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Abstract. We investigate the traceless component of the conformal curvature tensor de-
fined by (2.1) in Kähler manifolds of dimension > 4, and show that the traceless component
is invariant under concircular change. In particular, we determine Kähler manifolds with
vanishing traceless component and improve some theorems (for example, [4, pp. 313–317])
concerning the conformal curvature tensor and the spectrum of the Laplacian acting on p
(0 6 p 6 2)-forms on the manifold by using the traceless component.

Keywords: Kähler manifold, conformal tensor field, trace decomposition, concircular
transformation, spectrum

MSC 2000 : 53C

1. Introduction

Recently, in his paper [3], Krupka has investigated the so-called trace decomposi-

tion problem and proved that a tensor

A = (Aa1,a2,...,ap

b1,b2,...,bq
)

of type (p, q) (p 6 q) can always be expressed as the sum of a traceless term and a
linear combination of the Kronecker δ-tensors, with traceless coefficients. In particu-
lar, he has provided the following Theorem K as explicit decomposition formula of a
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tensor of type (1, 3) and derived the Weyl projective, and Weyl conformal curvature
tensors by using this analysis.

Theorem K ([3]). Let A = (Aa
dcb) be a tensor of type (1, 3) in an n-dimensional

(n > 3) Riemannian manifold. Then there exist a unique traceless system
∗

A = (
∗

Aa
dcb)

and unique systems C = (Ccb), D = (Dcb), E = (Ecb) such that

Aa
dcb =

∗
Aa

dcb + δa
dCcb + δa

c Ddb + δa
b Edc.

These systems are defined by

Ccb =
n(n2 − 3)At

tcb − (n2 − 2)At
ctb + nAt

cbt − 2At
tbc + nAt

btc − (n2 − 2)At
bct

(n2 − 1)(n2 − 4)
,

Dcb =
−(n2 − 2)At

tcb + n(n2 − 3)At
ctb − (n2 − 2)At

cbt + nAt
tbc − 2At

btc + nAt
bct

(n2 − 1)(n2 − 4)
,

Ecb =
nAt

tcb − (n2 − 2)At
ctb + n(n2 − 3)At

cbt − (n2 − 2)At
tbc + nAt

btc − 2At
bct

(n2 − 1)(n2 − 4)
.

Here and in the sequel we use the Einstein convention with respect to the index

system {a, b, c, d, s, t, . . .}.
In this paper we investigate the traceless component of the conformal curvature

tensor (for definition, see (2.1)) in Kähler manifolds of dimension > 4 by using
Krupka’s analysis ([3]), and show that the traceless component is invariant under
concircular change. In particular, as applications of the traceless component, we

determine Kähler manifolds with vanishing traceless component and improve some
theorems (for example, [4, pp. 313–317]) concerning conformal curvature tensor and

the spectrum of the Laplacian acting on p (0 6 p 6 2)-forms on the manifold.

2. Preliminaries

Let M be a Kähler manifold of real dimension n(= 2m) and (J, g) its Kähler
structure. That is, g is a Riemannian metric and J a complex structure on M such
that

J t
cJ

s
b gts = gcb,∇cJ

a
b = 0,

where gcb and Ja
b are the local components of g and J , respectively, and ∇c de-

notes the operator of covariant differentiation with respect to g. We denote local
components of the curvature tensor R, those of the Ricci tensor R1 and the scalar

curvature of M by Ra
dcb, Rcb and s, respectively. It is well known that Jcb = J t

cgtb is
skew-symmetric with respect to the indices c and b.
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In 1990, Kitahara, Matsuo and Pak ([2]) have introduced the so-called conformal

curvature tensor C whose local components are given by

(2.1) Ca
dcb = Ra

dcb +
1
n

(Ra
dgcb −Ra

cgdb + δa
dRcb − δa

c Rdb

− Sa
dJcb + Sa

c Jdb − Ja
d Scb + Ja

c Sdb + 2SdcJ
a
b + 2JdcS

a
b )

+
(n + 4)s
n2(n + 2)

(Ja
d Jcb − Ja

c Jdb − 2JdcJ
a
b )− (3n + 4)s

n2(n + 2)
(δa

dgcb − δa
c gdb),

where Scb = −RctJ
t
b = −Sbc and Sa

c = Sctg
ta. We can easily see that the conformal

curvature tensor satisfies the following properties:

Ct
tcb =

2(n− 4)
n

Rcb −
2(n− 4)s

n2
gcb, Ca

dcb = −Ca
cdb, Ct

dct = 0.(2.2)

‖C‖2 = ‖R‖2 − 32
n2
‖R1‖2 −

8(n2 − 4n− 8)
n3(n + 20)

s2,(2.3)

where ‖T‖ denotes the norm of a tensor T with respect to g (see also [4]).

The conformal curvature tensor is invariant under conformal change, provided

n > 4, and has a very useful property, namely, a Kähler manifold with vanishing
conformal curvature tensor is of constant holomorphic sectional curvature, provided

n > 6 (for more details, see [2, pp. 13–14, Theorems A and B]).

3. The trace decomposition of the conformal curvature tensor

In this section, we consider Krupka’s trace decomposition of the conformal curva-
ture tensor appearing in (2.1).

By means of Theorem K, there exist a unique traceless system
∗

C = (
∗

Ca
dcb) and

unique systems C = (Ccb), D = (Ddb), E = (Edc) such that

(3.1) Ca
dcb =

∗
Ca

dcb + δa
dCcb + δa

c Ddb + δa
b Edc.

These systems are given by

Ccb =
n(n2 − 3)Ct

tcb − (n2 − 2)Ct
ctb + nCt

cbt − 2Ct
tbc + nCt

btc − (n2 − 2)Ct
bct

(n2 − 1)(n2 − 4)
,

Dcb =
−(n2 − 2)Ct

tcb + n(n2 − 3)Ct
ctb − (n2 − 2)Ct

cbt + nCt
tbc − 2Ct

btc + nCt
bct

(n2 − 1)(n2 − 4)
,

Ecb =
nCt

tcb − (n2 − 2)Ct
ctb + n(n2 − 3)Ct

cbt − (n2 − 2)Ct
tbc + nCt

btc − 2Ct
bct

(n2 − 1)(n2 − 4)
.
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It is clear from (2.2) that

Ccb =
1

n− 1
Ct

tcb, Dcb = − 1
n− 1

Ct
tcb, Ecb = 0,

which together with (2.2) and (3.1) implies

(3.2) Ca
dcb =

∗
Ca

dcb +
2(n− 4)
n(n− 1)

(δa
dRcb − δa

c Rdb)−
2(n− 4)s
n2(n− 1)

(δa
dgcb − δa

c gdb).

Inserting (3.2) back into (2.1), we have

(3.3)
∗

Ca
dcb = Ra

dcb +
1
n

(Ra
dgcb −Ra

cgdb + δa
dRcb − δa

c Rdb

− Sa
dJcb + Sa

c Jdb − Ja
d Scb + Ja

c Sdb + 2SdcJ
a
b + 2JdcS

a
b )

+
(n + 4)s
n2(n + 2)

(Ja
d Jcb − Ja

c Jdb − 2JdcJ
a
b )

− (n2 + 5n + 12)s
n2(n− 1)(n + 2)

(δa
dgcb − δa

c gdb)−
2(n− 4)
n(n− 1)

(δa
dRcb − δa

c Rdb).

It is clear from (3.3) that

(3.4) ‖ ∗
C‖2 = ‖R‖2 − 8(n2 − 4n + 12)

n2(n− 1)
‖R1‖2 −

8(n2 − 4n− 24)
n3(n− 1)(n + 2)

s2.

Theorem 3.1. The traceless component of the conformal curvature tensor on a
Kähler manifold is invariant under concircular change, provided n > 4.
���������

. We consider a conformal change of the Riemannian metrics gba and ′gba

as follows:
′gba = e2%gba

for a smooth function %. It is well known (cf. [6]) that the curvature tensors R and
′R corresponding to g and ′g are related by

′Ra
dcb = Ra

dcb + %dbδ
a
c − %cbδ

a
d + gdb%

a
c − gcb%

a
d,

where %a denotes the local components of the gradient vector of % and

%ba = ∇b%a − %b%a +
1
2
%t%

tgba, %a = %tg
at %a

b = %btg
ta.

Hence we have

(3.5) ′Rba = Rba − (n− 2)%ba − %t
tgba,

′se2% = s− 2(n− 1)%t
t,
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where ′Rba and ′s denote the Ricci tensor and the scalar curvature corresponding to
′g, respectively, and %t

t = %bagba.
On the other hand, it follows from (3.2) that the trace decomposition of the

conformal curvature tensor ′Ca
dcb corresponding to

′g is given by

′Ca
dcb = ′ ∗Ca

dcb +
2(n− 4)
n(n− 1)

(δa
d
′Rcb − δa

c
′Rdb)−

2(n− 4)′s
n2(n− 1)

(δa
d
′gcb − δa

c
′gdb),

from which, using (3.5) and taking account of the fact that Ca
dcb is invariant under

the conformal change, provided n > 4, we can easily obtain

(3.6)
∗

Ca
dcb = ′ ∗Ca

dcb −
2(n− 2)(n− 4)

n(n− 1)
(δa

d%cb − δa
c %db)

+
2(n− 2)(n− 4)

n2(n− 1)
%t

t(δ
a
dgcb − δa

c gdb).

Hence, if the conformal change is concircular, that is, if

%ba =
1
n

%t
tgba,

then (3.6) yields
∗

Ca
dcb = ′ ∗Ca

dcb, which means that
∗

Ca
dcb is invariant under the concir-

cular change. �

Next we prove

Theorem 3.2. A Kähler manifold of real dimension n > 4 is of constant holo-
morphic sectional curvature if and only if the manifold is Einstein and the traceless

component of the conformal curvature tensor vanishes everywhere.
���������

. It is clear from (3.3) that
∗

Ca
dcb = 0 implies

Ra
dcb = − 1

n
(Ra

dgcb −Ra
cgdb + δa

dRcb − δa
c Rdb − Sa

dJcb + Sa
c Jdb

− Ja
d Scb + Ja

c Sdb + 2SdcJ
a
b + 2JdcS

a
b )

− (n + 4)s
n2(n + 2)

(Ja
d Jcb − Ja

c Jdb − 2JdcJ
a
b )

+
(n2 + 5n + 12)s
n2(n− 1)(n + 2)

(δa
dgcb − δa

c gdb) +
2(n− 4)
n(n− 1)

(δa
dRcb − δa

c Rdb).

If the manifold is Einstein, we have Rcb = s
ngcb and Scb = s

nJcb. Inserting those
equations back into the above euqation, we obtain

Ra
dcb =

s

n(n + 2)
{δa

dgcb − gdbδ
a
c + JcbJ

a
d − JdbJ

a
c − 2JdcJ

a
b },
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which means that the manifold is of constant holomorphic sectional curvature. Con-

versely, if the manifold is of constant holomorphic sectional curvature, then Rba =
s
ngba and consequently Sba = s

nJba. Substituting those equations into (3.3), we can
see that

∗
Ca

dcb = 0. �

4. Kähler manifolds with
∗

C = 0

Let M be an n-dimensional Kähler manifold with Kähler structure (J, g). Then
the the following relations hold on M :

(4.1) Ra
dctJ

t
b = Rt

dcbJ
a
t , Ra

tcbJ
t
d = −Ra

dtbJ
t
c ,

J t
bR

a
t = Rt

bJ
a
t , J t

cRtb = −RctJ
t
b , J t

cJ
s
b Rts = Rcb,

∇tR
t
dcb = ∇dRcb −∇cRdb, ∇bs = 2∇tR

t
b.

Thus the tensor Scb satisfies

(4.2) Scb = −1
2
J tsRcbts = J tsRtcbs, J t

cStb = −SctJ
t
b = −Rcb

∇aScb = J t
c∇aRtb, ∇tS

t
c =

1
2
J t

c∇ts, J t
d∇tScb = J t

dJ
s
c∇tRsb

(cf. [4], [11]).

On the other hand, since the differential form S = 1
2Scb dxc ∧ dxb is closed (for

details, see [10], p.72), it follows that

Je
t∇eSsa = ∇aRst −∇sRat,

from which, transvecting with J t
cJ

s
b , we have

(4.3) ∇cRba = J t
cJ

s
b (∇aRst −∇sRat).

Differentiating (3.3) covariantly and using (4.1) and (4.2), we can easily obtain

∇e
∗

Ce
dcb =

n3 − n2 − 12n− 24
2n2(n + 2)(n− 1)

{(∇ds)gcb − (∇cs)gdb}(4.4)

− (n2 − 8)
2n2(n + 2)

(∇es){JcbJ
e
d − JdbJ

e
c − 2Je

b Jdc}

+
n2 − 5n + 10

n(n− 1)
{∇dRcb −∇cRdb}.

Thus we have
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Theorem 4.1. On a Kähler manifold of real dimension n > 6 with ∇ ∗
C = 0, the

Ricci tensor Rcb is parallel, that is,

∇cRba = 0,

���������
. Transvecting Jc

t Jb
s to (4.4) with ∇

∗
C = 0 and taking account of (4.3),

we have

0 =
n3 − n2 − 12n− 24
2n2(n + 2)(n− 1)

{(∇ds)gts − (∇as)Ja
t Jsd}

− (n2 − 8)
2n2(n + 2)

(∇as){JtsJ
a
d + gdsδ

a
t + 2δa

s gdt}+
n2 − 5n + 10

n(n− 1)
∇sRtd,

from which, transvecting with gts and using (4.1), we can easily obtain

(4.5)
(n− 2)(n− 4)

n(n− 1)
(∇ds) = 0.

Combining (4.4) with ∇ ∗
C = 0 and (4.5) give

∇dRcb −∇cRdb = 0,

provided n > 6, which together with (4.3) implies our result. �

Theorem 4.2. A Kähler manifold of real dimension n > 6 is of constant holo-
morphic sectional curvature if and only if the traceless component of the conformal

curvature tensor vanishes everywhere.
���������

. Taking the symmetric part of the tensor
∗

Cdcba =
∗

Ce
dcbgea with respect

to the indices b and a, we can obtain

∗
Cdcba +

∗
Cdcab =

2(n− 4)
n(n− 1)

(gdaRcb + gdbRca − gcaRdb − gcbRda)

because of Rdcba = Re
dcbgea = −Rdcab. Hence

∗
Ca

dcb = 0 implies

n− 4
n(n− 1)

(gdaRcb + gdbRca − gcaRdb − gcbRda) = 0,

and consequently
n− 4

n(n− 1)
(nRcb − sgcb) = 0,

which yields our assertion. �
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5. Spectrum of the Laplacian and traceless component of the

conformal curvature tensor

Let M be a compact Kähler manifold of real dimension n and denote by ∆ the
Laplacian acting on p-forms on M , 0 6 p 6 n. Then we have the spectrum for
each p:

Specp(M, g) = {0 6 λ0,p 6 λ1,p 6 λ2,p 6 . . . ↑ +∞},
where each eigenvalue λα,p is repeated as many as times as its multiplicity indicates.

Furthermore, the Minakshisundaram-Pleijel-Gaffney’s formula for Specp(M, g) is
given by

∞∑

α=0

exp(−λα,pt) ∼ (4πt)−
1
2 n

∞∑

α=0

aα,pt
α as t → 0+,

where the constants Aα,p are spectral invariants. In particular, for p = 0, we have

a0,0 =
∫

M

dM = Vol(M, g),(5.1)

a1,0 =
1
6

∫

M

s dM,(5.2)

a2,0 =
1

360

∫

M

{2‖R‖2 − 2‖R1‖2 + 5s2} dM,(5.3)

where dM denotes the natural volume element of (M, g) (cf. [1]). For p = 1, we have

a0,1 = nVol(M, g),(5.4)

a1,1 =
n− 6

6

∫

M

s dM,(5.5)

a2,1 =
1

360

∫

M

{2(n− 15)‖R‖2 − 2(n− 90)‖R1‖2 + 5(n− 12)s2} dM(5.6)

(cf. [7]). For p = 2, we have

a0,2 =
n(n− 1)

2
Vol(M, g),(5.7)

a1,2 =
n2 − 13n + 24

12

∫

M

s dM,(5.8)

a2,2 =
1

720

∫

M

{2(n2 − 31n + 240)‖R‖2(5.9)

− 2(n2 − 181n + 1080)‖R1‖2 + 5(n2 − 25n + 120)s2} dM

(cf. [5], [8], [9]).
We next recall the following lemma provided by Tanno([7]) for later use.
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Lemma 5.1 ([7]). Let (M, g) and (M ′, g′) be compact orientable Riemannian
manifolds with Vol(M, g) =Vol(M ′, g′) and

∫
M s dM =

∫
M ′ s′ dM ′. If s′ = constant,

then
∫

M
s2 dM >

∫
M ′ s′2 dM ′ with equality if and only if s = constant = s′.

A straightforward computation using (3.4) yields

(5.10) a2,0 =
1

180

∫

M

{‖ ∗
C‖2 − b0(n)‖Q‖2} dM +

c0(n)
360

∫
s2 dM,

where Q is a tensor of type (0, 2) defined by Q = R1 − s
ng, and

b0(n) =
(n3 − 9n2 + 32n− 96)

n2(n− 1)
< 0 for n = 2, 4, 6;

c0(n) =
5n2 + 8n + 12

n(n + 2)
> 0.

Thus we have

Theorem 5.2. Let M and M ′ be compact Kähler manifolds. Assume that

Spec0M =Spec0M ′. Then dim M = dim M ′ = n, and

(a) for n = 4, 6, M is of constant holomorphic sectional curvature if and only if

M ′ is, and s′ = constant = s;

(b) whenM andM ′ are Einstein and n > 4,M is of constant holomorphic sectional
curvature if and only if M ′ is, and s′ = s.
���������

. Our assumption Spec0M =Spec0M ′ implies a0,0 = a′0,0 and a1,0 = a′1,0.
Hence (5.1) and (5.2) yield

(5.11) Vol(M) = Vol(M ′),
∫

M

s dM =
∫

M ′
s′ dM ′.

Moreover, since a2,0 = a′2,0, it follows from (5.10) that

∫

M

{‖ ∗
C‖2 − b0(n)‖Q‖2} dM +

c0(n)
2

∫
s2 dM(5.12)

=
∫

M ′
{‖ ∗

C ′‖2 − b0(n)‖Q′‖2} dM +
c0(n)

2

∫
s′

2 dM ′.

(a) For n = 4, 6, ifM ′ is of constant holomorphic sectional curvature, then
∗

C ′ = 0
and Q′ = 0 and consequently (5.12) gives

∫

M

{‖ ∗
C‖2 − b0(n)‖Q‖2} dM +

c0(n)
2

( ∫
s2 dM −

∫
s′

2 dM ′
)

= 0.
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Since s′ = constant, Lemma 5.1 implies
∫

s2 dM >
∫

s′2 dM ′ and consequently
∗

C = 0 and Q = 0. By means of Theorem 3.2M is of constant holomorphic sectional
curvature.

(b) If Q = Q′ = 0, then s and s′ are both constants for n > 4. Thus (5.11) gives
s = s′, which together with (5.12) implies

∫

M

‖ ∗
C‖2 dM =

∫

M ′
‖ ∗
C ′‖2 dM ′.

Hence we have our assertions. �

We next consider the case of p = 1. In this case it follows from (3.4) and (5.6)
that

(5.13) a2,1 =
1

360

∫

M

[2(n− 15)‖ ∗
C‖2 − 2b1(n)‖Q‖2 + c1(n)s2] dM,

where

b1(n) =
n4 − 99n3 + 242n2 − 576n + 1440

n2(n− 1)
< 0 for 2 < n < 97;

c1(n) =
5n3 − 5n2 + 72n + 120

n(n + 2)
> 0 for n = 2 or 10 6 n.

Thus we have

Theorem 5.3. Let M and M ′ be compact Kähler manifolds. Assume that

Spec1M =Spec1M ′. Then dim M = dim M ′ = n, and

(a) for 16 6 n 6 96, M is of constant holomorphic sectional curvature if and only

if M ′ is, and s′ = constant = s;

(b) when M and M ′ are Einstein, and n > 4 and n 6= 6, M is of constant

holomorphic sectional curvature if and only if M ′ is, and s′ = s.
���������

. Our assumption Spec1M =Spec1M ′ implies a0,1 = a′0,1 and a1,1 = a′1,1.
Hence (5.4) and (5.5) yield

(5.14) Vol(M) = Vol(M ′),
∫

M

s dM =
∫

M ′
s′ dM ′,

provided n 6= 6. Moreover, since a2,1 = a′2,1, it follows from (5.13) that

∫

M

{(n− 15)‖ ∗
C‖2 − b1(n)‖Q‖2} dM +

c1(n)
2

∫
s2 dM(5.15)

=
∫

M ′
{(n− 15)‖ ∗

C ′‖2 − b1(n)‖Q′‖2} dM +
c1(n)

2

∫
s′

2 dM ′.
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(a) For 16 6 n 6 96, if M ′ is of constant holomorphic sectional curvature, then
∗

C ′ = 0 and Q′ = 0 and consequently (5.15) gives

∫

M

{(n− 15)‖ ∗
C‖2 − b1(n)‖Q‖2} dM +

c1(n)
2

( ∫
s2 dM −

∫
s′

2 dM ′
)

= 0.

Since s′ = constant, Lemma 5.1 implies
∫

s2 dM >
∫

s′2 dM ′ and consequently
∗

C = 0 and Q = 0. By means of Theorem 3.2M is of constant holomorphic sectional
curvature.

(b) When Q = Q′ = 0 and n > 4, s and s′ are both constants. Thus (5.14) gives
s = s′, which together with (5.15) implies

∫

M

‖ ∗
C‖2 dM =

∫

M ′
‖ ∗
C ′‖2 dM ′.

Hence we have our assertions. �

Theorem 5.4. Let M and M ′ be compact Kähler manifolds. Assume that

Spec0M =Spec0M ′ and Spec1M =Spec1M ′. Then dim M = dim M ′ = n, and

(a) for n > 4, M is of constant holomorphic sectional curvature if and only if M ′

is, and s′ = constant = s ;

(b) for n > 4, M is Einstein if and only if M ′ is, and s′ = s.
���������

. Our assumption Spec0M =Spec0M ′ implies a0,0 = a′0,0 and a1,0 = a′1,0.
Hence (5.1) and (5.2) yield

(5.16) Vol(M) = Vol(M ′),
∫

M

s dM =
∫

M ′
s′ dM ′.

Moreover, the assumptions Spec0M =Spec0M ′ and Spec1M =Spec1M ′ give a2,0 =
a′2,0 and a2,1 = a′2,1, from which together with (5.3) and (5.6), we have

∫

M

(5‖R‖2 + 13s2) dM =
∫

M ′
(5‖R′‖2 + 13s′

2) dM,(5.17)
∫

M

(10‖R1‖2 + s2) dM =
∫

M ′
(10‖R′

1‖2 + s′
2) dM.(5.18)

(a) It follows from (3.4) and (5.17) that

∫

M

{
5‖ ∗

C‖2 +
40(n2 − 4n + 12)

n2(n− 1)
‖R1‖2 + c0,1s

2
}

dM

=
∫

M ′

{
5‖ ∗

C ′‖2 +
40(n2 − 4n + 12)

n2(n− 1)
‖R′

1‖2 + c0,1s
′2

}
dM ′
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where

c0,1 =
13n4 + 13n3 + 14n2 − 160n + 480

n2(n− 1)(n + 2)
.

Taking account of (5.18), the above equation reduces to

(5.19)
∫

M

5‖ ∗
C‖2 dM −

∫

M ′
5‖ ∗

C ′‖2 dM ′ + d0,1

( ∫

M

s2 dM −
∫

M ′
s′

2 dM ′
)

= 0,

where

d0,1 =
13n4 + 9n3 + 22n2 − 176n + 384

n2(n− 1)(n + 2)
,

which is positive for n > 2. On the other hand, since ‖Q‖2 = ‖R1‖2 − s2

n , (5.18)
reduces to

(5.20)
∫

M

‖Q‖2 dM −
∫

M ′
‖Q′‖2 dM ′ +

n + 10
10n

( ∫

M

s2 dM −
∫

M ′
s′

2 dM ′
)

= 0.

Thus, ifM ′ is of constant holomorphic sectional curvature, then it follows from The-
orem 3.2 that

∗
C ′ = 0 and Q′ = 0. Hence s′ is constant for n > 4, and consequently

Lemma 5.1, (4.16), (4.19) and (4.20) lead to
∗

C = 0, Q = 0 and s = constant = s′.
Therefore M is also of constant holomorphic sectional curvature.

(b) is easily obtained from (5.20). �

Finally we consider the case of p = 2. In this case it follows from (3.4) and (5.9)
that

(5.21) a2,2 =
1

720

∫

M

{2(n− 15)(n− 16)‖ ∗
C‖2 − 2b2(n)‖Q‖2 + c2(n)s2} dM

where

b2(n) =
1

n2(n− 1)
(n5 − 190n4 + 1541n3 − 4088n2 + 10656n− 23040) < 0

for n = 2 or 6 6 n 6 180;

c2(n) =
1

n(n + 2)
(5n4 − 117n3 + 724n2 − 732n− 480) > 0

for 2 6 n 6 8 or n > 14.

Thus we have
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Theorem 5.5. Let M and M ′ be compact Kähler manifolds. Assume that

Spec2M =Spec2M ′. Then dim M = dim M ′ = n, and

(a) for n = 6, 8, 14 or 18 6 n 6 180, M is of constant holomorphic sectional

curvature if and only if M ′ is, and s′ = constant = s;

(b) for n = 16, M is Einstein if and only if M ′ is, and s′ = s;

(c) when M and M ′ are Einstein and n > 4 and n 6= 16, M is of constant

holomorphic sectional curvature if and only if M ′ is, and s′ = s.

���������
. Our assumption Spec2M =Spec2M ′ implies a0,2 = a′0,2 and a1,2 = a′1,2.

Hence (5.7) and (5.8) yield

(5.22) Vol(M) = Vol(M ′),
∫

M

s dM =
∫

M ′
s′ dM ′.

Moreover, since a2,2 = a′2,2, it follows from (5.21) that

∫

M

{(n− 15)(n− 16)‖ ∗
C‖2 − b2(n)‖Q‖2} dM +

c2(n)
2

∫
s2 dM(5.23)

=
∫

M ′
{(n− 15)(n− 16)‖ ∗

C ′‖2 − b2(n)‖Q′‖2} dM +
c2(n)

2

∫
s′

2 dM ′.

(a) For n = 6, 8, 14 or 18 6 n 6 180, if M ′ is of constant holomorphic sectional

curvature, then
∗

C ′ = 0 and Q′ = 0 and consequently (5.23) gives

∫

M

{(n− 15)(n− 16)‖ ∗
C‖2 − b2(n)‖Q‖2} dM +

c2(n)
2

( ∫
s2 dM −

∫
s′

2 dM ′
)

= 0.

Since s′ = constant, Lemma 5.1 implies
∫

s2 dM >
∫

s′2 dM ′ and consequently
∗

C = 0 and Q = 0. By means of Theorem 3.2M is of constant holomorphic sectional

curvature.

(b) is trivial.
(c) When Q = Q′ = 0 and n > 4, s and s′ are both constants. Thus (5.22) gives

s = s′, which together with (5.23) implies

∫

M

‖ ∗
C‖2 dM =

∫

M ′
‖ ∗
C ′‖2 dM ′,

provided n 6= 16. Hence we have our assertions. �
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Theorem 5.6. Let M and M ′ be compact Kähler manifolds. Assume that

Spec0M =Spec0M ′ and Spec2M =Spec2M ′. Then dim M = dim M ′ = n, and

(a) for n > 4, M is of constant holomorphic sectional curvature if and only if M ′

is, and s′ = constant = s.

(b) for n = 4 or n > 14, M is Einstein if and only if M ′ is, and s′ = s.
���������

. Our assumption Spec0M =Spec0M ′ yields a0,0 = a′0,0 and a1,0 = a′1,0.

Hence it follows from (5.1) and (5.2) that

(5.24) Vol(M) = Vol(M ′),
∫

M

s dM =
∫

M ′
s′ dM ′.

Moreover, the assumptions Spec0M = Spec0M ′ and Spec2M = Spec2M ′ give a2,0 =
a′2,0 and a2,2 = a′2,2, from which together with (5.3) and (5.6), we have

∫

M

{(5n− 28)‖R‖2 + (13n− 80)s2} dM(5.25)

=
∫

M ′
{(5n− 28)‖R′‖2 + (13n− 80)s′2} dM,

∫

M

{2(5n− 28)‖R1‖2 + (n− 20)s2} dM(5.26)

=
∫

M ′
2(5n− 28)‖R′

1‖2 + (n− 20)s′2} dM.

(a) It follows from (3.4) and (5.25) that

∫

M

{
(5n− 28)‖ ∗

C‖2 +
8(5n− 28)(n2 − 4n + 12)

n2(n− 1)
‖R1‖2 + c0,2s

2
}

dM

=
∫

M ′

{
(5n− 28)‖ ∗

C ′‖2 +
8(5n− 28)(n2 − 4n + 12)

n2(n− 1)
‖R′

1‖2 + c0,2s
′2

}
dM ′

where

c0,2 =
13n5 − 67n4 − 66n3 − 224n2 − 64n + 5376

n2(n− 1)(n + 2)
.

Taking account of (5.26), the above equation reduces to

∫

M

(5n− 28)‖ ∗
C‖2 dM −

∫

M ′
(5n− 28)‖ ∗

C ′‖2 dM ′(5.27)

+ d0,2

( ∫

M

s2 dM −
∫

M ′
s′

2 dM ′
)

= 0,

where

d0,2 =
13n5 − 71n4 + 22n3 − 400n2 + 160n + 7296

n2(n− 1)(n + 2)
,
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which is positive for n > 6 and negative for n = 4. On the other hand, since
‖Q‖2 = ‖R1‖2 − s2/n, (5.26) reduces to

∫

M

2(5n− 28)‖Q‖2 dM −
∫

M ′
2(5n− 28)‖Q′‖2 dM ′(5.28)

+
(n− 14)(n + 4)

n

( ∫

M

s2 dM −
∫

M ′
s′

2 dM ′
)

= 0.

We first consider the case of n = 4. In this case, if M ′ is of constant holomorphic

sectional curvature, then it follows from Theorem 3.2 that
∗

C ′ = 0 and Q′ = 0.
Hence s′ is constant for n = 4, and consequently Lemma 5.1, (5.24), (5.27) and
(5.28) imply that

∗
C = 0, Q = 0 and s = constant = s′. Therefore M is also of

constant holomorphic sectional curvature. In the case of 6 6 n 6 12, we fail to
derive our assertion in this way, and so we have to find another method. In fact,
using (2.3), we can rewrite (5.25) in the form

∫

M

{
(5n− 28)‖C‖2 +

32(5n− 28)
n2

‖R1‖2 + e0,2s
2
}

dM

=
∫

M

{
(5n− 28)‖C ′‖2 +

32(5n− 28)
n2

‖R′
1‖2 + e0,2s

′2
}

dM ′,

where

e0,2 =
13n5 − 54n4 − 120n3 − 384n2 + 576n + 1792

2n3(n + 2)
.

This equality together with (5.26) implies

∫

M

(5n− 28)‖C‖2 dM −
∫

M ′
(5n− 28)‖C ′‖2 dM ′(5.29)

+ f0,2

( ∫

M

s2 dM −
∫

M ′
s′

2
)

dM ′,

where

f0,2 =
13n5 − 54n4 − 136n3 − 96n2 + 1216n + 1792

2n3(n + 2)
,

which is positive for n > 6. Hence, in the case of n > 6, Lemma 5.1 and (5.29) imply
C = 0, which yields our assertion as already mentioned in Section 2.

(b) is easily obtained from (5.28). �
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Theorem 5.7. Let M and M ′ be compact Kähler manifolds. Assume that

Spec1M =Spec1M ′ and Spec2M =Spec2M ′. Then dim M = dim M ′ = n, and

(a) for 4 6 n 6 14 or n > 24, M is of constant holomorphic sectional curvature if

and only if M ′ is, and s′ = constant = s.

(b) for n > 4, M is Einstein if and only if M ′ is. Moreover, in this case s′ = s,

provided n = 4 or n > 10.

���������
. Our assumption Spec1M =Spec1M ′ yields a0,1 = a′0,1 and consequently

it follows from (5.4) that Vol(M) =Vol(M ′). Since Spec2M =Spec2M ′, a1,2 = a′1,2

yields
∫

M s dM =
∫

M ′ s′ dM ′. Summing up, we have

(5.30) Vol(M) = Vol(M ′),
∫

M

s dM =
∫

M ′
s′ dM ′.

Moreover, the assumptions Spec1M =Spec1M ′ and Spec2M =Spec2M ′ give a2,1 =
a′2,1 and a2,2 = a′2,2, from which together with (5.6) and (5.9), we have

∫

M

{(5n2 − 51n− 360)‖R‖2 + (13n2 − 147n + 360)s2} dM(5.31)

=
∫

M ′
{(5n2 − 51n− 360)‖R′‖2 + (13n2 − 147n + 360)s′2} dM,

∫

M

{2(5n + 24)‖R1‖2 + (n− 24)s2} dM(5.32)

=
∫

M ′
2(5n + 24)‖R′

1‖2 + (n− 24)s′2} dM.

(a) It follows from (3.4) and (5.31) that

∫

M

{
(5n2 − 51n− 360)‖ ∗

C‖2

+
8(5n2 − 51n− 360)(n2 − 4n + 12)

n2(n− 1)
‖R1‖2 + c1,2s

2
}

dM

=
∫

M ′

{
(5n2 − 51n− 360)‖ ∗

C ′‖2

+
8(5n2 − 51n− 360)(n2 − 4n + 12)

n2(n− 1)
‖R′

1‖2 + c1,2s
′2

}
dM ′

where

c1,2 =
13n6 − 134n5 + 227n4 + 86n3 − 2928n2 + 21312n + 69120

n2(n− 1)(n + 2)
.

872



Taking account of (5.32), the above equation reduces to

2(5n2 − 51n + 360)n2(n− 1)(5n + 24)
{∫

M

‖ ∗
C‖2 dM −

∫

M ′
‖ ∗
C ′‖2 dM ′

}

+ d1,2

(∫

M

s2 dM −
∫

M ′
s′

2 dM ′
)

= 0,(5.33)

where

d1,2

=
40n7 − 1341n6 + 5598n5 + 78541n4 + 55210n3 − 135312n2 − 21312n− 69120

n2(n− 1)(n + 2)
,

which is positive for 4 6 n 6 14 or n > 24. On the other hand, since ‖Q‖2 =
‖R1‖2 − s2

n , (5.32) reduces to

∫

M

{2(5n + 24)‖Q‖2 dM −
∫

M ′
2(5n + 24)‖Q′‖2 dM ′(5.34)

+
(n− 6)(n− 8)

n

( ∫

M

s2 dM −
∫

M ′
s′

2 dM ′
)

= 0.

Hence, from (5.33) and (5.34) we complete our assertion.

(b) is easily obtained from Lemma 5.1 and (5.34). �
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