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Abstract. Some properties of absolutely continuous variational measures associated with
local systems of sets are established. The classes of functions generating such measures are
described. It is shown by constructing an example that there exists a P-adic path system
that defines a differentiation basis which does not possess Ward property.
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1. Introduction

In this paper we proceed with the investigation of some properties of variational
measures generated by functions and associated with local systems of sets. The

notion of local system S was introduced by Thomson in [31]. Some properties of the
Kurzweil-Henstock type integrals related to local systems (S-integrals) were studied
in [6], [11], [13] and, in the case of path systems in [6], [15].
In Section 3 we investigate classes of functions, generating absolutely continuous

variational measures with respect to local systems, and we compare them with the
correspondent classes of generalized S-absolutely continuous functions. Both those
classes play an important role in the descriptive characterization of the Kurzweil-
Henstock type integrals (see [3]–[14], [17]–[24], [30], [33]). We show that, under

1 Supported by M.U.R.S.T.
2 Supported by M.U.R.S.T.
3 Supported by RFFI 05-01-00206 and by G.N.A.M.P.A. of the “Istituto Nazionale di Alta
Matematica” of Italy.
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some assumptions related to the σ-finiteness of the variational measure, those classes

coincide.
In the next sections our primary concern is to study some properties of the dif-

ferentiation bases defined by P-adic path systems. Those bases, and especially the
dyadic path basis, have important applications in harmonic analysis on P-adic Can-
tor groups (see [1], [2], [5], [6], [16], [26], [27], [28]).

In Section 4 we prove that in the case of any P-adic path system each absolutely
continuous variational measure is σ-finite. So, in this case, the two classes considered

in Section 3 for a general local system coincide without any additional assumption.
Section 5 is related to the Ward property which is shared by many differentiation

bases (see for example [5], [7], [25]). In particular in [34] it is proved that each basis
related to a P-adic path system defined by a bounded sequence P possesses the Ward
property. However, here we show by constructing an example that for the case of an
unbounded sequence P this property can fail to be true (see Theorem 5.1).
In the last section, applying the above example to the theory of the S-integral,

we prove that, in the case of the P-adic path systems defined by some unbounded
sequences, the class of the indefinite P-integrals is strictly included in the class of
the PACG functions.

2. Preliminaries

Throughout the paper all sets are subsets of the real line
�
and all the functions

are real functions defined on
�
, unless specified differently. If E ⊂ �

then |E| and ∂E

denote, respectively, the outer Lebesgue measure and the boundary of E. By L we de-
note the σ-algebra of all Lebesgue measurable subsets of

�
. The terms “almost every-

where” (br. a.e.) is always used in the sense of the Lebesgue measure. If |E| = 0 then
the set E is called negligible. If A, B ⊂ �

, then d(A, B) denotes the euclidean dis-
tance from A to B. An interval is always a compact nondegenerate subinterval of

�
.

A collection of intervals is called nonoverlapping whenever their interiors are disjoint.
We shall use some basic measure theoretic notions. Given an outer measure Λ on

the family of all subsets of X ⊂ �
, a set E ⊂ X is said to be Λ-measurable (in the

sense of Carathéodory) if for any set A ⊂ X :

(1) Λ(A) = Λ(A ∩ E) + Λ(A \E).

An outer measure Λ is said to be absolutely continuous with respect to a measure µ

on a set X if

µ(N) = 0 ⇒ Λ(N) = 0

for any set N ⊂ X . We remind the following well known property (see [25]).
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Proposition 2.1. A finite measure Λ is absolutely continuous on a set X , with

respect to a measure µ, if and only if for each ε > 0 there corresponds an η > 0 such
that:

µ(E) < η ⇒ Λ(E) < ε

for every µ-measurable set E ⊂ X.

Throughout this paper each time we say that an outer measure Λ is absolutely
continuous we have in mind that Λ is absolutely continuous with respect to the
Lebesgue measure.

A metric outer measure Λ on a set X is an outer measure Λ on X such that if
A, B ⊂ X , A 6= ∅, B 6= ∅ and d(A, B) > 0, then Λ(A ∪ B) = Λ(A) + Λ(B).
It is well known that each Borel set is Λ-measurable for any metric outer mea-

sure Λ.

We recall that an outer measure Λ is σ-finite on a set X if

X =
∞⋃

i=1

Xi and Λ(Xi) < +∞ for each i.

If in the previous definition the sets X and Xi are Lebesgue measurable, then we

say that Λ is strongly σ-finite.

A Borel measure Λ on a set X is called semi-moderated if X is the union of closed
sets C1, C2, . . . with Λ(Cn) < +∞ for n = 1, 2, . . .; it is called semi-locally finite

if each nonempty closed set C ⊂ X contains a non-empty relatively open subset U

with Λ(U) < +∞.

Proposition 2.2 (see [24]). A Borel measure Λ on X ⊂ �
is semi-moderated if

and only if it is semi-locally finite.

Definition 2.3. A family S = {S(x) : x ∈ � } is said to be a local system if
each S(x) is a collection of sets with the following properties:
(i) {x} /∈ S(x), for all x;
(ii) if s1 ∈ S(x) and s1 ⊆ s2, then s2 ∈ S(x);
(iii) if s ∈ S(x), then x ∈ s;

(iv) if s ∈ S(x) and δ > 0, then s ∩ (x− δ, x + δ) ∈ S(x).

A local system S is said to be bilateral if, for each x ∈ �
, every set s ∈ S(x)

contains points on either sides of x. A local system S is said to be filtering if at each
point x ∈ � we have s1 ∩ s2 ∈ S(x) whenever s1 and s2 belong to S(x).
A function γ : E → 2 � with γ(x) ∈ S(x), is called an S-choice or simply a choice

on the set E.
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Let S = {S(x) : x ∈ � } be a local system and let F be a real function on
�
. The

function F is said to have S-limit c at a point x, provided that for every ε > 0 the
set {t : t = x or |F (t) − c| < ε} ∈ S(x). When c = F (x) the function F is said to
be S-continuous at the point x. Notice that if the local system is filtering, then the

S-limit is unique.
A special case of local systems are the systems generated by paths (see [31]). A

path at x is a set Ex such that x ∈ Ex and x is a point of accumulation for Ex. Let

E = {Ex : x ∈ � } be a system of paths. Note that each choice from a local system
is in fact a system of paths.

We say that a local system S = {S(x) : x ∈ � } is generated by the system of paths
E , or simply is a path system if for every x ∈ � , the family S(x) is the filter generated
by a filter base of the form {Ex ∩ (x− η, x + η) : η > 0}.
Given a local system S we associate with each choice γ a family

βγ = {([u, v], x) : x = u, v ∈ γ(x) or x = v, u ∈ γ(x); x ∈ � }.

Note that if a system S is filtering then the set of all families βγ forms a differentiation
basis in terms of Kurzweil-Henstock integration theory (see [22], [32]). For a set E

put

βγ [E] = {([u, v], x) ∈ βγ : x ∈ E}.

A finite subset π of βγ [E] is called a βγ-partition on E if for distinct elements

(I ′, x′) and (I ′′, x′′) in π, the intervals I ′ and I ′′ are nonoverlapping. If
⋃

(I,x)∈π

I = E,

for π ⊂ βγ , then we say that π is a βγ-partition of E.

For a function F and an interval I = [u, v] we shall use the standard notation
∆F (I) = F (v) − F (u).

3. S-variational measure

Throughout this section S is a fixed filtering local system. Given a function F , a
set E and an S-choice γ on E, we define the γ-variation of F on E by

(2) Var(βγ , F, E) = sup
∑

(I,x)∈π

|∆F (I)| ,

where “sup” is taken over all π ⊂ βγ [E]. Then for each E we define

V S
F (E) = inf Var(βγ , F, E),
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where “inf” is taken over all choices γ on E. We call the set function V S
F the

variational measure generated by F with respect to the local system S. It is known
(see [31]) that V S

F is a metric outer measure.

To investigate properties of V S
F , we start with a simple, but very useful observation

which for the usual full interval basis is made in [21].

Lemma 3.1. If the variational measure V S
F is absolutely continuous on

�
then it

is a measure on the σ-algebra L.

�������	�
. As V S

F is a metric outer measure then each Borel set B is V S
F -

measurable. So for any set A ⊂ �
, according to (1), we have

(3) V S
F (A) = V S

F (A ∩ B) + V S
F (A \B).

It is known (see [25]) that any Lebesgue measurable set E can be represented as a

difference E = B \N where B is a Borel set (in fact a Gδ set) and N is a negligible
set. Because of the absolute continuity of V S

F we have V S
F (N) = 0. Therefore by (3)

we get

V S
F (A) 6 V S

F (A ∩ E) + V S
F (A \E)

6 V S
F (A ∩ B) + V S

F (A \B) + V S
F (A ∩N) = V S

F (A),

for any set A ⊂ �
. This implies the equality (1), with V S

F substituted for Λ. So E is

V S
F -measurable. �

It is possible to formulate a simple sufficient condition for the variational measure
generated by a function F to be absolutely continuous, in terms of the upper and

lower S-derivatives of F .
We recall that the lower S-derivative of a function F at a point x is defined by

DSF (x) = sup
s∈S(x)

inf
{F (y)− F (x)

y − x
: y ∈ s, y 6= x

}
.

The upper S-derivative DSF (x) is defined in a similar way. As the system S is
filtering, then DSF (x) 6 DSF (x). If DSF (x) = DSF (x) and this value is finite, we
say that F is S-differentiable at x. Then the S-derivative DSF (x) is defined as the
common value of the extreme derivatives.
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Theorem 3.2. If both the upper and the lower S-derivatives of a function F are

finite on a set E, then the variational measure V S
F is absolutely continuous on E.

�������	�
. Take a negligible set N ⊂ E and write N =

∞⋃
n=1

Nn, where Nn is the

set of all x ∈ N such that for a certain set sx ∈ S(x) we have

∣∣∣F (y)− F (x)
y − x

∣∣∣ < n if y ∈ sx, y 6= x.

Take ε > 0 and choose an open set On such that Nn ⊂ On and |On| < ε/n. Define
a choice γ on Nn by putting γ(x) = sx ∩ (x− d(x, ∂On), x + d(x, ∂On)). By an easy
computation we get Var(βγ , F, Nn) 6 ε. Then the thesis follows. �

Definition 3.3 (see [13]). Given a local system S, a function F is said to be

SAC on a set E if for any ε > 0 there exist δ > 0 and an S-choice γ on E such
that

∑
(I,x)∈π

|∆F (I)| < ε, for any partition π ∈ βγ [E] with
∑

(I,x)∈π

|I | < δ. Moreover

F is said to be SACG on E if E =
⋃
n

En, and F is SAC on En, for each n. In case

the sets En can be taken Lebesgue measurable or closed, F is said to be (SACG) or
[SACG], respectively.

It is known that for some particular local system S, the class of SACG functions
coincides with the class of functions F generating absolutely continuous variational

measure V S
F (see [14]). We consider here some conditions under which those classes

coincide for a general local system.

Lemma 3.4. Let the variational measure V S
F be finite on X ∈ L. If V S

F is

absolutely continuous on X , then F is SAC on X .
�������	�

. Our argument is similar to the ones used in [21] and in [29] for the full
interval bases and for some other class of bases, respectively.

Fix ε > 0 and take an S-choice γ such that

(4) Var(βγ , F, X) < V S
F (X) +

ε

3
.

We can suppose that |X | > 0, because the case |X | = 0 is trivial. Applying Lemma
3.1 and Proposition 2.1 to VS

F , we choose 0 < η < |X |/2 such that |E| < η implies

(5) V S
F (E) <

ε

3
,

for every Lebesgue measurable set E ⊂ X . Let π = {(Ii, xi)}p
i=1 be any partition

from βγ [X ], with
p∑

i=1

|Ii| < η. Consider the set Y = X \
( p⋃

i=1

Ii

)
. Because of
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the choice of η, we have |Y | > 0. Now we define an S-choice γ0 on Y such that

Var(βγ0 , F, Y ) < +∞, γ0(x) ⊂ γ(x), and γ0(x) ∩
( p⋃

i=1

Ii

)
= ∅ for each x ∈ Y (see

property (iv) in Definition 2.3). There exists a partition π0 = {(Jj , yj)}q
j=1 ∈ βγ0 [Y ]

such that

(6)
q∑

j=1

|F (Jj)| > Var(βγ0 , F, Y )− ε

3
.

By construction each interval Jj has no common point with
p⋃

i=1

Ii. So π0∪π ∈ βγ [X ].

Therefore by (4)

p∑

i=1

|F (Ii)|+
q∑

j=1

|F (Jj)| 6 Var(βγ , F, X) < V S
F (X) +

ε

3
.

Then by (6)

(7)
p∑

i=1

|F (Ii)| < V S
F (X) +

ε

3
−

q∑

j=1

|F (Jj)|

< V S
F (X)−Var(βγ0 , F, Y ) +

2ε

3
6 V S

F (X)− V S
F (Y ) +

2ε

3
.

As X ∈ L and V S
F is a measure on the σ-algebra L (see Lemma 3.1), we have

V S
F (X)− V S

F (Y ) = V S
F

(
X ∩

( p⋃

i=1

Ii

))
.

So we apply (5) with X ∩ (
p⋃

i=1

Ii) instead of E, to get from (7)

p∑

i=1

|F (Ii)| 6 V S
F

(
X ∩

( p⋃

i=1

Ii

))
+

2ε

3
<

ε

3
+

2ε

3
= ε.

It means that F is SAC on X . �

The following lemma was in fact proved in [13].

Lemma 3.5. If a function F is SAC on a set X , then V S
F is absolutely continuous

on X .

565



Theorem 3.6. A function F is (SACG) on a set X if and only if the variational

measure V S
F is absolutely continuous and strongly σ-finite on X .

�������	�
. As V S

F is strongly σ-finite on X , we have X =
∞⋃

i=1

Xi, where Xi ∈ L,
and V S

F is finite on Xi, for each i = 1, 2, . . ..

Now, as V S
F is also supposed to be absolutely continuous, it is enough to apply

Lemma 3.4 to the set Xi to get that F is SAC on Xi, for each i. Therefore F is
(SACG) on X .

In the opposite direction suppose that F is (SACG). ThenX =
∞⋃

i=1

Xi withXi ∈ L
and F being SAC on each Xi. Now using Lemma 3.5 we get that the measure V S

F

is absolutely continuous on each Xi, and consequently on X .

To obtain the strong σ-finiteness of V S
F , take for each i a choice γi on Xi and η > 0

such that, for any partition π = {(Ii, xi)}p
i=1 ∈ βγi [Xi], the inequality

p∑
i=1

|Ii| < η

implies
p∑

i=1

|F (Ii)| < 1. Now choose 1/n < η. Then for each integer j we have

V S
F

(
Xi ∩

[ j

n
,
j + 1

n

])
6 Var

(
βγi , F, Xi ∩

[ j

n
,
j + 1

n

])
6 1.

As each set Xi ∩ [ j
n , j+1

n ] is Lebesgue measurable, this completes the proof. �

In the case the set X is Fσ we have the following version of the previous theorem.

Theorem 3.7. A function F is [SACG] on a set X if and only if the variational

measure V S
F is absolutely continuous and semi-moderated on X .

�������	�
. Follow the lines of the previous proof, using closed sets Xi instead of

Lebesgue measurable sets. �

In the case of SACG functions we have only the following result that can be

obtained by using an argument similar to the one of the necessity part of Theorem 3.6.

Theorem 3.8. If a function F is SACG on a set X then the variational measure

V S
F is absolutely continuous and σ-finite on X .

It is not known whether it is possible to strengthen the above result (under the

respective assumption related to X), stating that the measure V S
F is also semi-

moderated or at least strongly σ-finite for any local system. But in the particular

case of the P-adic path system (see Section 4 below), we are proving that the absolute
continuity of the corresponding variational measure implies that it is also strongly

566



σ-finite or semi-moderated and so Theorem 3.8 is true for this local system, together

with its converse.

4. P-adic path variational measure

Now we consider the results of the previous section in the case of the P-adic path
system. We remind some notations.

Let P = {pj}∞j=0 be a fixed sequence of integers, with pj > 1 for j = 0, 1, . . .. We
set m0 = 1, mk = p0p1 . . . .pk−1, for k > 1. We call the closed intervals

(8)
[ r

mk
,
r + 1
mk

]
= I(k)

r , r ∈ 


for fixed k = 0, 1, . . ., the P-adic intervals (or simply P-intervals) of rank k.
The points r/mk where r ∈ 
 and k = 0, 1, . . ., constitute the set of all P-adic

rationals on
�
. Its complementary set on

�
is the set of all P-adic irrationals on � .

For each P-adic irrational point x, there exists only one P-interval I (k)
x = [a(k)

x , b
(k)
x ]

of rank k containing x so that {x} =
∞⋂

k=0

[a(k)
x , b

(k)
x ]. We say that the sequence

{[a(k)
x , b

(k)
x ]} of nested P-intervals is the basic sequence of P-intervals convergent

to x. If x is a P-adic rational point, then there exist two decreasing sequences of
P-intervals for which x is a common end-point starting with some k; i.e. for such a
point we have two basic sequences convergent to x: the left one and the right one.

Now we define the system of P-adic paths. If x is a P-adic irrational we denote
by P−(x) and P+(x) the convergent to x sequences {a(k)

x } and {b(k)
x }, respectively,

which are given by the definition of the basic sequence of P-intervals. Then the set
Px = {x} ∪ P−(x) ∪ P+(x) is the P-adic path at x. In the case of a P-adic rational
x, we denote by P−(x) (respectively by P+(x)) the sequence of the left (respectively
right) end-points of the intervals from the left (respectively right) basic sequence.
The definition of the P-adic path Px at x is the same as in the case of the P-adic
irrationals. We denote by P the local path system generated by these P-adic paths.

Theorem 4.1. Let F be a P-continuous function and let X be a closed set. If

the variational measure V P
F is σ-finite on all negligible Borel subsets of X then it is

semi-moderated on X .
�������	�

. Suppose that V P
F is not semi-moderated on X . Let Q ⊂ X be the set of

all points x ∈ X for which V P
F is not semi-moderated on X ∩ (c, d), for every interval

(c, d) containing x. If Q is empty, the thesis follows easily. Indeed it is enough to use
a compactness argument and the fact that if a measure is semi-moderated on each

set Xn, then it is semi-moderated on
⋃
n

Xn.
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So let us show that Q is empty by obtaining a contradiction from the assumption

that Q 6= ∅. Clearly Q is closed. It is easy to check that Q has no isolated points
and therefore it is a perfect set. Let T be the countable set of all one-side isolated
points of Q and put P = Q\T . As F is P-continuous V P

F ({x}) = 0 for any singleton.
Then since V P

F is a Borel measure, we have V P
F (T ) = 0. We note that under our

assumption, for any interval I with I ∩ P 6= ∅ we have V P
F (I ∩ P ) = +∞. Indeed if

V P
F were finite on I ∩ P it would be finite also on I ∩Q because

V P
F (I ∩Q) = V P

F (I ∩ P ) + V P
F (I ∩ T ) = V P

F (I ∩ P ).

Then V P
F would be semi-moderated on I ∩ Q. This implies easily that it would be

semi-moderated on I ∩X , in contradiction with the definition of Q.
Now we can end the proof by repeating word by word the argument in the proof

of Theorem 4.3 of [6], using the corresponding P-adic path version of Lemma 4.2
of [6]. �

In a similar way we can prove the following theorem.

Theorem 4.2. Let F be a P-continuous function and letX ∈ L. If the variational
measure V P

F is σ-finite on all negligible Borel subsets of X then it is strongly σ-finite

on X .

The following simple example of a variational measure which is σ-finite but not
semi-moderated, shows that we cannot drop the assumption of P-continuity in The-
orem 4.1.

Example 4.3. Let T be a countable dense set of P-adic irrationals, and

F (x) =

{
1 if x ∈ T,

0 if x ∈ � \ T.

Obviously V P
F ({x}) = 1 if x ∈ T and V P

F (E) = 0, for any set E ⊂ � \ T. Then
V P

F is σ-finite on
�
and on any negligible set, but it is not semi-moderated. In fact

V P
F (I) = +∞ for any interval I ⊂ �

, hence V P
F is not semi-locally finite on

�
. So

we can apply Proposition 2.2.

Corollary 4.4. Let F be a P-continuous function and let X be an Fσ set. If

the variational measure V P
F is σ-finite on all negligible Borel subsets of X then it is

semi-moderated on X .
�������	�

. Since X is an Fσ set, we have that X =
∞⋃

n=1
Xn where each Xn is closed.

Therefore to end the proof it is enough to apply Theorem 4.1 to each Xn. �
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Corollary 4.5. Let X be an Fσ set. If the variational measure V P
F is absolutely

continuous on X , then it is semi-moderated.

�������	�
. It is enough to note that the absolute continuity of V P

F implies the

P-continuity of F and to apply Corollary 4.4. �

In a similar way we get from Theorem 4.2

Corollary 4.6. If the variational measure V P
F is absolutely continuous on X ∈ L,

then it is strongly σ-finite.

Corollary 4.7. A function F is (PACG) on X ∈ L (or [PACG] on an Fσ set

X) if and only if the variational measure V P
F is absolutely continuous on X.

�������	�
. Apply Corollary 4.6 and Theorem 3.6 (or Corollary 4.5 and Theo-

rem 3.7) �

5. The ward property for a P-adic path system

As we have mentioned already in Section 2, the family {βγ}, defined by a local
system, represents a special case of a differentiation basis on

�
. In a more general

setting (see [22], [32]), a differentiation basis or simply a basis on
�
is defined as

a filtering down nonempty family B of nonempty subsets β of the product I × �

where I is the set of all compact intervals of � and x ∈ I for any (I, x) ⊂ β. The

B-derivative and the extreme B-derivatives with respect to such a basis are defined
similarly to the definitions of the S-derivatives given in Section 3.
We say that a given differentiation basis B possesses the Ward property whenever

each function is B-differentiable almost everywhere on the set of all points at which
at least one of its extreme B-derivatives is finite.
We note that Corollary 4.7 and other results of the previous section were obtained

without using the Ward property which is usually employed in this type of results

(see [3]– [7], [10], [12]).

In this section we are showing that the Ward property can fail to be true for

bases defined by some P-adic path systems. But this can happen only in the case
of unbounded sequences P . In fact, as it is proved in [34], each P-adic path system
defined by a bounded sequence P, possesses the Ward property.
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Theorem 5.1. For some unbounded sequence P = {pk}∞k=0 there exist a closed

set S of positive Lebesgue measure and

(i) a continuous function F , piecewise linear on each interval contiguous to S, such

that

(9) −3
2

6 DPF (x) < DPF (x) 6 3
2

for any point x ∈ S;

(ii) a continuous function G such that

(10) DPG(x) = DPG(x) = +∞

for any point x ∈ S.
�������	�

. Consider the sequence P = {pk}∞k=0 where p0 = p1 = 2 and pk = k4 for
k > 2. Then

m0 = 1, m1 = 2, m2 = 22, mk+1 = 22(k!)4 if k > 2.

For the corresponding P-adic intervals on [0, 1] we have

I
(k)
i =

(i+1)k4−1⋃

j=ik4

I
(k+1)
j for i = 0, 1, . . . , mk − 1.

We introduce some auxiliary intervals (note that they are not P-adic!)

J (k)
r =

(r+1)k2−1⋃

j=rk2

I
(k+1)
j for r = 0, 1, . . . , mkk2 − 1.

Then

I
(k)
i =

(i+1)k2−1⋃

r=ik2

J (k)
r for i = 0, 1, . . . , mk − 1.

Put, for each k > 3,

Pk =
mk−1⋃

i=0

(i+1)k2−5⋃

r=ik2+4

(J (k)
r \ I

(k+1)
(r+1)k2−1),

and note that if x ∈ Pk ∩ I
(k)
i and I

(k)
i = [a(k)

i , b
(k)
i ] then

(11) x− a
(k)
i > 4 |J (k)

r | = 4
k2
|I(k)

i | and b
(k)
i − x > 4

k2
|I(k)

i |.
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Put also

Sl =
l⋂

k=3

Pk, and S =
∞⋂

k=3

Pk.

An easy computation shows that

|Pk| = 1− 8
k2
− k2 − 8

k4
for k > 3

and

|Sl| =
l∏

k=3

(
1− 8

k2
− k2 − 8

k4

)
.

Then

|S| =
∞∏

k=3

(
1− 8

k2
− k2 − 8

k4

)
.

The series
∞∑

k=3

(8/k2 + (k2 − 8)/k4) is obviously convergent. Then S is of positive

Lebesgue measure. Moreover S is closed (even perfect) and contains only P-adic
irrational points.
Now we fix an arbitrary k > 3 and we define on [0, 1] the following continuous and

piecewise linear function:

Φk(x) =

{
x− αr if x ∈ J

(k)
r \ I

(k+1)
(r+1)k2−1, r = 0, 1, . . . , mkk2 − 1,

(k2 − 1)(βr − x) if x ∈ I
(k+1)
(r+1)k2−1, r = 0, 1, . . . , mkk2 − 1,

where αr and βr are the end-points of the interval J
(k)
r , for each r.

Note that if I(k)
i = [a(k)

i , b
(k)
i ], then Φj(a

(k)
i ) = Φj(b

(k)
i ) = 0 for j > k. If x ∈ S∩I

(k)
x

and I
(k)
x = [a(k)

x , b
(k)
x ], then

(12)
∆Φj(I

(k)
x )

|I(k)
x |

= 1 for all j < k.

For each x ∈ [0, 1] and for l > 4 we set

(13) Fl(x) = Φ3(x) +
l∑

k=4

2 (−1)k+1 Φk(x)χSk−1(x).

Then we define on [0, 1]

(14) F (x) = Φ3(x) +
∞∑

k=4

2 (−1)k+1 Φk(x)χSk−1(x).
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Since, for k = 3, 4, . . ., we have, for any x ∈ [0, 1]

(15) max
x
|Φk(x)| = |J (k)

r \ I
(k+1)
(r+1)k2−1| 6

1
mkk2

,

then the function F, as a sum of a uniformly convergent series of continuous functions,
is continuous. In particular, since the sum in (14) is finite at each point of any interval

contiguous to S, then F is piecewise linear on these intervals and differentiable
everywhere outside S, except on a countable set of “corner” points of the graph,

where F has finite one-side ordinary derivatives (and so also S-derivatives). By (11)
and by (15) we get for x ∈ S ⊂ Pk ∩ I

(k)
i and I

(k)
i = [a(k)

i , b
(k)
i ]

0 6 Φk(a(k)
i )− Φk(x)

a
(k)
i − x

=
Φk(x)

x− a
(k)
i

6 1
mkk2

k2

4|I(k)
i |

=
1
4
,(16)

0 > Φk(b(k)
i )− Φk(x)

b
(k)
i − x

> −1
4
.(17)

As we have already mentioned, any point x ∈ S is P-adic irrational. In the rest
of this proof we shall denote by {[a(k), b(k)]} the unique basic sequence {I (k)

x } of
P-intervals convergent to a fixed x ∈ S.

For x ∈ S and for k > 4, we have by (12) and (13)

∆Fk−1(I
(k)
x )

|I(k)
x |

= 1 +
k−1∑

j=4

2(−1)j .

Note that Fk−1 is linear on I
(k)
x . So, if k is even, we have

(18)
Fk−1(a(k))− Fk−1(x)

a(k) − x
=

Fk−1(b(k))− Fk−1(x)
b(k) − x

=
∆Fk−1(I

(k)
x )

|I(k)
x |

= 1,

and, if k is odd, we have

(19)
Fk−1(a(k))− Fk−1(x)

a(k) − x
=

Fk−1(b(k))− Fk−1(x)
b(k) − x

=
∆Fk−1(I

(k)
x )

|I(k)
x |

= −1.

It is easy to compute that min{Φk−1(x) : x ∈ Sk} = (4/mkk2).
This together with (15) gives, for k > 4

(20) 0 6 Φk(x) 6 1
4
Φk−1(x), x ∈ Sk.
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Then for any k > 2 we have

(21) F2k(x) < F (x) < F2k−1(x), F2k(x) < F (x) < F2k+1(x).

Now we estimate the upper and the lower derivative of F on S. Fix x ∈ S and the
basic sequence {Ik

i } = {[a(k), b(k)]}. Note that F (a(k)) = Fk−1(a(k)) and F (b(k)) =
Fk−1(b(k)). If k is even, then by (18), (21), (16) and (17), we have:

1 =
Fk−1(a(k))− Fk−1(x)

a(k) − x
> F (a(k))− F (x)

a(k) − x
> Fk−1(a(k))− Fk(x)

a(k) − x

=
Fk−1(a(k))− Fk−1(x)

a(k) − x
− 2Φk(a(k))− 2Φk(x)

a(k) − x
> 1− 1

2
=

1
2

and

1 =
Fk−1(b(k))− Fk−1(x)

b(k) − x
6 F (b(k))− F (x)

b(k) − x
6 Fk−1(b(k))− Fk(x)

b(k) − x

=
Fk−1(b(k))− Fk−1(x)

b(k) − x
− 2Φk(b(k))− 2Φk(x)

b(k) − x
6 1 +

1
2

=
3
2
.

In a similar way, if k is odd by (18), (21), (16) and (17), we have

−1 =
Fk−1(a(k))− Fk−1(x)

a(k) − x
6 F (a(k))− F (x)

a(k) − x
6 Fk−1(a(k))− Fk(x)

a(k) − x

=
Fk−1(a(k))− Fk−1(x)

a(k) − x
+

2Φk(a(k))− 2Φk(x)
a(k) − x

6 −1 +
1
2

= −1
2

and

−1 =
Fk−1(b(k))− Fk−1(x)

b(k) − x
> F (b(k))− F (x)

b(k) − x
> Fk−1(b(k))− Fk(x)

b(k) − x

=
Fk−1(b(k))− Fk−1(x)

b(k) − x
+

2Φk(b(k))− 2Φk(x)
b(k) − x

> −1− 1
2

= −3
2
.

Those estimations imply for each x ∈ S the inequalities

−3
2

6 DPF (x) 6 −1
2

<
1
2

6 DPF (x) 6 3
2
,

which complete the proof of (i) part for the interval [0, 1]. Extending F periodically,

with period equal to 1, we obtain the function with the desired property on the
whole

�
.
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To prove the (ii)-part, we define

G(x) =
∞∑

j=3

Φj(x)χSj−1 (x),

Gk(x) =
k∑

j=3

Φj(x)χSj−1 (x),

and

Hk(x) =
∞∑

j=k

Φj(x)χSj−1 (x).

So that G(x) = Gk(x) + Hk(x).
Because of (15), the series defining G and Hk are uniformly convergent. We

observe that, if Ik
j = [a(k), b(k)], then G(a(k)) = Gj(a(k)) and G(b(k)) = Gj(b(k)) for

all j > k − 1. Moreover we note that Gk−1(x) is linear on Ik
x . So if x ∈ Ik

x ∩ Sk, by

(13) for k > 3, we get:

(22)
Gk−1(b(k))−Gk−1(x)

b(k) − x
=

Gk−1(a(k))−Gk−1(x)
a(k) − x

=
∆Gk−1(I

(k)
x )

|I(k)
x |

=

k−1∑
j=4

Φj(Ik
x )

|I(k)
x |

= k − 3.

By (20) we also have:
0 6 Hk(x) 6 2Φk(x).

So, for x ∈ S and k > 3, by this inequality and also by (22), (16) and (17) we obtain:

G(b(k))−G(x)
b(k) − x

=
Gk−1(b(k))−Gk−1(x)

b(k) − x
− Hk(x)

b(k) − x

> k − 3− 2Φk(x)
b(k) − x

> k − 3− 1
2
;

G(a(k))−G(x)
a(k) − x

=
Gk−1(a(k))−Gk−1(x)

a(k) − x
− Hk(x)

a(k) − x
> k − 3.

Since k is arbitrary we get the desired result. �

By Theorem 3.2 the variational measure V P
F generated by the function F in the

claim of Theorem 5.1 is absolutely continuous. Then, by Corollary 4.7, F is [PACG].
So we get the following theorem that gives a positive answer to the question stated

in Problem 3.2 of [6].
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Theorem 5.2. There exists a [PACG] function (associated with some unbounded
sequence P) which is not P-differentiable on a set of positive measure.

However the following problem is still open:

Problem 1. Do the statements of Theorems 5.1 and 5.2 hold for any unbounded
sequence P?

6. Application to the S-integral

Let S be a local system which is bilateral, filtering and possessing the partitioning
property in the following form: for any S-choice γ there exists a βγ-partition of any

interval [a, b]. So for this basis we can define in the usual way the correspondent
Kurzweil-Henstock type integral (see [11]) on an interval.

Definition 6.1. A function f : [a, b] → �
is said to be S-integrable on [a, b],

with integral A, if for every ε > 0 there exists a choice γ on [a, b] such that

∣∣∣∣
∑

(I,x)∈π

f(x)|I | −A

∣∣∣∣ < ε,

for any partition π ⊂ βγ of [a, b]. We write A = (S)
∫ b

a
f .

For this integral many of the usual properties, known also for more general classes
of bases, hold. In particular (see [6], [11], [13]):

P1) If a function f is S-integrable on [a, b], then it is also S-integrable on each
subinterval of [a, b]. Therefore the indefinite S-integral F (x) = (S)

∫ x

a
f is

defined for any x ∈ [a, b].
P2) The S-indefinite integral F of f is S-continuous at each point of [a, b] and it is

S-differentiable a.e. with DSF (x) = f(x) a.e. on [a, b].
P3) A function F is the indefinite S-integral of a function f on [a, b] if and only if F
generates a variational measure absolutely continuous and F is S-differentiable
a.e.with DSF (x) = f(x) a.e. on [a, b].

P4) A function f : [a, b] → �
is S-integrable on [a, b] if and only if there exists an

SACG function F on [a, b] such that F is S-differentiable a.e. and DSF = f

a.e. on [a, b].
The class of all SACG functions and the class of all functions generating abso-

lutely continuous variational measure is widely used in the Kurzweil-Henstock theory

of integration. In particular properties P3) and P4) represent examples of partial de-
scriptive characterizations of the indefinite S-integral.
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In the case of many differentiation bases each of those classes coincides with the

class of the indefinite integrals associated with the respective bases (see [3]– [7], [12],
[21], [14], [29]). In particular it is true for the dyadic path integral (see [6]) and for
the P-adic path integral defined by a bounded sequence P (see [34]). But this result
cannot be extended for an arbitrary local system. Indeed Theorem 5.2 and property
P2) implies the following statement.

Theorem 6.2. For some unbounded sequence P the class of the indefinite P-
integrals is strictly included into the class of the PACG functions (and even more

so, into the class of the [PACG] functions).

That means that we cannot drop the assumption of S-differentiability in the “if”
part of P3) and P4), for a general local system S.
If we know that a differentiation basis defined by a particular P-adic path sys-

tem has the Ward property, then it is possible to give the following full descriptive
characterization of the respective P-integral.

Theorem 6.3. Let us assume that a basis defined by a P-adic path system has
the Ward property and let F be a real function on [a, b]. Then the following assertions
are equivalent

(i) F is an indefinite P-integral of some P-integrable function on [a, b];
(ii) F generates an absolute continuous variational measure V P

F on [a, b];
(iii) F is PACG on [a, b].
�������	�

. (ii) ⇔ (iii) by Corollary 4.7.
The implication (i) ⇒ (ii) follows from property P3).
To prove (ii) ⇒ (i) note that, by Corollary 4.6 we get the σ-finiteness of the V P

F .

Then by a standard argument, we infer that DPF < +∞ a.e. on [a, b]. To complete
the proof we apply the Ward property together with property P3). �
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