Czechoslovak Mathematical Journal

Ján Jakubík
 Subdirect decompositions and the radical of a generalized Boolean algebra extension of a lattice ordered group

Czechoslovak Mathematical Journal, Vol. 56 (2006), No. 2, 733-754
Persistent URL: http://dml.cz/dmlcz/128101

Terms of use:

© Institute of Mathematics AS CR, 2006

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SUBDIRECT DECOMPOSITIONS AND THE RADICAL OF A GENERALIZED BOOLEAN ALGEBRA EXTENSION OF A LATTICE ORDERED GROUP

JÁn Jakubík, Košice

(Received January 8, 2004)

Abstract. The extension of a lattice ordered group A by a generalized Boolean algebra B will be denoted by A_{B}. In this paper we apply subdirect decompositions of A_{B} for dealing with a question proposed by Conrad and Darnel. Further, in the case when A is linearly ordered we investigate (i) the completely subdirect decompositions of A_{B} and those of B, and (ii) the values of elements of A_{B} and the radical $R\left(A_{B}\right)$.

Keywords: lattice ordered group, generalized Boolean algebra, extension, vector lattice, subdirect decomposition, value, radical

MSC 2000: 06F15, 06F20

1. Introduction

To each pair (A, B), where A is a lattice ordered group and B is a generalized Boolean algebra, there corresponds a lattice ordered group A_{B} (cf. Conrad and Darnel [3]); it is called a generalized Boolean algebra extension of A.

In [3], a series of results on A_{B} was proved. The relations between some properties of A_{B} and of B were investigated in the author's paper [10].

Let us remark that if $A=Z$ (the additive group of all integers with the natural linear order) then A_{B} is a Specker lattice ordered group (cf. Conrad and Darnel [4] and the author [7]). Further, if $A=R$ (the additive group of all reals with the natural linear order) then A_{B} is a Carathéodory vector lattice (cf. Gofman [5], and the author [6], [8], [9]).

[^0]In [3] it was proved that if A is a vector lattice then A_{B} is a vector lattice as well; the following open question was proposed:
(Q) If A_{B} is a vector lattice, then is A a vector lattice?

In Section 3 we prove that the answer to this question is 'Yes'.
In the remaining part of the paper we assume that A is a linearly ordered group. In [10] it was shown that each direct product decomposition of A_{B} is finite (in the sense that it has only a finite number of nonzero direct factors) and that there is a one-to-one correspondence between internal direct product decompositions of A_{B} and finite internal direct product decompositions of B. We remark that internal direct product decompositions of B need not be finite.

The notion of completely subdirect decomposition of a lattice ordered group was introduced by Šik [11]. Analogously we can define this notion for generalized Boolean algebras.

In Section 4 we show that the result of [9] concerning completely subdirect decompositions of Carathéodory vector lattices remains valid for the lattice ordered group A_{B}; namely, we prove that there is a one-to-one correspondence between internal completely subdirect decompositions of A_{B} and those of B. We denote by $S\left(A_{B}\right)$ the system of all internal completely subdirect decompositions of A_{B} and we define in a natural way a binary relation \leqslant on the system $S\left(A_{B}\right)$. We prove that under the relation $\leqslant, S\left(A_{B}\right)$ turns out to be a meet semilattice. If for each $b \in B$, the interval $[0, b]$ of B is a complete lattice, then $S\left(A_{B}\right)$ is a lattice.

In Section 5 we investigate the values of elements of A_{B} and the radical $R\left(A_{B}\right)$. We prove that $R\left(A_{B}\right)$ is determined by the set B_{1} of all atoms of B.

2. Preliminaries

For lattice ordered groups we use the notation as in Birkhoff [1] and Conrad [2].
The symbol 0 can denote the zero real, the neutral element of a lattice ordered group or the least element of a generalized Boolean algebra; the meaning of this symbol will be clear from the context.

The generalized Boolean algebra is defined to be a lattice B with the least element 0 such that for each $b \in B$, the interval $[0, b]$ of B is a Boolean algebra. We always assume that B has more than one element.

We recall some notions and the notation from [3] concerning the generalized Boolean algebra extension of a latice ordered group.

We denote by Λ the set of all maximal proper filters of B. If $b \in B$, then b will be identified with the set $\Lambda(b)$ of all $\lambda \in \Lambda$ such that $b \in \lambda$.

Let A be a lattice ordered group, $A \neq\{0\}$. Consider the direct product $G_{0}=$ $\prod_{\lambda \in \Lambda} A_{\lambda}$, where $A_{\lambda}=A$ for each $\lambda \in \Lambda$. For $a \in A$ and $b \in B$ we denote by $a[b]$ the element of G_{0} such that

$$
a[b](\lambda)= \begin{cases}a & \text { if } \lambda \in b \\ 0 & \text { otherwise }\end{cases}
$$

We denote by A_{B} the set of all $g \in G_{0}$ such that either $g=0$ or $g \neq 0$ and g can be expressed in the form

$$
\begin{equation*}
g=a_{1}\left[c_{1}\right]+\ldots+a_{n}\left[c_{n}\right] \tag{1}
\end{equation*}
$$

where a_{1}, \ldots, a_{n} are nonzero elements of A and c_{1}, \ldots, c_{n} are nonzero elements of B such that $c_{i(1)} \wedge c_{i(2)}=0$ whenever $i(1), i(2)$ are distinct elements of the set $\{1,2, \ldots, n\}$. Then (1) is said to be a Specker representation of g.

If, moreover, $a_{i(1)} \neq a_{i(2)}$ whenever $i(1), i(2) \in\{1,2, \ldots, n\}$ and $i(1) \neq i(2)$, then (1) is called a standard Specker representation of g. Each nonzero element of g has a uniquely determined standard Specker representation. A_{B} is an ℓ-subgroup of the lattice ordered group G_{0}.

Let G be a lattice ordered group. In view of the definition from [1], Chapter XV, G is a vector lattice if the multiplication by scalars (= reals) in G is possible, conforming to the usual rules of vector algebra, and also the rule that, for each $r \in R, r \rightarrow r x$ preserves the order if $r>0$, and inverts it if $r<0$.

By considering a vector lattice X, the multiplication of elements of X by reals is assumed to be fixed.

Sometimes it will be convenient to distinguish between the lattice ordered group G (where the multiplication by reals is not taken into account) and the corresponding vector lattice, if it exists; in such case, this latter will be denoted by $V(G)$.

3. On the question (Q)

For the notion of a subdirect decomposition of an algebraic structure, cf., e.g., [1], Chapter VI.

Let A_{B} be as in Section 2.
Lemma 3.1. A_{B} is a subdirect product of the indexed system $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$.
Proof. In view of the definition, A_{B} is an ℓ-subgroup of the direct product $\prod_{\lambda \in \Lambda} A_{\lambda}$.

Let $\lambda \in \Lambda$ and $a \in A_{\lambda}$. There exists $b \in B$ with $\lambda \in b$. Then $a[b]$ belongs to A_{B} and $(a[b])(\lambda)=a$. This completes the proof.

Lemma 3.2. Let G be a lattice ordered group such that the vector lattice $V(G)$ exists. Let X be an ℓ-ideal of G. Then for each $r \in R$ and each $x \in X$, the element rx belongs to X.

Proof. It suffices to consider the case when $r \neq 0$ and $x \neq 0$.
a) First suppose that $x>0$ and $r>0$. There exists a positive integer n with $n>r$. Then we have $0<r x<n x$. Since $n x \in X$, we obtain $r x \in X$.
b) Let $x>0$ and $r<0$. Then in view of a), the element $(-r) x=-(r x)$ belongs to X, whence $r x \in X$.
c) Let $x \in X$ and $r \in R$. We have $x=x^{+}-x^{-}, x^{+} \geqslant 0, x^{-} \geqslant 0$, thus in view of a) and b) we get $r x^{+} \in X, r x^{-} \in X$; then $r x \in X$.

Lemma 3.3. Let G and $V(G)$ be as in 3.2. Let ϱ be a congruence relation on G. Then ϱ is a congruence relation on $V(G)$.

Proof. There exists an ℓ-ideal X of G such that for any $x, y \in G$ we have $x \varrho y$ if and only if $x-y \in X$. For verifying that ϱ is a congruence relation on $V(G)$ it suffices to show that if $x_{1}, x_{2} \in G$ and $x_{1} \varrho x_{2}$, then $r x_{1} \varrho r x_{2}$ for each $r \in R$.

The relation $x_{1} \varrho x_{2}$ yields $x_{1}-x_{2} \in X$; in view of 3.2 we get $r\left(x_{1}-x_{2}\right) \in X$ and thus $r x_{1} \varrho r x_{2}$.

Corollary 3.4. Let G and $V(G)$ be as in 3.2. Then the system of all congruence relations on G coincides with the system of all congruence relations on $V(G)$.

Lemma 3.5. Let G and $V(G)$ be as in 3.2. Let G be a congruence relation on G. Put $\bar{G}=G / \varrho$. Then the vector lattice $\bar{G}=G / \varrho$ exists.

Proof. Let $y \in \bar{G}$. There exists $x \in G$ such $y=\bar{x}$, where $\bar{x}=\left\{x_{1} \in G: x_{1} \varrho x\right\}$. Let $r \in R$. We put $r \bar{x}=\overline{r x}$; then in view of 3.2 and 3.3, the mapping $\bar{x} \rightarrow \overline{r x}$ is correctly defined and in this way we obviously obtain a vector lattice $V(\bar{G})$.

Proposition 3.6. Let $A \neq\{0\}$ be a lattice ordered group. Further, let $B \neq\{0\}$ be a generalized Boolean algebra. Assume that $G=A_{B}$ is a vector lattice. Then A is a vector lattice as well.

Proof. In view of $3.1, G$ is a subdirect product of the indexed system $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$. Let $\lambda_{0} \in \Lambda$ be fixed. In view of the well-known relation between subdirect decompositions and congruence relations (cf., e.g., [1], Chapter VI) we conclude that there exists a congruence relation ϱ_{0} on G such that $A_{\lambda_{0}}$ is isomorphic to G / ϱ_{0}. Then according to 3.5, $A_{\lambda_{0}}$ is a vector lattice. Since $A_{\lambda_{0}} \simeq A$, we obtain that A is a vector lattice as well.

Let Y be a nonempty subset of a vector lattice X. Assume that (i) Y is an ℓ subgroup of the lattice ordered group X, and (ii) whenever $r \in R$ and $y \in Y$, then $r y \in Y$. We call Y a vector sublattice of X.

If $G_{i}(i \in I)$ are vector lattices and $G_{0}=\prod_{i \in I} G_{i}$ then since the corresponding operations in G_{0} are performed component-wise, for each $r \in R$ and each $g=$ $\left(g_{i}\right)_{i \in I} \in G_{0}$ we have

$$
\begin{equation*}
r g=\left(r g_{i}\right)_{i \in I} \tag{1}
\end{equation*}
$$

thus G_{0} is a vector lattice.
If A is a vector lattice and A_{B} is as above, then we consider $G=A_{B}$ as a vector sublattice of G_{0} with $G_{i}=A$ for each $i \in I$. Thus according to the definition of $a[b]$ (where $a \in A$ and $b \in B$) and in view of (1), for each $r \in R$ we get

$$
\begin{equation*}
r(a[b])=(r a)[b] . \tag{*}
\end{equation*}
$$

Let G_{1} be a lattice ordered group and suppose that X is a vector lattice which has the following properties:
(i) G_{1} is an ℓ-subgroup of the lattice ordered group X;
(ii) whenever X_{1} is a lattice ordered group such that G_{1} is an ℓ-subgroup of X_{1} and X_{1} is an ℓ-subgroup of X with $X_{1} \subset X$, then X_{1} fails to be a vector sublattice of X.

Under these assumptions we say that X is a minimal vector lattice over G_{1}.
Again, let A and B be as above; denote $G=A_{B}$. Let b be a fixed element of B and

$$
A_{b}=\{a[b]: a \in A\} .
$$

Then A_{b} is an ℓ-subgroup of G; moreover, the mapping $a \rightarrow a[b]$ is an isomorphism of A onto A_{b}.

Proposition 3.7. Let $A \neq\{0\}$ be a lattice ordered group and let $B \neq\{0\}$ be a generalized Boolean algebra. Suppose that \bar{A} is a minimal vector lattice over A. Put $G=A_{B}$ and $\bar{G}=\bar{A}_{B}$. Then \bar{G} is a minimal vector lattice over G.

Proof. Since \bar{A} is a vector lattice, in view of [3] we obtain that \bar{G} is a vector lattice as well. Further, because A is an ℓ-subgroup of \bar{A} we conclude that G is an ℓ-subgroup of \bar{G}.

Let X_{1} be an ℓ-subgroup of \bar{G} such that $G \subseteq X_{1} \subset \bar{G}$. Then in view of the definition of \bar{G} there exist $\bar{a} \in \bar{A}$ and $b \in B$ such that $\bar{a}[b] \notin X_{1}$.

In view of the above mentioned isomorphism between A and A_{b}, and according to the analogous isomorphism between \bar{A} and \bar{A}_{b} we obtain that \bar{A}_{b} is a minimal vector lattice over the lattice ordered group A_{b}.

We denote

$$
X_{2}=\bar{A}_{b} \cap X_{1} .
$$

Then $\bar{a}[b] \notin X_{2}$, whence $A_{b} \subseteq X_{2} \subset \bar{A}_{b}$. This yields that X_{2} fails to be a vector sublattice of the vector lattice \bar{A}_{b}. Hence there exist $r \in R$ and $p \in X_{2}$ with $r p \notin X_{2}$.

Since $p \in \bar{A}_{b}$ it must have the form $p=\bar{a}_{1}[b]$ for some $\bar{a}_{1} \in \bar{A}_{b}$. In view of $(*)$ (applied for \bar{A}_{b}) we obtain $r p=r(\bar{a}[b])=(r \bar{a})[b]$, whence $r p \in \bar{A}_{b}$. If $r p \in X_{1}$ then we obtain $r p \in X_{2}$, which is a contradiction. Thus $r p \notin X_{1}$. Since $p \in X_{1}$ we conclude that X_{1} fails to be a vector sublattice of \bar{G}. Thus \bar{G} is a minimal vector lattice over the lattice ordered group G.

In connection with 3.7, cf. also the question proposed on p. 306 of [3], where the term 'vector hull of a lattice ordered group' has been used.

4. Completely subdirect products

Assume that a lattice ordered group G is a subdirect product of an indexed system $\left(X_{i}\right)_{i \in I}$ of lattice ordered groups. For $g \in G$ and $i \in I$ we denote by g_{i} the component of g in X_{i}.

Suppose that for each $i \in I$ and each $x^{i} \in X_{i}$ there exists $g \in G$ such that $g_{i}=x^{i}$ and $g_{j}=0$ if $j \in I, j \neq i$. Then we say that the mapping $\varphi: g \rightarrow\left(g_{i}\right)_{i \in I}$ is a completely subdirect decomposition of G. (Cf. [11].)

If, moreover, for each $i \in I, X_{i}$ is an ℓ-subgroup of G and $x_{i}=x^{i}$ whenever $x \in X_{i}$, then we call φ an internal completely subdirect product decomposition of G. The lattice ordered groups X_{i} are called internal subdirect factors of G.

The analogous terminology will be applied in the particular case when φ is a direct product decomposition of G. In this case we speak about internal direct factors of G.

The case $G=\{0\}$ being trivial we will assume that $G \neq\{0\}$ and also that all internal direct (or subdirect) factors under consideration are nonzero.

The definitions of a completely subdirect decomposition and of internal completely subdirect decomposition of a Boolean algebra are analogous.

Let B be a generalized Boolean algebra and let $C(B)$ be the Carathéodory vector lattice corresponding to B. In [9], the relations between internal completely subdirect decompositions of B and those of $C(B)$ have been investigated.

Now let B be as above and let A be a linearly ordered group. In the present section we will deal with the relations between internal completely subdirect decompositions of B and those of A_{B}.

Lemma 4.1 (Cf. [10]). Let X be an ℓ-subgroup of a lattice ordered group G. Then the following conditions are equivalent:
(i) X is an internal subdirect factor of G.
(ii) X is an internal direct factor of G.

Analogously, we have

Lemma 4.2 (Cf. [10]). Let Y be an ideal of a generalized Boolean algebra. Then the following conditions are equivalent:
(i) X is an internal subdirect factor of B.
(ii) X is an internal direct factor of B.

Now let us suppose that $A \neq\{0\}$ is a linearly ordered group and that $B \neq\{0\}$ is a generalized Boolean algebra.

Let X be a convex ℓ-subgroup of a lattice ordered group G. It is well-known that X is an internal direct factor of G if and only if, for each $0 \leqslant g \in G$, the set $\{0 \leqslant x \in X: x \leqslant g\}$ has a greatest element; if x_{1} is the mentioned greatest element, then x_{1} is the component of g in the internal direct factor X.

An analogous result holds for generalized Boolean algebras. By a simple calculation we obtain

Lemma 4.2.1. Let X be an ideal of a generalized Boolean algebra B. Then X is an internal direct factor of B if and only if, for each $b \in B$, the set $\{x \in X: x \leqslant b\}$ has a greatest element; if x_{1} is the mentioned greatest element, then x_{1} is the component of b in the internal direct factor X.

The proof will be omitted.

Lemma 4.2.2. Let B be a generalized Boolean algebra and let $\left(X_{i}\right)_{i \in I}$ be a system of ideals of B which determines a completely subdirect product decomposition of B. For $b \in B$ let b_{i} be the component of b in $X_{i}(i \in I)$. Then $b=\bigvee_{i \in I} b_{i}$.

Proof. Let $b \in B$. In view of 4.2.1 we have $b_{i} \leqslant b$ for each $i \in I$. Assume that $b_{0} \in B$ such that $b_{i} \leqslant b_{0}$ for each $i \in I$. Then $b_{i}=\left(b_{i}\right)_{i} \leqslant\left(b_{0}\right)_{i}$ for each $i \in I$, whence $b \leqslant b_{0}$. Thus b is the supremum of the system $\left(b_{i}\right)_{i \in I}$.

Let X be an internal direct factor of G. We denote by $\varphi(X)$ the set of all $b \in B$ such that there exists $a \in A$ with $a[b] \in X$.

Lemma 4.3 (Cf. [10]). $\varphi(X)$ is an internal direct factor of B.
Let Y be an internal direct factor of B. We denote by $\psi(Y)$ the set of all $g \in G$ such that either $g=0$ or g has a Specker representation $g=a_{1}\left[c_{1}\right]+\ldots+a_{n}\left[c_{n}\right]$, where $c_{1}, \ldots, c_{n} \in B$.

Lemma 4.4 (Cf. [10]). $\quad \psi(Y)$ is an internal direct factor of A_{B}.
Lemma 4.5 (Cf. [10]). Let A, B be as above and let $G=A_{B}$.
(i) If X is an internal direct factor of G, then $\psi(\varphi(X))=X$.
(ii) If Y is an internal direct factor of B, then $\varphi(\psi(Y))=Y$.

For each lattice ordered group G we denote by $F(G)$ the system of all internal direct factors of G. Similarly, for each generalized Boolean algebra B, let $F(B)$ be the system of all internal direct factors of B. Both $F(G)$ and $F(B)$ are partially ordered by the set-theoretical inclusion.

Again, let $G=A_{B}$. In view of the definitions of φ and ψ we have

$$
\begin{align*}
X_{1}, X_{2} \in F(G), & X_{1} \leqslant X_{2} \Rightarrow \varphi\left(X_{1}\right) \leqslant \varphi\left(X_{2}\right) \tag{1}\\
Y_{1}, Y_{2} \in F(B), & Y_{1} \leqslant Y_{2} \Rightarrow \psi\left(Y_{1}\right) \leqslant \psi\left(X_{2}\right)
\end{align*}
$$

According to (1), (1'), 4.2, 4.4 and 4.5 we obtain
Lemma 4.6. Let A, B and G be as in 4.5. Then φ is an isomorphism of $F(G)$ onto $F(B)$; similarly, ψ is an isomorphism of $F(B)$ onto $F(G)$.

Let $\left\{X_{i}\right\}_{i \in I}$ be a set of internal direct factors of a lattice ordered group G. For $g \in G$ and $i \in I$ let g_{i} be the component of g in X_{i}. If the mapping $\varphi_{1}: G \rightarrow \prod_{i \in I} X_{i}$ (where $\left.\varphi_{1}(g)=\left(x_{i}\right)_{i \in I}\right)$ is an internal completely subdirect decomposition of G, then we say that the system $\alpha=\left\{X_{i}\right\}_{i \in I}$ determines an internal completely subdirect decomposition of G.

A similar terminology will be applied for generalized Boolean algebras.
Proposition 4.7. Assume that $A \neq\{0\}$ is a linearly ordered group and that B is a generalized Boolean algebra. Put $G=A_{B}$. Let $\left\{X_{i}\right\}_{i \in I}$ be a set of internal direct factors of G. Then the following conditions are equivalent:
(i) The system $\left\{X_{i}\right\}_{i \in I}$ determines an internal completely subdirect decomposition of G.
(ii) The system $\left\{\varphi\left(X_{i}\right)\right\}_{i \in I}$ determines an internal completely subdirect decomposition of B.

Proof. This is a consequence of 4.6 and of [10].

Hence there is a one-to-one correspondence between internal completely subdirect decompositions of G and those of B, where A, B and G are as in 4.7.

Under the notation as above, let $S(G)$ be the system of all internal completely subdirect product decompositions of G, and let $S(B)$ be defined analogously.

We assume that $G \neq\{0\}$ and $B \neq\{0\}$. Thus we can suppose that $S(B)$ is the set of all systems $\alpha=\left\{Y_{i}\right\}_{i \in I}$, where $\left\{Y_{i}\right\}_{i \in I}$ is a set of nonzero internal direct factors of B which determine an internal completely subdirect decomposition of B.

Let $\beta=\left\{Y_{j}^{\prime}\right\}_{j \in J}$ be another such system. We put $\alpha \leqslant \beta$ if for each $i \in I$ there exists $j \in J$ such that $Y_{i} \subseteq Y_{j}^{\prime}$.

Analogously we define the relation \leqslant on the set $S(G)$.

Lemma 4.8. The relation \leqslant is a partial order on $S(B)$.
Proof. It is obvious that the relation \leqslant is reflexive and transitive. Let $\alpha, \beta \in$ $S(B)$ such that $\alpha \leqslant \beta$ and $\beta \leqslant \alpha$. For α and β we apply the notation as above. Let $i_{0} \in I$. Then there is $j\left(i_{0}\right) \in J$ with $Y_{i_{0}} \subseteq Y_{j\left(i_{0}\right)}^{\prime}$. If $j \in J, j \neq j\left(i_{0}\right)$, then $Y_{j}^{\prime} \cap Y_{j\left(i_{0}\right)}^{\prime}=\{0\}$. Hence the element $j\left(i_{0}\right)$ is uniquely determined. Similarly, for each $j_{0} \in J$ there exists a unique $i\left(j_{0}\right) \in I$ with $Y_{j_{0}}^{\prime} \subseteq Y_{i\left(j_{0}\right)}$. Then $Y_{i_{0}} \subseteq Y_{i\left(j\left(i_{0}\right)\right)}$, whence $Y_{i_{0}}=Y_{i\left(j\left(i_{0}\right)\right)}$ yielding that $Y_{i_{0}}=Y_{j\left(i_{0}\right)}^{\prime}$ and so the mapping $i_{0} \rightarrow j\left(i_{0}\right)$ is a bijection. Therefore $\alpha=\beta$.

An analogous result holds for the relation \leqslant on $S(G)$.
In view of 4.7 we obtain
Lemma 4.8.1. The partially ordered systems $S(B)$ and $S\left(A_{B}\right)$ are isomorphic.
Let α and β be as above. For $b \in B$ and $i \in I$ let $b\left(Y_{i}\right)$ be the component of b in Y_{i}. The meaning of $b\left(Y_{j}^{\prime}\right)$ is analogous. Then in view of 4.2 .2 we have

$$
\begin{equation*}
b=\bigvee_{i \in I} b\left(Y_{i}\right)=\bigvee_{j \in J} b\left(Y_{j}^{\prime}\right) \tag{1}
\end{equation*}
$$

We denote by γ the system of those $Y_{i} \cap Y_{j}^{\prime}$ which have more than one element. Let K be the set of all pairs (i, j) with $i \in I, j \in J$ such that $Y_{i} \cap Y_{j}^{\prime} \in \gamma$.

Lemma 4.9. The set K is nonempty.
Proof. There exists $0<b \in B$. In view of (1) we have

$$
\begin{equation*}
b=b \wedge \bigvee_{i \in I} b\left(Y_{i}\right)=\bigvee_{i \in I}\left(b \wedge b\left(Y_{i}\right)\right)=\bigvee_{i \in I} \bigvee_{j \in J}\left(b\left(Y_{j}^{\prime}\right) \wedge b\left(Y_{i}\right)\right) \tag{2}
\end{equation*}
$$

For $i \in I$ and $j \in J, b\left(Y_{j}^{\prime}\right) \wedge b\left(Y_{i}\right) \in Y_{j}^{\prime} \cap Y_{i}$. If $\gamma=\emptyset$, then $b\left(Y_{j}^{\prime}\right) \wedge b\left(Y_{i}\right)=0$ for each $i \in I$ and each $j \in J$, whence $b=0$, which is a contradiction.

For each $b \in B$ and each $(i, j) \in K$ we put

$$
b_{i j}=b\left(Y_{i}\right) \wedge b\left(Y_{j}^{\prime}\right)
$$

Further, we set

$$
\chi(b)=\left(b_{i j}\right)_{(i, j) \in K} .
$$

Lemma 4.10. Let $b \in B$ and $b^{i} \in Y_{i}$ for each $i \in I$. Assume that $b=\bigvee_{i \in I} b^{i}$. Then $b^{i}=b\left(Y_{i}\right)$ for each $i \in I$.

Proof. Let $i_{0} \in I$. We have

$$
b^{i_{0}}=b^{i_{0}} \wedge b=b^{i_{0}} \wedge\left(\bigvee_{i \in I} b\left(Y_{i}\right)\right)=\bigvee_{i \in I}\left(b^{i_{0}} \wedge b\left(Y_{i}\right)\right)
$$

If $i \in I, i \neq i_{0}$, then $b^{i_{0}} \wedge b\left(Y_{i}\right)=0$, whence

$$
b^{i_{0}}=b^{i_{0}} \wedge b\left(Y_{i_{0}}\right),
$$

thus $b^{i_{0}} \leqslant b\left(Y_{i_{0}}\right)$. By similar steps we prove the relation $b\left(Y_{i_{0}}\right) \leqslant b^{i_{0}}$.
Lemma 4.11. Let $b \in B$ and $(i, j) \in K$. Then

$$
b_{i j}=\left(b\left(Y_{i}\right)\right)\left(Y_{j}^{\prime}\right)=\left(b\left(Y_{j}^{\prime}\right)\right)\left(Y_{i}\right) .
$$

Proof. Put $b_{i}=b\left(Y_{i}\right), b_{j}=b\left(Y_{j}^{\prime}\right)$. We have

$$
b_{i}=b_{i} \wedge b=b_{i} \wedge\left(\bigvee_{j \in J} b_{j}\right)=\bigvee_{j \in J}\left(b_{i} \wedge b_{j}\right)
$$

Since $b_{i} \wedge b_{j} \in Y_{j}^{\prime}$, in view of 4.10 (applied for the element b_{i} and for the subdirect decomposition β) we obtain $b_{i}\left(Y_{j}^{\prime}\right)=b_{i} \wedge b_{j}$. Analogously we get $b_{j}\left(Y_{i}\right)=b_{i} \wedge b_{j}$.

Lemma 4.12. The mapping χ is a homomorphism of B into $\prod_{(i, j) \in K} C_{i j}$, where $C_{i j}=Y_{i} \cap Y_{j}^{\prime}$. Moreover, χ is a monomorphism.

Proof. For each $i \in I$, the mapping $b \rightarrow b\left(Y_{i}\right)$ is a homomorphism of B into Y_{i}. Similarly, for each $j \in J$, the mapping $b \rightarrow b\left(Y_{j}^{\prime}\right)$ is a homomorphism of B into Y_{j}^{\prime}. For $(i, j) \in K, C_{i j}$ is an ideal of B. According to 4.11 we conclude that the mapping $b \rightarrow b_{i j}$ is a homomorphism of B into $C_{i j}$. Hence χ is a homomorphism of B into $\prod_{(i, j) \in K} C_{i j}$.

It remains to verify that χ is a monomorphism. Since B is a generalized Boolean algebra it suffices to show that if $b \in B$ and $\chi(b)=0$, then $b=0$. By way of contradiction, assume that $0 \neq b$ and $\chi(b)=0$. Thus $b_{i j}=0$ for each $(i, j) \in K$. According to (1) there exists $i \in I$ with $b_{i}>0$. Then we have $b_{i}=\bigvee_{j \in J}\left(b_{i}\left(Y_{j}^{\prime}\right)\right)$, hence there exists $j \in J$ with $b_{i}\left(Y_{j}^{\prime}\right)>0$. Thus 4.11 yields $b_{i j}>0$, which is a contradiction.

Lemma 4.13. The system $\left(C_{i j}\right)_{(i, j) \in K}$ determines an internal completely subdirect decomposition of B.

Proof. Let $(i, j) \in K$ and $x \in C_{i j}$. Then $x \in Y_{i}$, whence $x_{i}=x$. Further, $x \in Y_{j}^{\prime}$, yielding $x_{j}=x$. Thus in view of 4.11, $x_{i j}=\left(x_{i}\right)_{j}=x_{j}=x$. According to 4.12 , the proof is complete.

We denote by γ the internal completely subdirect decomposition of B which is determined by the system $\left(C_{i j}\right)_{(i, j) \in K}$.

Proposition 4.14. Let α, β and γ be as above. Then in the partially ordered set $S(B)$ we have $\alpha \wedge \beta=\gamma$.

Proof. Let $(i, j) \in K$. Then $C_{i j} \subseteq Y_{i}$ and $C_{i j} \subseteq Y_{j}^{\prime}$, whence $\gamma \leqslant \alpha$ and $\gamma \leqslant \beta$. Let γ_{1} be an element of $S(B)$ which is generated by a system $\left(Z_{m}\right)_{m \in M}$ of ideals of B. Assume that $\gamma_{1} \leqslant \alpha$ and $\gamma_{1} \leqslant \beta$. Thus for each $m \in M$ there exist $i \in I$ and $j \in J$ such that $Z_{m} \subseteq Y_{i}$ and $Z_{m} \subseteq Y_{j}^{\prime}$. Then $Z_{m} \subseteq Y_{i} \cap Y_{j}^{\prime}=C_{i j}$. We have $\{0\} \neq Z_{m}$, whence $C_{i j} \neq\{0\}$, thus $(i, j) \in K$. Therefore $\gamma_{1} \leqslant \gamma$. This yields $\gamma=\alpha \wedge \beta$.

Hence we obtain

Theorem 4.15. Let B be a generalized Boolean algebra. Then the partially ordered set $S(B)$ is a meet-semilattice.

In view of 4.15 and 4.7 we get

Theorem 4.15.1. Let $A \neq\{0\}$ be a linearly ordered group and let $B \neq\{0\}$ be a generalized Boolean algebra. Then the partially ordered set $S\left(A_{B}\right)$ is a meetsemilattice.

Let $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ be elements of K. We put $\left(i_{1}, j_{1}\right) \equiv\left(i_{2}, j_{2}\right)$ if there exist elements

$$
\left(i^{1}, j^{1}\right),\left(i^{2}, j^{2}\right), \ldots,\left(i^{n}, j^{n}\right)
$$

of K such that $\left(i^{1}, j^{1}\right)=\left(i_{1}, j_{1}\right),\left(i^{n}, j^{n}\right)=\left(i_{2}, j_{2}\right)$ and whenever $m \in\{1,2, \ldots$, $n-1\}$, then either $i^{m}=i^{m+1}$ or $j^{m}=j^{m+1}$. The relation \equiv is an equivalence on the set K; let ϱ be the partition of the set K corresponding to the equivalence \equiv. For $(i, j) \in K$ let (i, j) be the class in ϱ containing the element (i, j).

Recall that in view of 4.13 and 4.1, for each $(i, j) \in K$ the ideal $C_{i j}$ of B is an internal direct factor of B. Thus for each $b \in B$ there exists a uniquely determined component $b\left(C_{i j}\right)$ of b in $C_{i j}$.

For any $(i, j) \in K$ let $D_{(i, j)}^{--}$be the set of all elements $b \in B$ such that $b\left(C_{i_{1}, j_{1}}\right)=0$ whenever $\left(i_{1}, j_{1}\right) \notin(i, j)$. Thus in view of (1) we obtain

Lemma 4.16. Let $\left(i_{0}, j_{0}\right) \in K$ and $b \in B$. Then the following conditions are equivalent:
(i) $b \in D_{\left(i_{0}, j_{0}\right)}$;
(ii) $b=\underset{(i, j) \in\left(i_{0}, j_{0}\right)}{ } b\left(C_{i j}\right)$.

In the remaining part of the present section we assume that the following condition is satisfied:
$(*)$ If $0<b \in B$, then the interval $[0, b]$ of B is a complete lattice.
We apply the notation as above. Let $b \in B$. In view of (1) and 4.13, we have

$$
b=\bigvee_{(i, j) \in K} b_{i j}
$$

Let $\left(i_{0}, j_{0}\right) \in K$. Then according to $(*)$, the set $\left\{b_{i j}\right\}_{(i, j) \in\left(i_{0}, j_{0}\right)}$ has a supremum in B; we denote it by $b_{\left(i_{0}, j_{0}\right)}{ }^{-}$.

Lemma 4.17. For each $b \in B$ and each $\left(i_{0}, j_{0}\right) \in K, b_{\left(i_{0}, j_{0}\right)}$ is the greatest element of the set

$$
\left\{x \in D_{\left(i_{0}, j_{0}\right)}: x \leqslant b\right\} .
$$

Proof. Let $b \in B$ and $\left(i_{0}, j_{0}\right) \in K$. In view of the definition of $b_{\left(i_{0}, j_{0}\right)}{ }^{-}$, this element belongs to the set $D_{\left(i_{0}, j_{0}\right)}^{-}$. Let $x \in D_{\left(i_{0}, j_{0}\right)}, x \leqslant b$.

From the first of the mentioned relations we obtain

$$
x_{\left(i_{0}, j_{0}\right)}^{-}=x .
$$

Further, from $x \leqslant b$ we get

$$
x_{\left(i_{0}, j_{0}\right)}^{-} \leqslant b_{\left(i_{0}, j_{0}\right)} .
$$

This completes the proof.
By applying 4.2.1 we get

Corollary 4.18. Let $\left(i_{0}, j_{0}\right) \in K$. Then $D_{\left(i_{0}, j_{0}\right)}^{-}$is an internal direct factor of B. For each $b \in B$, the element $b_{\left(i_{0}, j_{0}\right)}^{-}$is the component of b in $D_{\left(i_{0}, j_{0}\right)}$.

We denote $\bar{K}=\{(i, j):(i, j) \in K\}$. For $b \in B$ we put

$$
\chi_{1}(b)=\left\{b_{\bar{k}}\right\}_{\bar{k} \in \bar{K}} .
$$

In view of 4.18, χ_{1} is a homomorphism of B into $\prod_{\bar{k} \in \bar{K}} D_{\bar{k}}$. Similarly as in 4.12 we can verify that χ_{1} is a monomorphism. From this and from 4.17 we conclude that χ determines an internal completely subdirect decomposition of B; let us denote it by Δ.

Lemma 4.19. $\Delta=\alpha \vee \beta$.
Proof. Let $i_{0} \in I$. There exists $j_{0} \in J$ with $\left(i_{0}, j_{0}\right) \in K$. Then in view of the definition of $D_{\bar{k}}$ for $\bar{k}=\left(i_{0}{ }^{-} j_{0}\right)$ we have $Y_{i_{0}} \subseteq D_{\bar{k}}$. Hence $\alpha \leqslant \Delta$. Similarly we have $\beta \leqslant \Delta$.

Let $\Delta_{1} \in S(B)$ such that $\alpha \leqslant \Delta_{1}$ and $\beta \leqslant \Delta_{1}$. Assume that Δ_{1} is determined by a system $\left\{E_{t}\right\}_{t \in T}$ of ideals of B. Let $i_{0} \in I$. There exists $t_{0} \in T$ with $Y_{i_{0}} \subseteq E_{t_{0}}$. Thus whenever $\left(i_{0}, j_{0}\right) \in K$, then $C_{i_{0}, j_{0}} \subseteq E_{t_{0}}$. Analogously, if $j_{1} \in J$ is given and $\left(i_{1}, j_{1}\right) \in K$, then $C_{i_{1}, j_{1}} \subseteq E_{t_{1}}$ for some $t_{1} \in T$. From this and from the definition of $D_{\bar{k}}$ for $\bar{k} \in \bar{K}$ we conclude that $D_{\bar{k}}$ is a subset of some $E_{t}(t \in T)$. Therefore $\Delta \leqslant \Delta_{1}$ and thus $\Delta=\alpha \vee \beta$.

From 4.14, 4.19 and 4.8.1 we conclude

Theorem 4.20. Let $A \neq\{0\}$ be a linearly ordered group and let $B \neq\{0\}$ be a generalized Boolean algebra. Suppose that the condition (*) is satisfied. Then $S\left(A_{B}\right)$ is a lattice.

5. The radical of A_{B}

In Conrad [2], there are investigated three types of radicals of a lattice ordered group G (the radical $R(G)$, the distributive radical $D(G)$ and the ideal radical $L(G)$). In the present section we deal with the radical $R(G)$ for the case when $G=A_{B}$, when $A \neq\{0\}$ is a linearly ordered group and B is a generalized Boolean algebra.

We recall the corresponding definitions from [2].
Let G be a lattice ordered group and $0 \neq g \in G$. A value of g is a convex ℓ-subgroup G_{α} of G such that G_{α} is maximal with respect to non-containing the element g. Put
$R_{g}=\bigvee G_{\alpha}$, where G_{α} runs over the system of all values of g. Further, we set

$$
R(G)=\bigcap_{0 \neq g \in G} R_{g} .
$$

Then $R(G)$ is the radical of G.
Again, let $0 \neq g \in G$ and let L_{g} be the join of all ℓ-ideals of G not containing g. Put

$$
L(G)=\bigcap_{0 \neq g \in G} L_{g} .
$$

Then $L(G)$ is the ideal radical of G.
A lattice ordered group is called representable if it is isomorphic to a subdirect product of linearly ordered groups.

Proposition 5.1 (Cf. [2]). Let G be a representable lattice ordered group. Then $L(G)=R(G)$.

Corollary 5.2. Let $A \neq\{0\}$ be a linearly ordered group and let $B \neq\{0\}$ be a generalized Boolean algebra. Then $L\left(A_{B}\right)=R\left(A_{B}\right)$.

Proof. In view of the definition of A_{B} we obtain that A_{B} is a subdirect product of replicas of A. Hence A_{B} is representable and now it suffices to apply 5.1.

The following result is easy to verify.

Lemma 5.3. Let G be a lattice ordered group and $g \in G$. Let X be a convex ℓ-subgroup of G. Then $g \in X$ if and only if $|g| \in X$.

In view of 5.3 we have

$$
\begin{equation*}
R(G)=\bigcap_{0<g \in G} R_{g} . \tag{1}
\end{equation*}
$$

Lemma 5.4. Let A and B be as in 5.2. Let $0<g \in A_{B}$ and suppose that g has a Specker representation

$$
g=a_{1}\left[c_{1}\right]+\ldots+a_{n}\left[c_{n}\right] .
$$

Let X be a convex ℓ-subgroup of $G=A_{B}$. Then g belongs to X if and only if all $a_{i}\left[c_{i}\right](i=1,2, \ldots, n)$ belong to X.

Proof. If all $a_{i}\left[c_{i}\right]$ belong to X then in view of the Specker representation we get $g \in X$. Conversely, let $g \in X$ and $i \in\{1,2, \ldots, n\}$. Since $0<a_{i}\left[c_{i}\right] \leqslant g$, we obtain $a_{i}\left[c_{i}\right] \in X$.

Lemma 5.5. Under the assumption as in 5.4 we have

$$
R_{g}=R_{a_{1}\left[c_{1}\right]} \vee \ldots \vee R_{a_{n}\left[c_{n}\right]} .
$$

Proof. a) Let X be a value of g. Hence $g \notin X$. Thus in view of 5.4 there is $i \in\{1,2, \ldots, n\}$ such that $a_{i}\left[c_{i}\right] \notin X$. Then there is a value Y of $a_{i}\left[c_{i}\right]$ with $X \subseteq Y$. According to the definition of R_{g} and of $R_{a_{i}\left[c_{i}\right]}$ we obtain $X \subseteq R_{a_{i}\left[c_{i}\right]}$ and

$$
R_{g} \leqslant R_{a_{1}\left[c_{1}\right]} \vee \ldots \vee R_{a_{n}\left[c_{n}\right]} .
$$

b) Let $i \in\{1,2, \ldots, n\}$ and let Y_{1} be a value of $a_{i}\left[c_{i}\right]$. Hence $a_{i}\left[c_{i}\right] \notin Y_{1}$. In view of $5.4, g \notin Y_{1}$. Then there is a value X_{1} of g with $Y_{1} \subseteq X_{1}$. This yields $R_{a_{i}\left[c_{i}\right]} \leqslant R_{g}$. Thus we obtain

$$
R_{a_{1}\left[c_{1}\right]} \vee \ldots \vee R_{a_{n}\left[c_{n}\right]} \leqslant R_{g}
$$

completing the proof.
Lemma 5.6. Let A and B be as in 5.2; put $G=A_{B}$. Then

$$
R(G)=\bigcap_{0<a \in A, 0<b \in B} R_{a[b]} .
$$

Proof. Let $0<a \in A, 0<b \in B$; then $a[b] \in G$, whence

$$
R(G) \subseteq \bigcap_{0<a \in A, 0<b \in B} R_{a[b]}
$$

Assume that $x \in R_{a[b]}$ for each $0<a \in A$ and each $0<b \in B$. Let $0<g \in G$. Then in view of 5.5 we have $x \in R_{g}$, whence $x \in R(G)$.

In view of 5.6, for characterizing $R(G)$ we have to describe the ℓ-subgroups $R_{a[b]}$ for $0<a \in A$ and $0<b \in B$. Since A is linearly ordered, there exists a unique value A^{a} of the element a in A. We denote

$$
A_{b}^{a}=\left\{a_{1}[b]: a_{1} \in A^{a}\right\}
$$

For each $x \in G$, let $(x)^{\delta}$ be the orthogonal polar of x, i.e.,

$$
(x)^{\delta}=\{y \in G:|x| \wedge|y|=0\} .
$$

Then $(x)^{\delta}$ is a convex ℓ-subgroup of G. For $\emptyset \neq X \subseteq G$ we put $X^{\delta}=\bigcap_{x \in X}(x)^{\delta}$.

Each linearly ordered group is projectable. Thus according to [4] the lattice ordered group G is projectable. Therefore $(a[b])^{\delta}$ is an internal direct factor of G. Thus we have

$$
\begin{equation*}
G=(a[b])^{\delta} \times(a[b])^{\delta \delta} . \tag{2}
\end{equation*}
$$

We put

$$
G_{1}=\left\{t \in G: t\left((a[b])^{\delta \delta}\right) \in A_{b}^{a}\right\} .
$$

Then we obtain

$$
\begin{equation*}
G_{1}=(a[b])^{\delta} \times A_{b}^{a} . \tag{3}
\end{equation*}
$$

Lemma 5.7. Assume that b is an atom of B. Then G_{1} is a value of $a[b]$.
Proof. We have $a[b] \in(a[b])^{\delta \delta}$, whence

$$
a[b]\left((a[b])^{\delta \delta}\right)=a[b]
$$

and $a[b] \notin A_{b}^{a}$. Thus $a[b] \notin G_{1}$.
Let H be a convex ℓ-subgroup of G with $G_{1} \subset H$. Then according to (2) we obtain $H=H_{1} \times H_{2}$, where

$$
H_{1}=H \cap(a[b])^{\delta}, \quad H_{2}=H \cap(a[b])^{\delta \delta} .
$$

In view of $(3),(a[b])^{\delta} \subseteq G_{1}$, thus $(a[b])^{\delta} \subseteq H$. This yields $H_{1}=(a[b])^{\delta}$ and

$$
H=(a[b])^{\delta} \times H_{2} .
$$

Since $G_{1} \subset H$, by using (3) again we obtain $A_{b}^{a} \subset H_{2}$. Then there exists $0<t \in H_{2}$ with $t \notin A_{b}^{a}$. Let

$$
t=a_{1}\left[c_{1}\right]+\ldots+a_{n}\left[c_{n}\right]
$$

be a Specker representation of t. Since $t \in H_{2}$, all $a_{i}\left[c_{i}\right](i=1,2, \ldots, n)$ belong to H_{2}. Further, since $t \notin A_{b}^{a}$, there exists $i \in\{1,2, \ldots, n\}$ with $a_{i}\left[c_{i}\right] \notin A_{b}^{a}$.

From $a_{i}\left[c_{i}\right] \in H_{2} \subseteq(a[b])^{\delta \delta}$ we get $c_{i} \leqslant b$. Since $0<c_{i}$ and since b is an atom of B we have $c_{i}=b$. Then $a_{i}[b] \in H_{2}$ and $a_{i}[b] \notin A_{b}^{a}$. Hence $a_{i} \notin A^{a}$.

We denote by A^{\prime} the set of all $a_{0} \in A$ such that $a_{0}[b] \in H_{2}$. Then A^{\prime} is a convex ℓ-subgroup of A and $A^{a} \subseteq A^{\prime}$. Since $a_{i} \in A^{\prime}$ and $a_{i} \notin A^{a}$ we obtain $A^{a} \subset A^{\prime}$. From the fact that A^{a} is a value of a we get $a \in A^{\prime}$. Hence $a[b] \in H_{2} \subseteq H$. Therefore G_{1} is a value of $a[b]$.

Lemma 5.8. Assume that b is an atom of B and let $0<a \in A$. Then the lattice ordered group $(a[b])^{\delta \delta}$ is linearly ordered.

Proof. Let $x_{1}, x_{2} \in(a[b])^{\delta \delta}$. Since b is an atom of B we conclude that there exist $a_{1}, a_{2} \in A$ with $x_{1}=a_{1}[b], x_{2}=a_{2}[b]$. Because A is linearly ordered, the elements a_{1} and a_{2} are comparable and thus x_{1} and x_{2} are comparable as well.

Lemma 5.9. Let a and b be as in 5.8. Further, let G_{1} be as above. Then G_{1} is a unique value of $a[b]$.

Proof. Assume that G_{1}^{\prime} is a value of $a[b]$. Then according to (2) we have $G_{1}^{\prime}=K_{1} \times K_{2}$, where

$$
K_{1}=G_{1}^{\prime} \cap(a[b])^{\delta}, \quad K_{2}=G_{1}^{\prime} \cap\left(a[b]^{\delta \delta}\right) .
$$

Put

$$
G_{1}^{\prime \prime}=(a[b])^{\delta} \times K_{2}
$$

Thus $G_{1}^{\prime \prime} \supseteq G_{1}^{\prime}$. Suppose that $G_{1}^{\prime \prime} \neq G_{1}^{\prime}$.
Since G_{1}^{\prime} is a value of $a[b]$ we get $a[b] \in G_{1}^{\prime \prime}$. Because $(a[b])(a[b])^{\delta}=0$ we have $a[b] \in K_{2}$. This yields $a[b] \in G_{1}^{\prime}$, which is a contradiction. Therefore $G_{1}^{\prime \prime}=G_{1}^{\prime}$ and hence

$$
G_{1}^{\prime}=(a[b])^{\delta} \times K_{2}
$$

Both A_{b}^{a} and K_{2} are convex ℓ-subgroups of $(a[b])^{\delta \delta}$. According to 5.8, $(a[b])^{\delta \delta}$ is linearly ordered. Then the system of convex ℓ-subgroups of $(a[b])^{\delta \delta}$ is linearly ordered as well. This yields that G_{1} and G_{1}^{\prime} are comparable. But two distinct values of the same element cannot be comparable. Therefore $G_{1}^{\prime}=G_{1}$.

Corollary 5.10. Let a and b be as in 5.8. Then $R_{a[b]}=G_{1}$, where G_{1} is as above.

From the definition of the partial order in G we obtain
Lemma 5.11. Let a and b be as in 5.8. Then $(a[b])^{\delta}$ is the set of all $g \in G$ such that either $g=0$, or g has a Specker representation $g=a_{1}\left[c_{1}\right]+\ldots+a_{n}\left[c_{n}\right]$ such that $a \wedge c_{i}=0$ for $i=1,2, \ldots, n$.

Corollary 5.12. Let a, b be as in 5.8 and let $a_{1} \in A, a_{1} \neq 0$. Then $(a[b])^{\delta}=$ $\left(a_{1}[b]\right)^{\delta}$.

Lemma 5.13. Let a, b be as in 5.8 and let $a_{1} \in A, a \leqslant a_{1}$. Then $R_{a[b]} \subseteq R_{a\left[b_{1}\right]}$.
Proof. If $A^{a_{1}}$ is defined analogously as A^{a}, then we have $A^{a} \subseteq A^{a_{1}}$, whence $A_{b}^{a} \subseteq A_{b}^{a_{1}}$. Hence in view of 5.9 and 5.12 we obtain $R_{a[b]} \subseteq R_{a_{1}[b]}$.

Corollary 5.14. Let a and b be as in 5.8. Let c_{1}, \ldots, c_{n} be mutually orthogonal nonzero elements of B such that $b \wedge c_{i}=0$ for $i=1,2, \ldots, n$. Let $a_{1}, \ldots, a_{n} \in A$. Then $a_{1}\left[c_{1}\right]+\ldots+a_{n}\left[c_{n}\right] \in R_{a[b]}$.

Now let $0<a \in A, 0<b \in B$; in 5.15-5.22 we suppose that b fails to be an atom of B.

Consider the Boolean algebra $[0, b]$. There exists a proper maximal ideal B^{*} of $[0, b]$. Let X be the set of all elements x of G such that either $x=0$ or x has a Specker representation of the form $x=a_{1}\left[c_{1}\right]+\ldots+a_{n}\left[c_{n}\right]$ such that c_{1}, \ldots, c_{n} belong to $[0, b]$ and $a_{i} \in A^{a}$ whenever $i \in\{1,2, \ldots, n\}$ with $c_{1} \notin B^{*}$. Then $a[b]$ does not belong to X.

The set X^{δ} consists of all elements $g \in G$ such that either $g=0$ or g has a Specker representation $g=a_{1}^{0}\left[c_{1}^{0}\right]+\ldots+a_{m}^{0}\left[c_{m}^{0}\right]$ such that $c_{j}^{0} \wedge b=0$ for $j=1,2, \ldots, m$.

Put $X_{1}=X+X^{\delta}$. An easy calculation shows that X_{1} is a convex ℓ-subgroup of G and that $a[b] \notin X_{1}$.

Lemma 5.15. Under the assumptions as above, X_{1} is a value of $a[b]$.
Proof. By way of contradiction, assume that X_{1} fails to be a value of $a[b]$. Hence there exists a convex ℓ-subgroup Y of G such that $a[b] \notin Y$ and $X_{1} \subset Y$.

There is $0<y \in Y$ with $y \notin X_{1}$. Let

$$
y=a_{1}^{\prime}\left[b_{1}\right]+\ldots+a_{k}^{1}\left[b_{k}\right]
$$

be a Specker representation of y.
Put $b_{11}=b_{1} \wedge b$ and let b_{12} be the complement of b_{11} in the interval $\left[0, b_{1}\right]$ of B. Hence we have

$$
b_{11} \wedge b_{12}=0, \quad b_{11} \vee b_{12}=b_{1}, \quad b_{11} \in[0, b], \quad b_{12} \wedge b=0
$$

We apply the same procedure to the elements b_{2}, \ldots, b_{k}.
If for each $k(1) \in\{1,2, \ldots, k\}$ we have either (i) $b_{k(1), 1} \in B^{*}$, or (ii) $a_{k(1)}^{1} \in A^{a}$, then in view of the definition of X_{1} we obtain $y \in X_{1}$, which is a contradiction. Hence there is $k(1) \in\{1,2, \ldots, k\}$ such that $b_{k(1), 1} \notin B^{*}$ and $a_{k(1)}^{1} \notin A^{a}$. We denote by b^{\prime} the complement of $b_{k(1), 1}$ in the Boolean algebra $[0, b]$. Then $a_{k(1)}^{1}\left[b^{\prime}\right] \in X_{1}$. Further,

$$
0<a_{k(1)}^{1}\left[b_{k(1), 1}\right] \leqslant a_{k(1)}^{1}\left[b_{k(1)}\right] \leqslant y
$$

whence $a_{k(1)}^{1}\left[b_{k(1), 1}\right] \in Y$. Thus we obtain

$$
a_{k(1)}^{1}\left[b^{\prime}\right]+a_{k(1)}^{1}\left[b_{k(1), 1}\right] \in Y .
$$

Since $b^{\prime} \wedge b_{k(1), 1}=0$ and $b^{\prime} \vee b_{k(1), 1}=b$, we have

$$
a_{k(1)}^{1}\left[b^{\prime}\right]+a_{k(1)}^{1}\left[b_{k(1), 1}\right]=a_{k(1)}^{1}[b] .
$$

Thus $a_{k(1)}^{1}[b] \in Y$.
For each $a_{1} \in A$ we put $f\left(a_{1}\right)=a_{1}[b]$. Then f is an isomorphism of the lattice ordered group A onto the ℓ-subgroup A_{b} of G. Since A^{a} is the unique value of a in A, we infer that A_{b}^{a} is the unique value of $a[b]$ in A_{b}.

We have $a_{k(1)}^{1} \notin A^{a}$. Hence $a_{k(1)}^{1}[b] \in A_{b}^{a}$. Therefore the convex ℓ-subgroup Y_{1} of G which is generated by $a_{k(1)}^{1}[b]$ contains the element $a[b]$. Clearly $Y_{1} \subseteq Y$ and hence $a[b] \in Y$, which is a contradiction.

If the value X_{1} of $a[b]$ is constructed as above by using the maximal proper ideal of the Boolean algebra $[0, b]$ then we say that X_{1} is determined by B^{*}.

Again, let $0<a \in A, 0<b \in B$. Suppose that b fails to be an atom of B. Let X_{2} be a value of $a[b]$.

Lemma 5.16. $[0, a[b]]^{\delta} \subseteq X_{2}$.
Proof. By way of contradiction, assume that $[0, a[b]]^{\delta}$ fails to be a subset of X_{2}. Denote $Y=X_{2} \vee[0, a[b]]^{\delta}$. Then Y is a convex ℓ-subgroup of G and $X_{2} \subset Y$. Since X_{2} is a value of $a[b]$ we must have $a[b] \in Y$.

There exist $z_{1}, \ldots, z_{n} \in X_{2} \cup[0, a[b]]^{\delta}$ such that

$$
0<a[b]=z_{1}+\ldots+z_{n} .
$$

Then it is easy to verify that without loss of generality we can suppose that $z_{i}>0$ for $i=1,2, \ldots, n$. If $z_{i} \in[0, a[b]]^{\delta}$ for some $i \in\{1,2, \ldots, n\}$, then we would have $z_{i} \wedge a[b]=0$ which is a contradiction, since $z_{i} \leqslant a[b]$. Therefore all z_{i} belong to X_{2} yielding that $a[b] \in X_{2}$, which is a contradiction.

Lemma 5.17. There exist $b_{1} \in B$ with $0<b_{1}<b$ and $a_{1} \in A$ with $a_{1} \notin A^{a}$ such that $a_{1}\left[b_{1}\right] \in X_{2}$.

Proof. By way of contradiction, assume that for each a_{1} and b_{1} with the mentioned properties we have $a_{1}\left[b_{1}\right] \notin X_{2}$. Let B^{*} be a proper maximal ideal of the Boolean algebra $[0, b]$ and let X_{1} be the value of $a[b]$ which is determined by B^{*}. Then $X_{2} \subset X_{1}$ and $a[b] \notin X_{1}$. Thus X_{2} fails to be a value of $a[b]$, which is a contradiction.

We denote by B_{0} the set of all $b_{1} \in B$ such that either $b_{1}=0$, or $0<b_{1}<b$ and there exists $a_{1} \in A$ such that $a_{1} \notin A^{a}$ and $a_{1}\left[b_{1}\right] \in X_{2}$. In view of $5.17, B_{0} \neq \emptyset$.

Lemma 5.18. B_{0} is an ideal of $[0, b]$ and $b \notin B_{0}$.
Proof. Let $0<b_{1} \in B_{0}$ and $0<b_{2} \in B, b_{2}<b_{1}$. There exists $0<a_{1} \in A$ with $a_{1} \notin A^{a}, a_{1}\left[b_{1}\right] \in X_{2}$. Then $0<a_{1}\left[b_{2}\right]<a_{1}\left[b_{1}\right]$, whence $a_{1}\left[b_{2}\right] \in X_{2}$ and thus $b_{2} \in B_{0}$.

Let $0<b_{1} \in B_{0}, 0<b_{2} \in B_{0}$. Then there exist $a_{i} \in A$ such that $0<a_{i} \notin A^{a}$, $a_{i}\left[b_{i}\right] \in X_{2}$ for $i=1,2$. Put $a_{3}=a_{1} \wedge a_{2}$. Hence without loss of generality we can suppose that $a_{3}=a_{2}$ and then

$$
a_{2}\left[b_{1}\right] \vee a_{2}\left[b_{2}\right]=a_{2}\left[b_{1} \vee b_{2}\right] \in X_{2} .
$$

Thus $b_{1} \vee b_{2} \in B_{0}$. Therefore B_{0} is an ideal of $[0, b]$. Assume that $0<a_{4} \in A$, $a_{4} \notin A^{a}$ and $a_{4}[b] \in X_{2}$. Let A^{1} be the convex ℓ-subgroup of A generated by a_{4}. Since $a_{4} \notin A^{a}$ we have $A^{a} \subset A^{1}$ and hence $a \in A^{1}$. Then there is $n \in N$ with $a \leqslant n a_{4}$. We get $0<a[b] \leqslant n a_{4}[b] \in X_{2}$ yielding $a[b] \in X_{2}$, which is a contradiction.

Lemma 5.19. $\quad B_{0}$ is a proper maximal ideal of $[0, b]$ and X_{2} is generated by B_{0}.
Proof. By way of contradiction, assume that B_{0} fails to be a proper maximal ideal of $[0, b]$. Then in view of 5.17 and 5.18 , there exists a proper maximal ideal B^{*} of $[0, b]$ such that $B_{0} \subset B^{*}$. Let X_{1} be as above. Then $X_{2} \subset X_{1}$, which is a contradiction. Thus we have $B^{*}=B_{0}$.

Let $a_{1} \in A$ and $b_{1} \in B^{*}$. If $a_{1}\left[b_{1}\right] \notin X_{2}$, then $X_{2} \subset X_{1}$, which is impossible. From this we conclude that $X_{2}=X_{1}$.

Corollary 5.20. There is a one-to-one correspondence between values of $a[b]$ and proper maximal ideals of the Boolean algebra $[0, b]$.

Lemma 5.21. Let $a_{1} \in A$. There exist values X_{1} and X_{2} of $a[b]$ such that $a_{1}[b] \in X_{1} \vee X_{2}$.

Proof. It suffices to consider the case $a_{1}>0$. Let X_{1} be as above. There exists $b_{1} \in[0, b]$ such that $b_{1}<b$ and $b_{1} \notin B^{*}$. Further, there exists a proper maximal ideal B_{1}^{*} of $[0, b]$ such that $b_{1} \in B_{1}^{*}$. Also, there exists a value X_{2} of $a[b]$ which is determined by B_{1}^{*}.

Let b_{1}^{\prime} be the complement of b_{1} in the Boolean algebra $[0, b]$. Since $b_{1} \notin B^{*}$ we get $b_{1}^{\prime} \in B^{*}$. In view of the definition of B^{*} we have $a_{1}\left[b_{1}^{\prime}\right] \in X_{1}$. Similarly, $a_{1}\left[b_{1}\right] \in X_{2}$. Then

$$
a_{1}\left[b_{1}^{\prime}\right] \vee a_{1}\left[b_{1}\right]=a_{1}\left[b_{1}^{\prime} \vee b_{1}\right]=a_{1}[b] .
$$

Since $a_{1}\left[b_{1}^{\prime}\right] \vee a_{1}\left[b_{1}\right] \in X_{1} \vee X_{2}$, the proof is complete.

Lemma 5.22. Let $0 \neq g \in G$. Then $g \in R_{a[b]}$.
Proof. By applying the Specker representation of g we conclude that it suffices to verify the validity of the relation $a_{1}\left[b_{1}\right] \in R_{a[b]}$ for each $0<a_{1} \in A$ and each $0<b_{1} \in B$. Put $b_{11}=b_{1} \wedge b$ and let b_{12} be the complement of b_{11} in the interval $\left[0, b_{1}\right]$ of B. Then $b_{12} \wedge b=0$ and hence in view of 5.16 we get $a_{1}\left[b_{12}\right] \in X$ for each value X of $a[b]$.

Further, in view of 5.21, there exist values X_{1} and X_{2} of $a[b]$ such that $a_{1}\left[b_{11}\right] \in$ $X_{1} \vee X_{2}$. Hence

$$
a_{1}\left[b_{1}\right]=a_{1}\left[b_{11}\right] \vee a_{1}\left[b_{12}\right] \in X_{1} \vee X_{2} .
$$

Therefore $a_{1}\left[b_{1}\right] \in R_{a[b]}$.
We denote by B_{1} the set of all atoms of B. From 5.6 and 5.22 we obtain

Proposition 5.23. If $B_{1}=\emptyset$, then $R(G)=G$. If $B_{1} \neq \emptyset$, then $R(G)=\cap R_{a[b]}$, where $0<a \in A$ and $b \in B_{1}$.

Let $b \in B_{1}$ and $0<a \in A$. In view of 5.10 we have

$$
R_{a[b]}=(a[b])^{\delta} \times A_{b}^{a} .
$$

Recall that $A_{b}^{a}=\left\{a_{1}[b]\right\}_{a_{1} \in A^{a}}$. Since $A^{a} \subset[-a, a]$, we get

$$
\bigcap_{0<a \in A} A^{a}=\{0\},
$$

whence

$$
\bigcap_{0<a \in A} A_{b}^{a}=\{0\} .
$$

Further, 5.12 yields $(a[b])^{\delta}=\left(a_{0}[b]\right)^{\delta}$ for each $0<a_{0} \in A$. Denote

$$
R_{b}=\bigcap_{0<a \in A} R_{a[b]}
$$

Then for each $0<a \in A$ we have

$$
\begin{aligned}
R_{b} & =(a[b])^{\delta} \times\{0\}=(a[b])^{\delta}, \\
R(G) & =\bigcap_{0<b \in B_{1}} R_{b}=\bigcap_{0<b \in B_{1}}(a[b])^{\delta} .
\end{aligned}
$$

Thus in view of 5.22 we obtain

Theorem 5.24. Let $A \neq\{0\}$ be a linearly ordered group, $B \neq\{0\}$ be a generalized Boolean algebra. Let B_{1} be the set of all atoms of B. (i) If $B_{1}=\emptyset$, then $R(G)=G$. (ii) If $B_{1} \neq \emptyset$, then $R(G)$ is given by the relation (+).

References

[1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967.
Zbl 0153.02501
[2] P. Conrad: Lattice Ordered Groups. Tulane University, 1970.
Zbl 0258.06011
[3] P. Conrad and M. R. Darnel: Generalized Boolean algebras in lattice ordered groups. Order 14 (1998), 295-319.

Zbl 0919.06009
[4] P. Conrad and M. R. Darnel: Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Math. J 51 (2001), 395-413.

Zbl 0978.06011
[5] C. Goffman: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions. Trans. Amer. Math. Soc. 88 (1958), 107-120.

Zbl 0088.02602
[6] J. Jakubik: Cardinal properties of lattice ordered groups. Fundamenta Math. 74 (1972), 85-98.

Zbl 0259.06015
[7] J. Jakubik: Torsion classes of Specker lattice ordered groups. Czechoslovak Math. J. 52 (2002), 469-482.

Zbl 1012.06018
[8] J. Jakubik: On vector lattices of elementary Carathéodory functions. Czechoslovak Math. J 55 (2005), 223-236.

Zbl 1081.06021
[9] J. Jakubik: Torsion classes and subdirect products of Carathéodory vector lattices. Math. Slovaca 56 (2006), 79-92.
[10] J. Jakubik: Generalized Boolean algebra extensions of lattice ordered groups. Tatra Mt. Math. Publ. 30 (2005), 1-19.

Zbl pre05005286
[11] F. Šik: Über subdirekte Summen geordneter Gruppen. Czechoslovak Math. J. 10 (1960), 400-424.

Zbl 0102.26501
Author's address: Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: kstefan@saske.sk.

[^0]: Supported by VEGA Agency Grant No. 2/4134/24.

