Czechoslovak Mathematical Journal

Parviz Azimi; A. A. Ledari On the classes of hereditarily ℓ_p Banach spaces

Czechoslovak Mathematical Journal, Vol. 56 (2006), No. 3, 1001-1009

Persistent URL: http://dml.cz/dmlcz/128125

Terms of use:

© Institute of Mathematics AS CR, 2006

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-GZ: The Czech Digital Mathematics Library* http://dml.cz

ON THE CLASSES OF HEREDITARILY ℓ_p BANACH SPACES

P. Azimi, A. A. Ledari, Zahedan

(Received June 12, 2004)

Abstract. Let X denote a specific space of the class of $X_{\alpha,p}$ Banach sequence spaces which were constructed by Hagler and the first named author as classes of hereditarily ℓ_p Banach spaces. We show that for p>1 the Banach space X contains asymptotically isometric copies of ℓ_p . It is known that any member of the class is a dual space. We show that the predual of X contains isometric copies of ℓ_q where 1/p+1/q=1. For p=1 it is known that the predual of the Banach space X contains asymptotically isometric copies of ℓ_0 . Here we give a direct proof of the known result that X contains asymptotically isometric copies of ℓ_1 .

Keywords: Banach spaces, asymptotically isometric copy of ℓ_p , hereditarily ℓ_p Banach spaces

MSC 2000: 46B04, 46B20

1. Introduction

J. Hagler and the first named author have introduced a class of Banach sequence spaces, the $X_{\alpha,p}$ spaces. For p=1 each of the spaces is hereditarily complementably ℓ_1 and yet fails the Schur property [2]. For p>1 each of the spaces is hereditarily complementably ℓ_p [1]. In this paper we show that $X_{\alpha,p}$ spaces for p>1 contain asymptotically isometric copies of ℓ_p . Any $X_{\alpha,p}$ is a dual space. We show that the preduals of the spaces contain isometric copies of ℓ_q .

For p=1, Azimi showed that the preduals of $X_{\alpha,1}$ spaces contain asymptotically isometric copies of c_0 and by a result of S. Chen and B. L. Lin [3] deduced that $X_{\alpha,1}$ contains asymptotically isometric copies of ℓ_1 . As an immediate consequence of the results of J. Dilworth, M. Girardi and J. Hagler [4], we observe that $C^*[a,b]$ is linearly isometric to a subspace of $X_{\alpha,1}^*$. Here we give a direct proof to show that any $X_{\alpha,1}$ contain asymptotically isometric copies of ℓ_1 . A result of P. N. Dowling and C. J. Lennard [5] implies that $X_{\alpha,1}$ spaces fail to have the fixed point property,

i.e., there exists a nonexpansive self-mapping on a bounded closed convex subset of $X_{\alpha,1}$ which has no fixed point.

Now we go through the construction of the $X_{\alpha,p}$ spaces.

A block F is an interval (finite or infinite) of integers. For any block F, and $x=(t_1,t_2,\ldots)$ a finitely non-zero sequence of scalars, we let $\langle x,F\rangle=\sum\limits_{j\in F}t_j$. A sequence of blocks F_1,F_2,\ldots is admissible if $\max F_i<\min F_{i+1}$ for each i. Finally, let $1=\alpha_1\geqslant a_2\geqslant \alpha_3\geqslant \ldots$ be a sequence of real numbers with $\lim\limits_{i\to\infty}\alpha_i=0$ and $\sum\limits_{i=1}^\infty\alpha_i=\infty$.

We now define a norm which uses the α_i 's and an admissible sequence of blocks in its definition. Let $1 \leq p < \infty$ and let $x = (t_1, t_2, \ldots)$ be a finitely non-zero sequence of reals. Define

$$||x|| = \max \left[\sum_{i=1}^{n} \alpha_i |\langle x, F_i \rangle|^p\right]^{1/p}$$

where the max is taken over all n, and admissible sequences F_1, F_2, \ldots The Banach space $X_{\alpha,p}$ is the completion of the finitely non-zero sequences of scalars in this norm.

2. Definitions and Notation

Definitions and notation are standard, but we give some of these here.

Let ℓ_1 be the space of absolutely summable sequences and c_0 the space of all null sequences $x = (t_1, t_2, ...)$ with $||x|| = \max |t_n|$.

A Banach space X is hereditarily ℓ_1 if every infinite dimensional subspace of X contains a subspace isomorphic to ℓ_1 .

Definition 2.1. We say that a Banach space X contains asymptotically isometric copies of ℓ_1 if for some sequence $\varepsilon_n \downarrow 0$ ($0 < \varepsilon_n \leqslant 1$), there is a norm-one sequence (x_n) in X such that for all m and scalars $(t_n : 0 \leqslant n \leqslant m)$

$$\sum_{n=0}^{m} (1 - \varepsilon_n) |t_n| \le \left\| \sum_{n=0}^{m} t_n x_n \right\| \le \sum_{n=0}^{m} |t_n|, \quad (t_n) \in \ell_1.$$

We say that a Banach space X contains an asymptotically isometric copy of ℓ_p $(1 if for any <math>\varepsilon_n \downarrow 0$ $(0 < \varepsilon_n \leqslant 1)$ X contains a norm-one sequence (x_n) such that

$$\left(\sum_{n} (1 - \varepsilon_n)^p |\beta_n|^p\right)^{1/p} \leqslant \left\|\sum_{n} \beta_n x_n\right\| \leqslant \left(\sum_{n} (1 + \varepsilon_n)^p |\beta_n|^p\right)^{1/p}, \quad (\beta_n) \in l_p.$$

3. The results

The key to the analysis of the space X is the following result (Lemma 4 of [2]).

Lemma 3.1. Let the sequence (α_i) be as above, let N > 0 be an integer and let $\varepsilon > 0$. Then there exist a $\delta > 0$ such that, if b_1, b_2, \ldots, b_n are ≥ 0 , $b_i < \delta$ for all i, and $\sum_{i=1}^{n} \alpha_i b_i = 1$, then $\sum_{i=1}^{n} \alpha_{i+N} b_i \geq 1 - \varepsilon$.

The following summarize the main result of [1]. Let (e_i) denote the sequence of the usual unit vectors in $X_{\alpha,p}$, $e_i(j) = \delta_{ij}$.

Theorem 3.2. Let $X_{\alpha,p}$ denote a specific space of the class, then we have the following:

- 1. $X_{\alpha,p}$ is hereditarily complementably ℓ_p .
- 2. The sequence (e_i) is a normalized boundedly complete bases for $X_{\alpha,p}$. Thus, $X_{\alpha,p}$ is a dual space.
- 3. The predual of $X_{\alpha,p}$ contains complemented subspaces isomorphic to ℓ_q where 1/p + 1/q = 1.
 - (a) Each complemented non weakly sequentially complete subspace of $X_{\alpha,p}$ contains a complemented isomorph of $X_{\alpha,p}$.
 - (b) $X_{\alpha,p}$ and $X_{\beta,p}$ are isomorphic if and only if they are equal as sets.
 - (c) The sequence (x_n) with $x_n = e_{2n-1} e_{2n}$ is weakly null sequence in $X_{\alpha,p}$ but not in norm.
 - Since $X_{\alpha,p}$ contains ℓ_p hereditarily complementably, thus,
 - (d) $X_{\alpha,p}$ spaces are not prime. Since for p > 1, $X_{\alpha,p}$ does not contain ℓ_1 and is not reflexive,
 - (e) $X_{\alpha,p}$ is a Banach space without unconditional basis.

Theorem 3.3. The Banach space $X_{\alpha,1}$ contains asymptotically isometric copies of l_1 .

Proof. Let (u_i) be a sequence of norm one vectors in $X_{\alpha,1}$ and (G_i) an admissible sequence of blocks such that $\{j \colon u_i(j) \neq 0\} \subset G_i$. For each i, put $s_i = s(u_i)$ where $s(u_i) = \max_{G} |\langle u_i, G \rangle|$. If $\lim_{i \to \infty} s_i = 0$, then a subsequence (v_j) of (u_j) satisfies

$$\left\| \sum_{j=1}^{n} t_j v_j \right\| \geqslant \sum_{j=1}^{n} (1 - \varepsilon_j) |t_j|$$

where (ε_j) is a decreasing sequence, $\varepsilon_i < 1$ for all i and (t_j) is a sequence of scalars.

We select (v_j) by induction. Let $v_1 = u_1$. Pick n_1 and $F_1, F_2, \ldots, F_{n_1}$ satisfying $\max F_{n_1} = \max G_1$ and $\sum_{i=1}^{n_1} \alpha_i |\langle v_1, F_i \rangle| = ||v_1|| = 1$. Let δ_1 be any δ guaranteed by Lemma 3.1 for the integer n_1 and ε_1 . We let $n_0 = 0$. Assume now that we have selected for $k = 1, \ldots, p-1$

- 1. an integer m_k (> m_{k-1}) so that $v_k = u_{m_k}$.
- 2. an integer n_k (> n_{k-1}), blocks $F_{n_{k-1}+1}, \ldots, F_{n_k}$ and $\delta_k > 0$ such that
 - (a) $\max F_{n_k} = \max G_{m_k}$,
 - (b) the sequence $F_1, F_2, \dots, F_{n_1}, \dots, F_{n_2}, \dots, F_{n_k}$ is admissible,
 - (c) $\sum_{i=1}^{n_k-n_{k-1}} \alpha_i |\langle v_k, F_i \rangle| = ||v_k|| = 1,$
 - (d) δ_k is any δ guaranteed by Lemma 3.1 for the integer n_{k-1} and ε_k .

Now let $\delta_p > 0$ be any δ guaranteed by Lemma 3.1 for the integer n_{p-1} and ε_p . Pick $m_p \ (> m_{p-1})$ so that $s_{m_p} < \delta_p$ and $v_p = u_{m_p}$. Finally, pick blocks $F_{n_{p-1}}, \ldots, F_{n_p}$ such that (a), (b) and (c) above are satisfied for v_p and G_{m_p} . This completes the induction process.

Observe that $|\langle v_k, F_{i+n_{k-1}} \rangle| < s_{n_k} < \delta_k$ for $i = 1, \dots, n_k - n_{k-1}$. By Lemma 3.1

$$\sum_{i=1}^{n_k-n_{k-1}} \alpha_{i+n_{k-1}} |\langle v_k, F_{i+n_{k-1}} \rangle| > 1 - \varepsilon_k.$$

This inequality can be rewritten as

$$\sum_{i=n_{k-1}+1}^{n_k} \alpha_i |\langle v_k, F_i \rangle| > 1 - \varepsilon_k.$$

Now, let scalars t_1, t_2, \ldots, t_k be given. Since the sequence F_1, \ldots, F_{n_k} is admissible, it follows from the observation above that

$$\left\| \sum_{j=1}^{n} t_{j} v_{j} \right\| \geqslant \sum_{i=1}^{n_{k}} \alpha_{i} \left| \left\langle \sum_{j=1}^{n} t_{j} v_{j}, F_{i} \right\rangle \right| = \sum_{j=1}^{n} |t_{j}| \left(\sum_{i=1}^{n_{k}} \alpha_{i} |\langle v_{j}, F_{i} \rangle| \right)$$

$$= \sum_{j=1}^{n} |t_{j}| \left(\sum_{i=n_{j-1}+1}^{n_{j}} \alpha_{i} |\langle v_{j}, F_{i} \rangle| \right) \geqslant \sum_{j=1}^{n} (1 - \varepsilon_{j}) |t_{j}|.$$

To complete the proof we need to establish the result for norm one vectors (u_i) and blocks (G_i) with $\max G_i < \min G_{i+1}$ such that $\{j \colon u_i(j) \neq 0\} \subset G_i$ if some subsequence of $(s_i) \to 0$, then we are done. If not we use an argument similar to the proof of Theorem 1 (1) of [2].

The following lemma shows that if for a sequence (u_i) in $X_{\alpha,p}$, $s(u_i) \nrightarrow 0$, then we can construct a sequence (x_i) from (u_i) such that $s(x_i) \to 0$. Proof of the lemma is analogous to those of the theorem 1 (1) of [2].

Lemma 3.4. Let (u_i) be a sequence of norm one vectors in $X_{\alpha,p}$ and (G_i) an admissible sequence of blocks such that $\{j: u_i(j) \neq 0\} \subset G_i$. Then, a sequence (x_i) obtained from (u_i) such that $s(x_i) \to 0$.

Lemma 3.5. Let (v_i) be a sequence in $X_{\alpha,p}$, (G_i) an admissible sequence of blocks such that $\{j: v_i(j) \neq 0\} \subset G_i$ and

- 1. $||v_i|| = 1$,
- 2. $\langle v_i, N \rangle = 0$,
- 3. $s(v_i) \to 0$.

Then

$$\left\| \sum_{i=1}^k t_i v_i \right\|^p \leqslant \sum_{i=1}^k |t_i|^p.$$

Proof. Let $u_i = 2v_i$. By induction, we show that for any n, and admissible blocks F_1, F_2, \ldots, F_m , we have

(A)
$$\sum_{i=1}^{m} \alpha_j \left| \left\langle \sum_{i=1}^{n} t_i u_i, F_j \right\rangle \right|^p \leqslant 2K \sum_{i=1}^{n-1} |t_i|^p + K|t_n|^p$$

for $K = 2^{p-1}$. Now we assume that (A) is true for all $k \leq n-1$, and note that it holds for k = 1. Let l be the largest integer for which

$$support(u_{n-1}) \cap F_l \neq \emptyset$$

and suppose that for $i = k, \ldots, n-1$

$$support(u_i) \cap F_l \neq \emptyset$$

yet

$$\operatorname{support}(u_{k-1}) \cap F_l = \emptyset.$$

Thus u_{k+1}, \ldots, u_n are entirely supported in F_l . Next

(B)
$$\sum_{j=1}^{m} \alpha_j \left| \left\langle \sum_{i=1}^{n} t_i u_i, F_j \right\rangle \right|^p$$

$$= \sum_{j=1}^{l-1} \alpha_j \left| \left\langle \sum_{i=1}^{k} t_i u_i, F_j \right\rangle \right|^p + \alpha_l \left| \left\langle \sum_{i=k}^{n} t_i u_i, F_l \right\rangle \right|^p$$

$$+ \sum_{j=l+1}^{m} \alpha_j |\langle t_n u_n, F_j \rangle|^p = \sum_1 + \sum_2 + \sum_3.$$

We will use the induction hypothesis on Σ_1 , we will leave Σ_3 basically as it is, and estimate the middle term in Σ_2 :

$$\sum_{2} = \alpha_{l} \left| t_{k} \langle u_{k}, F_{l} \rangle + \sum_{i=k+1}^{n-1} \langle t_{i} u_{i}, F_{l} \rangle + t_{n} \langle u_{n}, F_{l} \rangle \right|^{p}$$

$$= \alpha_{l} \left| t_{k} \langle u_{k}, F_{l} \rangle + t_{n} \langle u_{n}, F_{l} \rangle \right|^{p}$$

$$\leq \alpha_{l} 2^{p-1} \left[\left| t_{k} \langle u_{k}, F_{l} \rangle \right|^{p} + \left| t_{n} \langle u_{n}, F_{l} \rangle \right|^{p} \right].$$

Returning to (B) we obtain

$$\begin{split} &\sum_{j=1}^m \alpha_j \bigg| \bigg\langle \sum_{i=1}^n t_i u_i, F_j \bigg\rangle \bigg|^p \\ &\leqslant \bigg[2K \sum_{i=1}^{k-1} |t_i|^p + K |t_k|^p \bigg] + [K |t_k \langle u_k, F_l \rangle|^p + K \sum_{i=k+1}^{n-1} |t_i|^p \\ &\quad + \alpha_l K |t_n \langle u_n, F_l \rangle|^p] + \sum_{j=l+1}^m \alpha_j |\langle t_n u_n, F_j \rangle|^p \\ &\leqslant 2K \sum_{i=1}^{n-1} |t_i|^p + K \sum_{j=l}^m \alpha_j |\langle t_n u_n, F_j \rangle|^p \leqslant 2K \sum_{i=1}^{n-1} |t_i|^p + K |t_n|^p, \end{split}$$

thus

$$\left\| \sum_{i=1}^k t_i u_i \right\|^p \leqslant 2^p \sum_{i=1}^k |t_i|^p.$$

Lemma 3.6. Let (v_i) be as above and (G_i) an admissible sequence of blocks such that $\{j\colon v_i(j)\neq 0\}\subset G_i$. Then for a subsequence (v_k) (not renaming) of (v_k) and for a given sequence t_1,t_2,\ldots,t_k of scalars we have

$$\left\| \sum_{i=1}^{k} t_i v_i \right\|^p \geqslant \sum_{i=1}^{k} (1 - \varepsilon_i)^p |t_i|^p$$

where $0 < \varepsilon_i \le 1$ is a decreasing sequence.

Proof. An argument similar to the proof of Theorem 3.3 shows that we may assume the following.

There exists subsequence (v_i) (not renaming) of (v_i) and sequence (n_i) of integers and $\delta_i > 0$ satisfying:

- 1. $||v_i|| = 1$ for all *i*.
- 2. For integer n_i (> n_{i-1}) put $N_i = n_1 + n_2 + \ldots + n_{i-1}$, i > 1 and $N_1 = 0$. Then δ_i satisfies Lemma 3.1 for $\varepsilon = \varepsilon_i$ and $N = N_i$.
- 3. For each block F and each i, $|\langle v_i, F \rangle|^p \leq \delta_i$.
- 4. For each i, there is a sequence of admissible blocks $F_{n_{i-1}+1}, F_{n_{i-1}+2}, \dots, F_{n_i}$ with
 - (a) $\max F_{n_i} < \min F_{n_i+1}$
 - (b) $\sum_{i=1}^{n_i n_{i-1}} \alpha_j |\langle v_i, F_{n_{i-1} + j} \rangle|^p = ||v_i||^p = 1$
 - (c) $\langle v_k, F_{n_{i-1}+j} \rangle = 0$ if $i \neq k$, and by Lemma 3.1, we have

(d)
$$\sum_{j=n_{i-1}+1}^{n_i} \alpha_j |\langle v_i, F_j \rangle|^p > 1 - \varepsilon_i.$$

Since the sequence $F_1, F_2, \ldots, F_{n_1}, \ldots, F_{n_2}, \ldots, F_{n_k}, \ldots$ is admissible, it follows from 1–4 above that for scalars t_1, \ldots, t_k and admissible blocks $F_1, F_2, \ldots, F_{n_k}$,

$$\left\| \sum_{i=1}^{k} t_i v_i \right\|^p \geqslant \sum_{i=1}^{n_k} \alpha_i \left| \left\langle \sum_{j=1}^{k} t_j v_j, F_i \right\rangle \right|^p = \sum_{j=1}^{k} |t_j|^p \sum_{i=n_{j-1}+1}^{n_j} \alpha_i |\langle v_j, F_i \rangle|^p$$
$$\geqslant \sum_{j=1}^{k} (1 - \varepsilon_j) |t_j|^p \geqslant \sum_{j=1}^{k} (1 - \varepsilon_j)^p |t_j|^p.$$

Lemmas 3.4, 3.5 and 3.6 have the following consequence.

Theorem 3.7. The Banach space $X_{\alpha,p}$ contains asymptotically isometric copies of l_p .

The following corollary is an immediate consequence of Theorem 3.7 and a result of Chen and Lin [3] (Theorem 7).

Corollary 3.8. For any sequence $\varepsilon_n \downarrow 0$ (0 < $\varepsilon_n < 1$), $X_{\alpha,p}$ contains a subspace X_0 such that X_0^* has a normalized basis (x_n^*) satisfying

$$\left(\sum_{n} (1 - \varepsilon_n)^q |\beta_n|^q\right)^{1/q} \leqslant \left\|\sum_{n} \beta_n x_n^*\right\|_{X_0^*} \leqslant \left(\sum_{n} (1 + \varepsilon_n)^q |\beta_n|^q\right)^{1/q}, \quad (\beta_n) \in \ell_q$$

where 1/p + 1/q = 1.

Remark 3.9. Let (f_i) in X^* be the biorthogonal sequence to the usual basis (e_i) in X, and let Y be the subspace of X^* generated by the sequence (f_i) . Theorem 3.2 (2) and a well known result [6] (Proposition 1.b.4, page 9) show that $X = Y^*$. For p > 1, Theorem 3.2 (3) shows that Y contains complemented subspaces isomorphic to ℓ_q where 1/p + 1/q = 1.

Now, we show that Y contains isometric copies of l_q , where 1/p + 1/q = 1.

Theorem 3.10. The predual of $X_{\alpha,p}$ spaces contains isometric copies of l_q where 1/p + 1/q = 1.

Proof. Let (v_i) be as above and

$$\varphi_i(x) = \sum_{j=1}^{n_i} \alpha_j |\langle v_j, F_j^i \rangle|^{p-1} \varepsilon_j^i \langle x, F_j^i \rangle$$

where v_i is normed by $F_1^i, \ldots, F_{n_i}^i$ and $\varepsilon_j^i = \operatorname{sgn}\langle v_i, F_j^i \rangle$. Then $\varphi_i \in Y$ where $Y^* = X_{\alpha,p}$ (Remark 3.9) and $\|\varphi_i\| = 1$ since $\varphi_i(v_i) = 1$.

Now we go through the calculation of the norm. By Hölder's inequality and the fact that q(p-1)=p, we have

$$\begin{split} \left| \sum_{i=1}^k s_i \varphi_i(x) \right| &\leqslant \sum_{i=1}^k |s_i| |\varphi_i(x)| \leqslant \sum_{i=1}^k |s_i| \left(\sum_{j=1}^{n_i} \alpha_j |\langle v_i, F_j^i \rangle|^{p-1} |\langle x, F_j^i \rangle| \right) \\ &= \sum_{i=1}^k \sum_{j=1}^{n_i} |s_i| \alpha_j |\langle v_i, F_j^i \rangle|^{p-1} |\langle x, F_j^i \rangle| \\ &= \sum_{i=1}^k \left(\sum_{j=1}^{n_i} |s_i| \alpha_j^{1/q} |\langle v_i, F_j^i \rangle|^{p-1} \alpha_j^{1/p} |\langle x, F_j^i \rangle| \right) \\ &\leqslant \left[\sum_{i=1}^k \left(\sum_{j=1}^{n_i} |s_i|^q \alpha_j |\langle v_i, F_j^i \rangle|^q \right) \right]^{1/q} \\ &\times \left[\sum_{i=1}^k \left(\sum_{j=1}^{n_i} \alpha_j |\langle x, F_j^i \rangle|^p \right) \right]^{1/p} \leqslant \left(\sum_{i=1}^k |s_i|^q \right)^{1/q} ||x||. \end{split}$$

Therefore

$$\left\| \sum_{i=1}^k s_i \varphi_i \right\| \leqslant \left(\sum_{i=1}^k |s_i|^q \right)^{1/q}.$$

Now we prove that

$$\left\| \sum_{i=1}^{n} s_i \varphi_i \right\| \geqslant \left(\sum_{i=1}^{n} |s_i|^q \right)^{1/q}.$$

Let $x = \sum_{i=1}^{n} \varepsilon_i |s_i|^{q-1} v_i$, $\varepsilon_i = \operatorname{sgn}(s_i)$. By Lemma 3.5

$$||x|| \le \left(\sum_{i=1}^{n} |s_i|^{p(q-1)}\right)^{1/p} = \left(\sum_{i=1}^{n} |s_i|^q\right)^{1/p}.$$

This implies that

$$\begin{split} \left\| \sum_{i=1}^{n} s_{i} \varphi_{i} \right\| & \geqslant \left| \sum_{i=1}^{n} s_{i} \varphi_{i} \left(\frac{x}{\|x\|} \right) \right| = \frac{1}{\|x\|} \left| \sum_{i=1}^{n} s_{i} \varphi_{i} (\varepsilon_{i} |s_{i}|^{q-1} v_{i}) \right| \\ & = \frac{1}{\|x\|} \sum_{i=1}^{n} |s_{i}|^{q} \geqslant \frac{1}{\left(\sum_{i=1}^{n} |s_{i}|^{q} \right)^{1/p}} \sum_{i=1}^{n} |s_{i}|^{q} = \left(\sum_{i=1}^{n} |s_{i}|^{q} \right)^{1/q}. \end{split}$$

Thus

$$\left\| \sum_{i=1}^{n} s_i \varphi_i \right\| \geqslant \left(\sum_{i=1}^{n} |s_i|^q \right)^{1/q}.$$

Therefore

$$\left\| \sum_{i=1}^{n} s_i \varphi_i \right\| = \left(\sum_{i=1}^{n} |s_i|^q \right)^{1/q}.$$

References

- P. Azimi: A new class of Banach sequence spaces. Bull. Iranian Math. Soc. 28 (2002), 57–68.
- [2] P. Azimi, J. Hagler: Examples of hereditarily ℓ_1 Banach spaces failing the Schur property. Pacific J. Math. 122 (1986), 287–297. Zbl 0609.46012
- [3] S. Chen, B.-L. Lin: Dual action of asymptotically isometric copies of ℓ_p $(1 \le p < \infty)$ and c_0 . Collect. Math. 48 (1997), 449–458. Zbl 0892.46014
- [4] J. Dilworth, M. Girardi, and J. Hagler. Dual Banach spaces which contains an isometric copy of L₁. Bull. Polish Acad. Sci. 48 (2000), 1–12.
 Zbl 0956.46006
- [5] P. N. Dowling, C. J. Lennard: Every nonreflexive subspace of L_1 fails the fixed point property. Proc. Amer. Math. Soc. 125 (1997), 443–446. Zbl 0861.47032
- [6] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces I. Sequence Spaces. Springer Verlag, Berlin, 1977.Zbl 0362.46013

Authors' address: Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran, e-mails: azimi@hamoon.usb.ac.ir, ahmadi@hamoon.usb.ac.ir.