(h), g, h ∈ G, then π(g)	 π(h) = θ, and since π is faithful,
g 	 h is defined and belongs to A. This implies that ∆ can be identified with the
quotient G/A, and every g ∈ G can be written in the form (α, a), α ∈ ∆, a ∈ A.
Let % be any transversal which chooses a (unique) representative %([g]) in every class
[g] ∈ G/A such that %([0]) = (θ, 0). Then there is a mapping t : ∆ → A such that
%([g]) = (α, t(α)) if π(g) = α, and t(θ) = 0. If α ⊥ β, then there is a unique element

c ∈ A such that

(α, t(α)) ⊕ (β, t(β)) = (α⊕ β, t(α) + t(β) + c)

where c depends on α and β. Put c = f(α, β). The function f(α, β) with the domain
{(α, β) : α ⊥ β} ⊆ ∆ × ∆ is a cocycle. The proof is left to the reader as an easy
exercise.

Let Pα = {a ∈ A : (α, a) > (θ, 0)}. Since π(G+) = ∆+, we have Pα 6= ∅ iff
α ∈ ∆+, and Pθ = {a ∈ A : (θ, a) > (θ, 0)} = A+. If α ⊥ β, then (α, a) > (θ, 0),
(β, b) > (θ, 0) implies (α, a) ⊕ (β, b) > (θ, 0), hence (α ⊕ β, a+ b+ f(α, β)) > (θ, 0).
It follows that Pα + Pβ + f(α, β) ⊆ Pα⊕β .

This concludes the proof that any ordered extension G of A by ∆ is an f-product
of A by ∆ ordered by a system P of subsets of A.

Conversely, let G be an f-product of A by ∆. By Lemma 2 and Lemma 3, G is a
PAM with an ordering cone G+ =

⋃
α∈∆+

(α, Pα). Consider the set {(θ, a) : a ∈ A} ⊂

G. For (θ, a), (θ, b) we have (θ, a) ⊕ (θ, b) = (θ, a + b + f(θ, θ)) = (θ, a + b), hence
there is a bijective group homomorphism τ : a 7→ (θ, a). It is easy to check that
I = {(θ, a) : a ∈ A} is a g.o. ideal in G. Indeed, (I1)–(I3) are immediate. To check
(I4), let g, h ∈ G+ and g ⊕ h ∈ I . Let g = (α, a), h = (β, b), α, β ∈ ∆+, a ∈ Pα,
b ∈ Pβ , then (α, a)⊕(β, b) = (α⊕β, a+b+f(α, β)) implies α⊕β = θ, hence α = β = θ,

and therefore g, h ∈ I . Let x = (α, a), y = (β, b) and x ∼I y. Then there is z ∈ I ,
z = (θ, c) with y = x⊕z, that is, (β, b) = (α, a)⊕(θ, c) = (α, a+c), which yields α = β,
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b = a ⊕ c. So there is a bijection between G/I and ∆. Moreover, [(α, a)] ⊥ [(β, b)]
iff (α, a) ⊥ (β, b) iff α ⊥ β, which implies that there is a faithful bijective morphism
between G/I and ∆. Moreover, (β, b) 6 (α, a) iff there is (δ, d) > (θ, 0), where
δ = α 	 β ∈ ∆+, d = a − b − f(β, α 	 β) ∈ Pα	β , hence π(G+) ⊆ ∆+, where

π : G → G/I is the canonical mapping. Conversely, if δ ∈ ∆+, then there is a
d ∈ Pδ, and hence (δ, d) ∈ G+. This proves that π(G+) = ∆+. �

Two extensions G and G′ of A by ∆ corresponding to f, P and f ′, P ′, respectively,
are called o-equivalent if there is a function t : ∆ → A such that t(θ) = 0,

(2) f ′(α, β) = f(α, β) + t(α⊕ β)− t(α)− t(β)

whenever α ⊥ β, and

(3) P ′α = Pα + t(α)

for every α ∈ ∆. This is equivalent to the existence of a positive isomorphism Φ of
G onto G′ such that Φ(α, a) = (α, a + t(α)), where t : ∆ → A is any mapping such

that t(θ) = 0. This isomorphism leaves the elements of A and the equivalence classes
in ∆ fixed.
Indeed, assume that (G, f, P ) and (G′, f ′, P ′) are equivalent. Define Φ: G → G′

by Φ(α, a) = (α, a + t(α)). Clearly, Φ leaves the class [α] invariant, and Φ((θ, a)) =
(θ, a+ t(θ)) = (θ, a) owing to t(θ) = 0. If α ⊥ β, then

Φ((α, a)⊕ (β, b)) = Φ(α ⊕ β, a+ b+ f(α, β))

= (α ⊕ β, a+ b+ f(α, β) + t(α⊕ β))

Φ(α, a)⊕ Φ(β, b) = (α, a+ t(α)) ⊕′ (β, b+ t(β))

= (α ⊕ β, a+ t(α) + b+ t(β) + f ′(α, β)),

and owing to equation (2), Φ is a morphism. Considering the inverse mapping
Φ−1 : G′ → G, Φ−1(α, a) = (α, a − t(α)), we prove that Φ is a faithful morphism.
Now (α, a) ∈ G+ iff a ∈ Pα, which yields a + t(α) ∈ Pα + t(α), i.e., Φ(α, a) ∈ G+.

Hence Φ is a positive isomorphism.
The proof of the converse implication is similar. It is easy to see that if we choose

another transversal %′ instead of % in the proof of Theorem 2, we obtain an equivalent

extension. �
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3. Examples

Example 1. Let (A,A+) be an abelian p.o. group, (∆,∆+) a p.o.PAM. Consider
the cartesian product G := ∆×A, endowed with the partial order (α, a) 6 (β, b) iff
α 6 β and a 6 b, and with (α, a)⊕ (β, b) defined iff α ⊥ β, and then (α, a)⊕ (β, b) =
(α⊕ β, a+ b). Then G is a p.o. extension of ∆ by A.
To prove it, put f(α, β) = 0 for all α, β ∈ ∆ such that α ⊥ β. Then f satisfies

conditions (c1), (c2), (c3) of Definition 5. For every α ∈ ∆+ define Pα = A+. Then
G+ :=

⋃{(α, a) : α ∈ ∆+, a ∈ A+} = ∆+×A+, and the corresponding partial order

is given by (α, a) 6 (β, b) iff β 	 α ∈ ∆+ and b− a ∈ A+.

This extension is called the direct sum of the abelian group A and the p.o.PAM

∆. Let G be an extension corresponding to f and P which is equivalent to the direct
sum extension. Then we have

(4) f(α, β) = t(α⊕ β)− t(α)− t(β)

whenever α ⊥ β, and

(5) Pα = A+ + t(α)

for every α, where t : ∆ → A with t(θ) = 0 is any function. A cocycle defined by (4)
is called a trivial cocycle.

Example 2. Let A be an abelian group, ∆ an ordered PAM, and let f be any
cocyle. Put

Pα =





A : α > θ

A+ : α = θ

∅ : otherwise.

As is readily seen, the conditions (p1), (p2) and (p3) are fulfilled. Accordingly, in

the extension PAM G we have:

(α, a) 6 (β, b) if and only if α 6 β, or α = β and a 6 b.

Therefore it is natural to say that G is a lexicographic extension. Observe that an

extension is lexicographic iff G+ = τ(A+) ∪ π−1(∆+ \ {0}).

Example 3. Let us first formulate a proposition.
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Proposition 1. Let G be a cancellative p.o.PAM with a positive cone G+. Let

A ⊂ G be the set of all elements a ∈ G such that a⊕ b = 0 for some b ∈ G. Then
(i) (A,⊕) is a p.o. group.
(ii) For u, v ∈ G define u ∼A v if f there is a ∈ A with u ⊕ a = v. Then ∼A is an

equivalence relation, and the quotient G/A can be endowed with a structure of

a p.o.PAM with a positive cone (G+ ⊕A)/A.

���������
. (i) Let a ∈ A. Then there is b ∈ G with a ⊕ b = 0. Owing to

cancellativity, this element b is uniquely defined. For any u ∈ G, u = u ⊕ 0 =
u⊕ (a⊕ b) = (u⊕ a)⊕ b. It follows that u⊕ a is defined for every u ∈ G and a ∈ A.
In particular, a ⊕ b is defined for every a, b ∈ A. Moreover, there are c, d ∈ A with

a ⊕ c = b ⊕ d = 0, hence (a ⊕ b) ⊕ (c ⊕ d) = 0, which entails a ⊕ b ∈ A. Clearly,
0 ∈ A, and A with the operation ⊕ inherited from G becomes an abelian group.

Define A+ := A ∩ G+. Then A+ is closed under ⊕, and if x, 0 	 x ∈ A ∩ G+, then
x ⊕ (0 	 x) ∈ G+ implies x = 0 	 x = 0. Therefore A+ is a positive cone in A. In

addition, the p.o. group (A,A+) is an ordered subgroup of (G,G+).
(ii) The relation u ∼A v iff u = v ⊕ a, u, v ∈ G, a ∈ A, is clearly symmetric and

reflexive, and transitivity easily follows from the fact that A is a group. In addition,

the equivalence classes can be written as [g] = {g⊕a : a ∈ A}, i.e., “cosets” of G with
respect to A. Then the set C := (G+ ⊕ A)/A is a cone in G/A = {g ⊕ A : g ∈ G}.
Indeed, since G+ contains 0 and is closed under existing ⊕-sums, the same is true for
C. Assume that x, y ∈ G/A lie in C and x⊕y = 0/A. Then there exist a, b ∈ G+⊕A
such that a ⊥ b, x = a⊕A, y = b⊕A, and a⊕ b⊕A = x⊕ y = 0/A. It follows that
a ⊕ b ∈ A. Then there is a c ∈ A with (a ⊕ b) ⊕ c = 0 = a ⊕ (b ⊕ c), hence a ∈ A.
This proves that (G+ ⊕A)/A is a positive cone in G/A. �

Consider the sequence

(6) 0 −→ A
τ−→ G

π−→ G/A −→ 0

where τ : A → G is the identity mapping, π : G → G/A is the quotient mapping

g → g ⊕A. Hence (6) is a short exact sequence, and G is the extension of the PAM
G/A by the abelian group A.

4. Extensions of PAMs with the Riesz decomposition properties

Definition 7. We say that a p.o. PAM P possesses the Riesz decomposition

property if for a, b, c ∈ P+, c 6 a ⊕ b, there are 0 6 a1 6 a, 0 6 b1 6 b such that
c = a1 ⊕ b1.
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In what follows, we will consider an upward directed PAM P , i.e., we will assume

that for any x, y ∈ P there is z ∈ P such that x, y 6 z. If P is upward directed, then
every element x ∈ P can be expressed in the form x = x1 	 x2, where x1, x2 ∈ P+.
Indeed, for any x ∈ P there is z ∈ P such that 0 6 z, x 6 z, and so z = x⊕ (z 	 x),
which yields x = z 	 (z 	 x) with z, z 	 x ∈ P+. For the extensions we have the
following lemma.

Lemma 4. Let A be a directed abelian group, ∆ an upward directed p.o.PAM,
and let G be a p.o. extension of ∆ by A. Then G is upward directed.
���������

. Let (α, a), (β, b) be arbitrary elements from G. Since ∆ is upward
directed, there is γ ∈ ∆ such that α, β 6 γ. Then there are c ∈ Pγ	α and d ∈ Pγ	β.

We have

(α, a)⊕ (γ 	 α, c) = (γ, a+ c+ f(α, γ 	 α)) =: (γ, u),

(β, b)⊕ (γ 	 β, d) = (γ, b+ d+ f(β, γ 	 β)) =: (γ, v).

As A is directed, there is z ∈ A such that z > u, v. Then (γ, z) > (α, a), (β, b). �

In accordance with [11] we introduce the following definition.

Definition 8. Let (P, P+) be an upward directed p.o.PAM. A p.o. abelian group
G is called a universal group for P if there is an injective faithful positive morphism
ϕ : P → G satisfying the following conditions:

(i) ϕ(P+) is a convex subset of G+ and for every g ∈ G+ there are elements
a1, . . . , an in P+ such that g = ϕ(a1)⊕ . . .⊕ ϕ(an).

(ii) Let K be any abelian group and κ : P → K a mapping such that a ⊥ b implies
κ(a ⊕ b) = κ(a) + κ(b). Then κ uniquely extends to a group homomorphism
κ∗ : G→ K such that κ∗ ◦ ϕ = κ.

We note that if K is partially ordered and κ is positive, then κ∗ is a positive group

homomorphism, owing to property (i).
Let P be a p.o.PAM with an ordering cone P+. It is easy to check that P+ is

a generalized effect algebra in the sense of [8, Def. 1.2.1]. Therefore, the following
statement can be derived (cf. [8, Theorem 1.7.13] and [8, Prop. 1.7.15]).

Theorem 3. Let (P, P+) be an upward directed PAM with the Riesz decom-
position property. Then there is an abelian group G with the Riesz decomposition

property and an injective faithful positive morphism ϕ : P → G such that (G,ϕ) is
a universal group for P .

Notice that the group G in Theorem 3 is an interpolation group, that is, if a1, a2,
b1, b2 are elements of G such that any of ai is under any of bj , i, j ∈ {1, 2}, then there
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is an element c ∈ G, a1, a2 6 c 6 b1, b2. This interpolation property is inherited by

P . Unlike the partially ordered groups, the interpolation property need not imply
the Riesz decomposition property (see [8], [31]).
Proof of the following theorem is an appropriate adaptation of [12, Theorem 6.1].

Theorem 4. Let A be a directed abelian group with the Riesz decomposi-
tion property, ∆ a p.o.PAM with the Riesz decomposition property, and G a

p.o. extension of ∆ by A corresponding to f(α, β), Pα. Then G is a p.o. PAM with

the Riesz decomposition property if and only if the following two conditions are

satisfied:

(a) For every α ∈ ∆+, Pα is lower directed.

(b) Pα + Pβ + f(α, β) = Pα⊕β for all α, β ∈ ∆+, α ⊥ β.
���������

. First assume thatG has the Riesz decomposition property. Let a, b ∈ Pα

and choose c ∈ A with c 6 a, b. Then each of (θ, 0), (α, c) is under each of (α, a), (α, b).
Since the Riesz decomposition property implies the interpolation property, some (δ, d)
can be inserted in between them. Evidently, δ = α and d ∈ Pα satisfies d 6 a, b.

Hence (a) is a necessary condition.
We have, by (p3), Pα + Pβ + f(α, β) ⊂ Pα⊕β . To every c ∈ Pα⊕β we can find

elements a, b such that a ∈ Pα, b ∈ Pβ and c 6 a+ b+ f(α, β) (since Pα’s are upper
classes).
Then

(θ, 0) 6 (α⊕ β, c) 6 (α, a)⊕ (β, b) = (α ⊕ β, a+ b+ f(α, β))

implies the existence of a1 ∈ Pα, b1 ∈ Pβ such that c = a1 + b1 + f(α, β) by the
Riesz property in A. Indeed, by the RDP in G, (α ⊕ β, c) = (α1, a1)⊕ (β1, b1) with
(α1, a1) 6 (α, a), (β1, b1) 6 (β, b). Then there exist (δ, d) > (θ, 0), (η, e) > (θ, 0)
such that

(α, a) = (α1, a1)⊕ (δ, d) = (α1 ⊕ δ, a1 + d+ f(α1, δ),

(β, b) = (β1, b1)⊕ (η, e) = (β1 ⊕ η, b1 + e+ f(β1, η)

which implies α1 ⊕ δ = α, β1 ⊕ η = β, so that α1 6 α, β1 6 β by (p1). Now

(α⊕ β, c) = (α1, a1)⊕ (β1, b1) = (α1 ⊕ β1, a1 + b1 + f(α1, β1)

implies α ⊕ β = α1 ⊕ β1, which together with the above inequalities yields α1 = α

and β1 = β. Therefore

(α⊕ β, c) = (α ⊕ β, a1 + b1 + f(α, β)),

and c = a1 + b1 = f(α, β).
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Thus

Pα⊕β ⊂ Pα + Pβ + f(α, β),

and by (p3) we get (b).

Conversely, let A and ∆ have the Riesz property and let f and P satisfy (a) and
(b). Assume that

(7) (θ, 0) 6 (γ, c) 6 (α, a)⊕ (β, b)

with a ∈ Pα, b ∈ Pβ . We have to show that

(γ, c) = (α′, a′)⊕ (β′, b′)

for some a′ ∈ Pα′ , b′ ∈ Pβ′ with

(α′, a′) 6 (α, a); (β′, b′) 6 (β, b).

By the Riesz property of∆, γ = α0⊕β0 for some α0, β0 ∈ ∆, θ 6 α0 6 α, θ 6 β0 6 β.

Then there is a0 ∈ Pα0 such that

(θ, 0) 6 (α0, a0) 6 (α, a),

since a ∈ Pα = Pα	α0 + Pα + f(α	 α0, α0), α = (α	 α0)⊕ α0, and so a = a1 + a0

with a1 ∈ Pα	α0 + f(α	 α0, α0) and a0 ∈ Pα0 . Similarly,

(θ, 0) 6 (β0, b0) 6 (β, b)

for some b0. Since

c ∈ Pγ = Pα0⊕β0 = Pα0 + Pβ0 + f(α0, β0)

and Pα0 , Pβ0 are lower directed, we may assume that a0 and b0 are such that

a0 + b0 + f(α0, β0) 6 c.

Subtracting (α0, a0) and (β0, b0), we reduce (7) to the case γ = θ.
If γ = θ, we have

(θ, 0) 6 (θ, c) 6 (α, a)⊕ (β, b) = (α ⊕ β, a+ b+ f(α, β)),

which implies

a+ b+ f(α, β)− c ∈ Pα⊕β = Pα + Pβ + f(α, β).
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So a+ b+f(α, β)− c = a1 + b1 +f(α, β) for some a1 ∈ Pα, b1 ∈ Pβ . Choose a2 ∈ Pα,

b2 ∈ Pβ such that a2 6 a, a1, and b2 6 b, b1. Then we have a2 + b2 6 a1 + b1 6 a+ b.
The Riesz property of A implies that a1 +b1 = a3 +b3 with a2 6 a3 6 a, b2 6 b3 6 b,
and so a3 ∈ Pα, b3 ∈ Pβ . Setting a′ = a− a3, b′ = b− b3, we have

(θ, a′)⊕ (θ, b′) = (θ, c),

where (θ, 0) 6 (θ, a′) 6 (α, a), (θ, 0) 6 (θ, b′) 6 (β, b). The proof is complete. �

In what follows, G(Σ) denotes the universal group of a PAM Σ if it exists. In the
next two theorems, we show the relations between the extension of an ordered PAM

and the extensions of its universal group by the same abelian p.o. group.

Theorem 5. Let A be a directed abelian group, ∆ an ordered PAM, and H a
p.o. extension of ∆ by A such that the universal groups G(A) and G(H) of A and
H , respectively, exist. Then G(H) is a p.o. extension of G(∆) by A.
���������

. We may assume that A is a g.o. ideal of H and that H/A = ∆. We have
A ⊂ H ⊂ G(H) and A+ ⊂ H+ ⊂ G(H)+, and it is easily seen that A is an ordered
subgroup of G(H). Let π : H → ∆ be the canonical mapping. By the properties
of universal groups, π can be uniquely extended to a positive group homomorphism

π∗ : G(H) → G(∆). Since π(H+) = ∆+, H+ generates G(H) and ∆+ generates
G(∆), π∗ is surjective. Since π∗ is an order homomorphism, π∗(G(H)+) ⊂ G(∆)+.
On the other hand, every g ∈ G(∆)+ is of the form g = g1+. . .+gn, g1, . . . , gn ∈ ∆+,
and so π∗(g) = π(g1) + . . . + π(gn) = π∗(g1 + . . . + gn) ∈ π∗(G(H)+), whence
π∗(G(H)+) = G(∆)+. Now let σ : G(H) → G(H)/A be the quotient mapping. If
h ∈ H , then σ(h) = h + A = π(h) ∈ ∆, so that σ restricted to H coincides with
π. But σ : H → G(∆) has a unique extension to a positive group homomorphism
from G(H) to G(∆), and therefore σ = π∗. This proves that G(H) is an ordered
extension of the group G(∆) by the group A. �

Theorem 6. Let A be a directed abelian group, ∆ an ordered PAM such that
its universal group G(∆) exists, G a p.o. extension of G(∆) by A. Put H := {g ∈
G : [g] ∈ ∆}. Then H is an ordered PAM which is a p.o. extension of ∆ by A.
���������

. We may assume that A is an ordered subgroup of G and G/A = G(∆).
Put H := {g ∈ G : [g] ∈ ∆}, where g 7→ [g] is the canonical mapping from G to

G(∆). We have to prove that
(1) (H,H+) is an ordered PAM, where H+ := H ∩G+,

(2) A is a g.o. ideal of H ,
(3) H/A is isomorphic to ∆.

169



(1) Clearly, 0 ∈ H+. For g, h ∈ H+, define g ⊥ h iff [g] ⊥ [h] in ∆. Define a partial
binary operation on H+ by h⊕ g = h+ g iff h ⊥ g, where + is the group operation
on G. It is easy to see that ⊕ is commutative and associative and 0 is a neutral
element. If g, h ∈ H+ and g ⊕ h = 0, then g + h = 0 in G+, whence g = h = 0. So
H+ is an ordering cone in H .
(2) For g ∈ A we have [g] = 0, hence A ⊂ H and A ∩G+ = A+, hence A+ ⊂ H+.

If a ∈ A and g ∈ H , then [g+ a] = [g] ∈ ∆, hence g⊕ a = g+ a ∈ H . The remaining
properties of a g.o. ideal are easy to check.

(3) Let % : H → H/A be the canonical morphism. For any g ∈ H we may write
%(g) = h + A, and since [h] ∈ ∆ and [h] = h + A, we may define a mapping

ν : H/A → ∆, ν(%(h)) = [h], and it is easy to see that ν is a surjective faithful
morphism. Moreover, H/A endowed with the quotient ordering is an ordered PAM,

and ν is a positive morphism. In addition, if [h] ∈ ∆+, then there is a representative
g ∈ G+ of [h], hence g ∈ H+. This shows that ν(H+) = ∆+.

From (1), (2), and (3) we may conclude that H is a p.o. extension of ∆ by A. �

Using Theorems 5, 6 we can derive the following statements.

Theorem 7. Let A be a directed abelian group, ∆ an upward directed PAM and
H a p.o. extension of ∆ by A such that each of A, ∆ and H satisfies the RDP. Then
G(H) is a p.o. extension of G(∆) by A possessing the RDP.

Theorem 8. Let A be a directed abelian group, ∆ an upward directed PAM, G
a p.o. extension of G(∆) by A such that all of A, ∆ and G possess the RDP. Then
there is an ordered sub-PAM H of G which is a p.o. extension of ∆ by A possessing
the RDP.

Let H be a partially ordered PAM. In agreement with [15, Definition p. 294], a

generating interval in H+ is any convex upward directed subset D ⊆ H+ such that
every element of H+ is a sum of elements fromD. If D = [0, u], we will say that u is a
generating unit forH+. We will write (H,D) to denote an upward directed p.o.PAM
where D is a generating interval for H+. If D = [0, u], we write (H,u) instead of
(H,D). For example, if (G(H), ϕ) is a universal group for an ordered PAM H , where
ϕ : H → G(H) is the corresponding embedding, then ϕ(H+) is a generating interval
for G(H)+. The following lemma gives a characterization of universal groups for
p.o. PAMs with the RDP.

Lemma 5. Let P be an upward directed partially ordered PAM with the Riesz
decomposition property. Then every directed group G with the RDP such that there

is an injective faithful morphism ϕ : P+ → G+ and ϕ(P+) is a generating interval
in G+, is a universal group for P .
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���������
. Let ϕ : P → G be an order isomorphism such that ϕ(P ) is a generating

interval in G+. To prove the universal property, assume that K is an abelian group
and ψ : P → H a mapping which preserves the partial operation⊕. By the properties
of ϕ, we may identify P+ with ϕ(P+). Since ϕ(P+) is a generating cone in G+, every

element g ∈ G+ can be written in the form g =
n∑

i=1

gi where gi ∈ ϕ(P+), i = 1, . . . , n.

Put ψ1(g) =
n∑

i=1

ψ(gi). To prove that ψ1 : G+ → K is well defined, let g =
m∑

j=1

hj ,

hj ∈ ϕ(P+) be any other decomposition of g. Owing to the Riesz decomposition
properties, the equality

n∑

i=1

gi =
m∑

i=1

hj

implies that there are elements wij , i = 1, . . . , n; j = 1, . . . ,m in G+ such that

gi =
m∑

j=1

wij , hj =
n∑

i=1

wij . This entails

ψ1(g) =
n∑

i=1

ψ(gi) =
n∑

i=1

m∑

j=1

ψ(wij ) =
m∑

j=1

n∑

i=1

ψ(wij) =
m∑

j=1

ψ(hj).

Now let g ∈ G be an arbitrary element. Since G is directed, g = q1 − g2 for some
g1, g2 ∈ G+. Put ψ1(g) := ψ1(g1) − ψ1(g2). If g = h1 − h2, h1, h2 ∈ G+, is any

other decomposition of g, then from g1 + h2 = g2 + h1 we obtain ψ1(g1) + ψ1(h2) =
ψ1(h1)+ψ1(g2). This proves that ψ1 : G→ K is a well defined and unique extension

of ψ. �

The following lemma is analogous to [15, Lemma 17.8].

Lemma 6. Let
0 −→ H

τ−→ (P, u) π−→ Q −→ 0

be a short exact sequence where H is a directed group with the RDP, P and Q are

partially ordered PAMs with the RDP, and u is a generating unit for P+. Then

τ−1[0, u] is a generating interval in H+, and [0, π(u)] is a generating interval in Q+.
���������

. Set D := τ−1[0, u]. It is clear that D is a convex subset of H+. Given

x1, x2 ∈ D, we may choose y ∈ H such that xi 6 y for i = 1, 2. Then τ(x1), τ(x2) 6
τ(y), u, and hence by the RDP there exists a z ∈ P such that τ(x1), τ(x2) 6 z 6
τ(y), u. As τ(H) is a g.o. ideal in P , we have z = τ(x) for some x ∈ H . Then x ∈ D
and xi 6 x for i = 1, 2, which proves that D is upward directed.

Given x ∈ H+, we have τ(x) ∈ P+ and so τ(x) =
n∑

i=1

yi for some yi ∈ [0, u]. As

0 6 yi 6 τ(x), each yi = τ(xi) for some xi ∈ H+. Hence, x1, . . . , xn are elements of
D whose sum equals x. Thus D is a generating interval in H+.
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Let w ∈ Q+. By our hypothesis, there is an element y ∈ P+ such that π(y) = w.

Then y =
n∑

i=1

yi with yi 6 u. So w = π(y) =
n∑

i=1

π(yi) with π(yi) 6 π(u). This

proves that π(u) is a generating unit in Q+. �

Given a lexicographic extension

0 −→ (H,D) τ−→ (P, u) π−→ (Q, v) −→ 0

with Q nonzero, observe that D = H+ because τ(x) 6 u for all x ∈ H .
Let (K,u) be a p.o. PAM with order unit u. We say that (K,u) is simple if every

strictly positive element of K is an order unit.

We have the following generalization of the result [15, Prop. 17.9]. Recall that
an abelian group G with the RDP is unperforated if nx > 0 for some n ∈ � implies
x > 0.

Proposition 2. Let H be a directed unperforated interpolation group and let
(Q, v) be a simple p.o. PAM. Then all order-unit extensions (P, u) of (Q, v) by
(H,H+) are lexicographic.
���������

. Let

0 −→ H
τ−→ (P, u) π−→ (Q, v) −→ 0

be an order-unit extension of (H,H+) by (Q, v). Consider any element x in π−1(Q+\
{0}). As π(x) is a strictly positive element in the simple PAM Q, it is an order unit,

and hence v 6 π(nx) for some n ∈ � . As π(u) = v, we get π(nx − u) > 0,
whence nx − u = (y + τ(a)) for some y ∈ P+ and some a ∈ H . Choose b ∈ H+

such that −a 6 b. Since τ−1[0, u] = H+, we have τ(−a) 6 τ(b) 6 u and so
nx = y + u− τ(−a) > y > 0, whence x > 0. Thus π−1(Q+ \ {0}) ⊆ P+, so that the
extension is lexicographic. �

Let us recall that an effect algebra is a partial algebraic structure (E;⊕, 1, 0) where
E is a nonempty set, ⊕ is a partial binary operation, 0 and 1 are constants such that
the following conditions are satisfied [11]:

(E1) a⊕ b = b⊕ a,

(E2) a⊕ (b⊕ c) = (a⊕ b)⊕ c,

(E3) for every a ∈ E there is a unique a′ ∈ E with a⊕ a′ = 1,
(E4) if a⊕ 1 is defined then a = 0,
where the equalities mean that if one side is defined, so is the other, and the equality

holds. It has been shown that an effect algebra E can be viewed as a cancellative
positive PAM, i.e., a p.o. PAM such that E+ = E, and such that it contains a unit,
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that is, an element 1 such that for every a ∈ E there is a b ∈ E with a⊕ b = 1 [35],
[20]. It turns out that in an effect algebra, 0 is a smallest and 1 is a greatest element.
We will say that a PAM P is unital if there is a distinguished element u in E

such that for every x ∈ P there is an element y ∈ P such that x ⊕ y = u. If P is

cancellative, the element y is unique, and we may write y = x′. In general, there
can be several units in a PAM. So, effect algebras can be identified with positive

cancellative unital PAMs.

Theorem 9. Let ∆ be an effect algebra, A a p.o. abelian group. An extension H
of ∆ by A is a lexicographic extension if and only if any element in H of the form
(α, a), α ∈ ∆, α 6= 1, a ∈ A is majorated by an element of the form (1, d), and
(1, a) 6 (1, b) if f a 6 b.
���������

. Let H be a lexicographic extension of ∆ by A. Let (α, a) ∈ H ,

1 6= α ∈ ∆, a ∈ A, and (1, d) ∈ H , d ∈ A. We have to find an element (β, b) ∈ H+

such that (α, a) ⊕ (β, b) = (1, d). This yields α ⊕ β = 1, a + b + f(α, β) = d, hence

β = α′, b = d − a − f(α, β). Since H is a lexicographic extension and α′ 6= θ, we
have (α′, b) ∈ H+. Now assume that a p.o. extension H satisfies the conditions of the

theorem. Let x = (α, a) ∈ H , α 6= θ, y = (1, d), d ∈ A. Then x is the only element
in H such that (α′, d− a− f(α, α′)⊕x = y, so that x must belong to H+. It follows

that Pα = A. Further, (θ, a) > (θ, 0) iff (1, a) 	 (1, 0) > (θ, 0) iff a > 0, by the
hypothesis. It follows that Pθ = A+, and hence H is a lexicographic extension. �

5. Lattice ordered extensions

In this section we consider an ordered extension G of a lattice ordered partial
abelian monoid ∆ by a lattice ordered abelian group A. We will say that G is an
l-extension if G is lattice ordered and the morphisms τ : A→ G and π : G→ ∆ are
lattice homomorphisms.

Let G be a p.o. extension of ∆ by A. We have (β, b) 6 (α, a) iff there is a
(γ, c) > (θ, 0) such that (β, b)⊕(γ, c) = (α, a), that is, (β⊕γ, b+c+f(β, γ)) = (α, a),
which yields α = β⊕ γ and a = b+ c+ f(β, γ), or γ = α	β, c = a− b− f(β, α	β).
From (γ, c) > (θ, 0) we get c ∈ Pγ , hence a− b− f(β, α	 β) ∈ Pα	β .

Assume that G is an l-extension. For a ∈ A, the mapping π : (α, a) 7→ α is an
l-homomorphism so that (α, a) ∨ (β, b) = (α ∨ β, d), where d ∈ A. According to the
above condition, d−a− f(α, (α∨β)	α) ∈ P(α∨β)	α and similarly, d− b− f(β, (α∨
β)	 β) ∈ P(α∨β)	β . Hence

d ∈ [a+ f(α, (α ∨ β)	 α) + P(α∨β)	α] ∩ [b+ f(β, (α ∨ β)	 β) + P(α∨β)	β].

173



Since we have supposed that (α∨β, d) is the supremum of (α, a) and (β, b), d should
be a smallest element in the set

[a+ f(α, (α ∨ β)	 α) + P(α∨β)	α] ∩ [b+ f(β, (α ∨ β)	 β) + P(α∨β)	β].

So a necessary condition for preserving the suprema is the existence of a smallest

element in the above set, for every α, β ∈ ∆ and a, b ∈ A. Similarly, we can derive
that a necessary condition for preserving the infima is the existence of a greatest

element in the set

[a− f(α ∧ β, α	 α ∧ β)− Pα	α∧β ] ∩ [b− f(α ∧ β, β 	 α ∧ β)− Pβ	α∧β ]

for every α, β ∈ ∆ and a, b ∈ A.

6. Some applications to MV-algebras

An MV-algebra A = (A; +̇, ◦,∗ , 0, 1) is an algebraic structure satisfying the follow-
ing identities: x◦ (y ◦z) = (x◦y)◦z, x◦y = y ◦x, x◦0 = 0, x◦1 = x, 0∗ = 1, 1∗ = 0,
(x∗ ◦ y)∗ ◦ y = (y∗ ◦x)∗ ◦x, x+̇y = (x∗ ◦ y∗)∗. In [25] it is shown that these identities
are equivalent to Chang’s original identities [2]. In that paper the author estab-
lished a categorical equivalence Γ between the category A of abelian l-groups with

a distinguished strong unit and unit-preserving l-homomorphisms, and the category
M of Chang’s MV-algebras and MV-homomorphisms. For every abelian l-group

G with a distinguished ordering unit g, the structure Γ(G, g) is the MV-algebra
A = ([0, g], +̇, ◦,∗ , 0, g) equipped with the following operations: x+̇y = g ∧ (x + y),
x ◦ y = 0∨ (x+ y− g), x∗ = g−x for all x, y in the unit interval [0, g] of G. We refer
to [2], [3], [5], [8] for the background of MV-algebras.

Let (A; +̇, ◦,∗ , 0, 1) be an MV-algebra. Let ⊕ denote the restriction of +̇ to those
pairs (a, b) in A × A for which a 6 b∗. Then (A;⊕, 0, 1) becomes a lattice ordered
effect algebra with the RDP. Conversely, every such effect algebra can be organized
into an MV-algebra if we put a+̇b = a⊕ a∗ ∧ b.
Recall that an ideal of an MV-algebra A is a subset I of A such that a ∈ I , b 6 a

implies b ∈ A, and a, b ∈ I implies a+̇b ∈ I . A subset I of A is an MV-algebra ideal
iff it is an effect algebra ideal in the corresponding effect algebra. We will denote by
R the radical of A, that is, the intersection of the maximal ideals of the MV-algebra

A. If H is an ideal of A, then the congruence class of an element x of A will be
denoted by x/H .

In the sequel, we will need the following theorem (see [6] and [8, Th. 5.247] for
similar statements).
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Theorem 10. Let I be an ideal of an MV-algebra (X ; +̇,∗ , 0, 1) and let (G(X); g)
be the universal group of X . Let γ : X → [0, g], γ(1) = g, be the corresponding

universal embedding. Let 〈I〉 denote the ideal of G(X) generated by the image γ(I)
of I in G(X). Then (G(X)/ 〈I〉) is a universal p.o. group for X/I , where γI(x/I) :=
γ(x)/ 〈I〉 is the universal embedding of X/I into G(X)/ 〈I〉.
���������

. Since X/I is an MV-algebra, it has a universal group which is lattice

ordered. Similarly, G(X)/ 〈I〉 is a lattice ordered group. We will prove that γI is a
well defined injective order preserving homomorphism.

To prove that γI is well defined, assume that x/I = y/I , x, y ∈ X . Then x∧y ∈ X ,
x	x∧y ∈ I and y	x∧y ∈ I so that γ(x	x∧y) = γ(x)−γ(x∧y) ∈ γ(I) ⊂ 〈I〉 and
similarly γ(y)− γ(x ∧ y) ∈ 〈I〉. Hence γ(x)/ 〈I〉 = γ(y)/ 〈I〉. In addition, γI(x/I) is
a positive element of G(X)/ 〈I〉.
We will show further that γI is injective. Suppose that x, y ∈ X and γI(x/I) =

γI(y/I). Then γ(x)/ 〈I〉 = γ(y)/ 〈I〉 so that γ(x)− γ(y) ∈ 〈I〉, and therefore (γ(x)−
γ(x ∧ y)) − (γ(y) − γ(x ∧ y)) ∈ 〈I〉. As 〈I〉 is directed, there is a positive element
g ∈ 〈I〉+ such that

(γ(x) − γ(x ∧ y))− (γ(y)− γ(x ∧ y)) 6 g

and, since γ(I) is a generating interval for 〈I〉, there are elements x1, x2, . . . , xn in I

such that g =
n∑

i=1

γ(xi). Then

0 6 γ(x)− γ(x ∧ y) 6
n∑

i=1

γ(xi) + (γ(y)− γ(x ∧ y)).

By the Riesz decomposition property we can find elements g1, . . . , gn, g′ in G+(X)
such that gi 6 γ(xi), i = 1, 2, . . . , n, g′ 6 γ(y) − γ(x ∧ y) and γ(x) − γ(x ∧ y) =
n∑

i=1

gi +g′. Since X is a generating interval for G+(X), there are elements x′1, . . . , x
′
n,

x′ in X such that gi = γ(x′i), i = 1, . . . , n, g′ = γ(x′). By virtue of the Riesz
decomposition property it can be shown that these elements are uniquely defined.

So x′1, . . . , x
′
n ∈ I and x′ 6 y−x∧y, and simultaneously x′ 6 x−x∧y, which implies

that x′ = 0. It follows that γ(x− x ∧ y) =
n∑

i=1

γ(x′i), which implies, by injectivity of
γ,

x− x ∧ y = x′1 + . . .+ x′n = x′1 ⊕ . . .⊕ x′n ∈ I.
By symmetry, y − x ∧ y ∈ I , hence x/I = y/I .
For every x ∈ X we have x∗ = 1	 x and

γI(x∗) = γ(x∗)/ 〈I〉 = γ(1	 x)/ 〈I〉 = γ(1)/ 〈I〉 − γ(x)/ 〈I〉 = γI(1)− γI(x).
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Let now z/I = x/I ⊕ y/I = (x1⊕ y1)/I , where x1 ∈ x/I , y1 ∈ y/I , x1 ⊥ y1. Then

γI(z/I) = γI((x1 ⊕ y1)/I) = γ(x1)/ 〈I〉+ γ(y1)/ 〈I〉
= γ(x)/ 〈I〉+ γ(y)/ 〈I〉 = γI(x/I) + γI (y/I).

This proves that γI preserves ⊕ on X . In a similar way we prove that γI is faithful.
It remains to prove the universal property of (G(X/I), γI). Suppose that ϕ is

a mapping from X/I into an abelian group K which preserves the ⊕ operation.
Since (G(X), γ) is a universal group for X , there is a unique group homomorphism
ψ : G(X) → K such that ϕ(x/I) = ψ(γ(x)), x ∈ X . Define ψI : G(X)/ 〈I〉 → K

by ψI (g/ 〈I〉) = ψ(g), g ∈ G(X). We shall show that ψI is well defined. Assume

that g1 − g2 ∈ 〈I〉, where g1, g2 ∈ G(X). Since 〈I〉 is directed, there are u, v ∈ 〈I〉+
such that g1 − g2 = u − v. Since I generates 〈I〉, we have u = u1 + . . . + um,

v = v1 + . . .+ vk with ui, vj ∈ I , i = 1, . . . ,m, j = 1, . . . , k. Then ψ(u) = ψ(v) = 0,
whence ψI(g1/ 〈I〉) = ψI(g2/ 〈I〉). It is easy to see that ψI is a group homomorphism

and that ψI ◦ γI = ϕ. �

Theorem 11. Let M be an MV-algebra, I an ideal of M , and M/I the quotient

of M by I . We have the sequence

0 −→ I
τ0−→M

π0−→M/I −→ 0

where τ0 is the identity mapping and π0 is the quotient mapping with ker(π0) = τ0(I).
Let A be a universal group for I , G(M) a universal group for M , and G(M/I) a
universal group for G/M . Then

0 −→ A
τ−→ G(M) π−→ G(M/I) −→ 0

where τ and π are the extensions of τ0 and π0, respectively, is a short exact sequence

of partially ordered abelian l-groups.
���������

. By the properties of universal groups, τ0 uniquely extends to an injective

l-group homomorphism τ : A → G(M). Similarly, π0 can be uniquely extended to
an l-group homomorphism π : G(M) → G(M/I) and sinceM generates G(M) while
M/I generates G(M/I), π is surjective.
It is straightforward to see that τ−1(G(M)+) = A+ and π(G(M)+) = G(M/I)+.
It remains to prove that the kernel of π is τ(A). Clearly, τ(A) ⊆ kerπ. Assume

that π(g) = 0, g ∈ G(M). Then g = g1 − g2 with g1, g2 ∈ G(M)+, and π(g1) =

π(g2) = π(g1 ∧ g2). So we have 0 6 g1 − g1 ∧ g2 =
n∑

i=1

zi, where zi ∈ M . From

π(g1 − g1 ∧ g2) = 0 we obtain that π(zi) = π0(zi) = 0, so that zi ∈ I . By Lemma 5,
A can be identified with the l-subgroup 〈I〉 of G(M) generated by I . It follows that
g1 − g1 ∧ g2 ∈ A and similarly g2 − g1 ∧ g2 ∈ A, so that g ∈ A. �
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Using Proposition 2, the following result can be derived.

Theorem 12. Let I be an ideal of an MV-algebra M such that the MV-algebra

M/I is simple. Then G(M) is a lexicographic extension of G(I) by G(M/I).

The case when I = R, the radical of M , and M/R is a subgroup of 	 containing
1, has been treated in detail in [28].
Extensions of MV-algebras will be studied in more detail in a subsequent paper.
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