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Abstract. We classify all bundle functors G admitting natural operators transforming
connections on a fibered manifold Y →M into connections on GY →M . Then we solve a
similar problem for natural operators transforming connections on Y →M into connections
on GY → Y .
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Introduction

Let G be a bundle functor on the category FMm,n of fibered manifolds with m-

dimensional bases and n-dimensional fibres and their local fibered diffeomorphisms.
We recall that a connection on a fibered manifold p : Y → M is a smooth section

Γ: Y → J1Y of the first jet prolongation of Y , which can also be interpreted as the
lifting map (denoted by the same symbol) Γ: Y ×M TM → TY . The present paper

is devoted to the following problems:

Problem 1. To classify all bundle functors G on FMm,n which admit natural

operators transforming connections on Y →M into connections on GY →M .

The first author was supported by a grant of the GA ČR No. 201/02/0225.
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Problem 2. To classify all bundle functors G on FMm,n which admit natural

operators transforming connections on Y →M into connections on GY → Y .

If G = V F is the F -vertical functor determined by a natural bundle F , then
I.Kolář and the second author have constructed a connection V F Γ on V FY → M ,

which is called the F -vertical prolongation of Γ, [7]. However, if G 6= V F , then we
know no natural operator transforming connections on Y →M into connections on

GY → M . For some particular cases of G it has only been proved that there is no
(first order) natural operator of this type, see [1], [5] and [6]. Moreover, the second

author has recently proved that under some conditions on the bundle functor G,
there are no natural operators transforming connections on Y →M into connections

on GY →M and also on GY → Y , see [8] and [9].

It turns out that Problems 1 and 2 are closely related to the order of the bundle
functor G. That is why we first study some properties of bundle functors onFMm,n

from a more general point of view. In particular, in Section 2 we classify all bundle
functors G on FMm,n, the base order of which is zero. We show that a bundle

functor G on FMm,n has base order zero if and only if G is isomorphic to some
F -vertical functor V F . Quite analogously, in Section 3 we characterize all bundle

functors G, the fiber order of which is zero. The main result of this paper is the
complete solution of Problem 1 and Problem 2, which is described in Section 4 and

Section 5.

We remark that the prolongation of connections has motivation e.g. in quantum
mechanics and higher order dynamics, see [4] and [10].

Denote by M f the category of smooth manifolds and all smooth maps, byM fm

the subcategory of m-dimensional manifolds and their local diffeomorphisms, by

FM the category of fibered manifolds and fiber respecting mappings and by FMm

the subcategory of fibered manifolds with m-dimensional bases andFM -morphisms

with local diffeomorphisms as base maps. In what follows Y → M stands for
FMm,n-objects and N stands for M fn-objects. All manifolds and maps are as-

sumed to be infinitely differentiable.

1. The foundations

This section contains a survey of some known results which we need in the sequel.
Suppose we have two fibered manifolds p : Y →M and p̄ : Y →M and let s > r 6 q

be three integers. We say that twoFM -morphisms f, g : Y → Y with the base maps
f, g : M →M determine the same (r, s, q)-jet jr,s,q

y f = jr,s,q
y g at y ∈ Y , p(y) = x, if

jr
yf = jr

yg, js
y(f |Yx) = js

y(g|Yx), jq
xf = jq

xg.
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By [6], a bundle functor G onFM is said to be of order r, if from jr
yf = jr

yg it follows

that Gyf = Gyg for every FM -morphisms f, g : Y → Y and every point y ∈ Y .
I. Kolář and the second author have recently introduced the following definition of
order, which is based on the concept of (r, s, q)-jets. By [7], a bundle functor G on
FM is said to be of order (r, s, q), if jr,s,q

y f = jr,s,q
y g implies Gf |GyY = Gg|GyY .

Then the integer q is called the base order, s is called the fiber order and r is called

the total order of G.

It is well known that product preserving functors can be expressed in terms of
Weil algebras, [6]. The most important result from this field is that each product

preserving functor F onM f is a Weil functor F = TA determined by a Weil algebra
A. Then the iteration TA◦TB of two Weil functors corresponds to the tensor product

A⊗B of Weil algebras and natural transformations TA → TB are in bijection with
algebra homomorphisms A→ B.

Given a bundle functor G onFMm,n and a product fibered manifoldM×N →M ,

we have three fibered manifold projections π : G(M×N) →M×N , π1 : G(M×N) →
M and π2 : G(M ×N) → N . For x ∈ M , y ∈ N we will denote by G(x,y)(M ×N),
Gx(M ×N) and G(M ×N)y the fibers with respect to π, π1 and π2, respectively.

Let F be a natural bundle on M fn. The F -vertical functor is a bundle functor
V F on FMm,n defined by

V FY =
⋃

x∈M

F (Yx), V F f =
⋃

x∈M

F (fx)

where fx is the restriction and corestriction of f : Y → Y over f : M → M to the
fibers Yx and Y f(x), [7]. Clearly, if the order of F is s, then the order of V F is (0, s, 0).
For the tangent bundle F = T we obtain the classical vertical bundle, which will be
denoted by V instead of V T . Further, if F = TA is a Weil functor determined by a

Weil algebra A, then V T A

is the vertical Weil functor on FMm ⊃ FMm,n, which
will be denoted by V A.

Let Γ: Y → J1Y be a connection on a fibered manifold Y → M . We recall

that a projectable vector field on a fibered manifold Y → M is an FM -morphism
Z : Y → TY over the underlying vector field M → TM and the flow exp tZ is

formed by local FMm,n-morphisms. Then the flow prolongation of Z with respect
to a bundle functor G on FMm,n is the vector field GZ : GY → TGY defined by

GZ = ∂/∂t|0G(exp tZ). By [7], if G has order (r, s, q), then the value of GZ at each
point of GyY depends on jr,s,q

y Z only. Thus the flow prolongation GZ can also be

interpreted as a map

(1) GY : GY ×Y Jr,s,qTY → TGY,
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where Jr,s,qTY denotes the space of all (r, s, q)-jets of projectable vector fields on Y .
Further, (1) is linear in the second factor. Given a vector field X on M , its Γ-lift is
a projectable vector field ΓX on Y . By (1), the flow prolongation G (ΓX) depends
on the q-jets of X only and we obtain a map

(2) G Γ: GY ×M JqTM → TGY,

which is linear in the second factor. Moreover, if the base order of G is q = 0,
then (2) is a connection on GY → M . In the case of the F -vertical bundle G =
V F , the connection (2) is called the F -vertical prolongation of Γ and is denoted by
V F Γ. For the classical vertical bundle V we obtain the classical vertical prolongation
V Γ: V Y → J1V Y , which was also constructed by I.Kolář in [5]. We remark that

if G = V A is the vertical Weil functor, then there is another way to construct the
TA-prolongation V AΓ, see [7]. If the base order q of G is arbitrary (not necessarily
zero), then we can construct an induced connection on GY → M by means of
some auxiliary q-th order linear connection ∇ : TM → J qTM on M . Indeed, the

composition

(3) G (Γ,∇) := G Γ ◦ (idGY ×idM
∇) : GY ×M TM → TGY

is the lifting map of a connection on GY → M . The second author has recently

proved

Proposition 1 ([8]). Let G : FMm,n → FM be a bundle functor such that

the corresponding natural bundle G1 : M fm → FM , G1M = G(M × � n ), G1ϕ =
G(ϕ×id � n) is not of order 0. Then there is noFMm,n-natural operator transforming

connections on Y →M into connections on GY →M .

Proposition 2 ([9]). Let G : FMm,n → FM be a bundle functor such that

the corresponding natural bundle G2 : M fn → FM , G2N = G(
� m ×N), G2ψ =

G(id � m ×ψ) is not of order 0. Then there is no FMm,n-natural operator transform-

ing connections on Y →M into connections on GY → Y .

Proposition 3 ([8]). Let G : FMm,n → FM be a bundle functor such that

the corresponding natural bundle G1 : M fm → FM , G1M = G(M × � n ), G1ϕ =
G(ϕ×id � n) is not of order 0. Then there is noFMm,n-natural operator transforming

connections on Y →M into connections on GY → Y .

Further, in [3] we have proved
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Proposition 4. The F -vertical prolongation V F is the only natural operator

transforming connections on Y →M into connections on V FY →M .

2. Classification of bundle functors on FMm,n of order (0, s, 0)

Given a bundle functor G : FMm,n → FM of order (0, s, 0), we can define a
bundle functor F = FG : M fn → FM by

(4) FN = G0(
� m ×N), Fψ = G0(id � m ×ψ),

where ψ : N → N , 0 ∈ � m . Clearly, F has order s.

Proposition 5. Let G : FMm,n → FM be a bundle functor of order (0, s, 0)
and denote by F = FG its associated bundle functor (4) on M fn. Then we have a

natural equivalence

G ∼= V (F G).

�������	�
. Let Y →M be an FMm,n-object. Define a map IY : GY → V FY by

IY (v) = GΦ(v) ∈ G0(
� m × Yx0) = F (Yx0) = (V FY )x0

where v ∈ (GY )x0 , x0 ∈ M and Φ: Y → � m × Yx0 is an FMm,n-map such that
Φ|Yx0 = (0, idYx0

). Since G is of order (0, s, 0), the definition of IY (v) is independent
of the choice of Φ. The inverse map is JY : V FY → GY defined by

JY (w) = GΦ−1(w), w ∈ G0(
� m × Yx0) = (V FY )x0 , x0 ∈M,

where Φ is as above. The regularity of G implies the smoothness of IY and JY , so
that IY is a diffeomorphism. Finally, from the functoriality of G it follows directly

that I : G→ V F is a natural transformation. �

As the order of an arbitrary F -vertical functor V F is (0, s, 0), s = ord (F ), we have

Corollary 1. Let G be a bundle functor on FMm,n. The following conditions

are equivalent:

(1) The order of G is (0, s, 0) for some s.
(2) The base order of G is zero.

(3) G is naturally equivalent to some F -vertical functor V F .
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Proposition 6. Let F1, F2 : M fn → FM be natural bundles. Then FMm,n-

natural transformations V F1 → V F2 are in bijection with M fn-natural transforma-

tions F1 → F2.
�������	�

. Let I : V F1 → V F2 be a natural transformation. Then we have a natural
transformation J = JI : F1 → F2, JN : F1N → F2N , JN (v) = I � m×N (v), v ∈
(V F1(

� m ×N))0 = F1N . Conversely, let J : F1 → F2 be a natural transformation.
We have a natural transformation I = IJ : V F1Y → V F2Y , I(v) = JYxo

(v), v ∈
(V F1Y )xo = F1(Yxo). Obviously, the above correspondences I → J I and J → IJ are
mutually inverse. �

Remark 1. Clearly, the F -vertical functor V F preserves fiber products if and

only if the natural bundle F preserves products. By the general theory [6], F = TA

is a Weil functor and the corresponding F -vertical functor V F is exactly the vertical
Weil functor V A. By [2], every algebra homomorphism µ : A → B determines a

natural transformation V µ : V A → V B and all natural transformations V A → V B

on FMm are of the form V µ. This corresponds to Proposition 6, which has a more

general character.

Remark 2. I. Kolář and the first author have proved that for every fiber product
preserving functorG onFMm and every verticalWeil functor V A there is a canonical

natural equivalence V AG ∼= GV A, [2]. Moreover, from the theory of Weil bundles it
follows that we have a natural equivalence V A⊗B ∼= V A ◦ V B , where A ⊗ B is the

tensor product of Weil algebras corresponding to the iterated Weil functor TA ◦TB.
One verifies directly that for F -vertical functors we have the formula

V F2◦F1 ∼= V F2 ◦ V F1 .

3. Classification of bundle functors on FMm,n of the order (0, 0, q)

Given a bundle functor F : M fm → FM of order q, we can define a bundle
functor GF : FMm,n → FM by

(5) GFY = FM ×M Y, GF Φ = FΦ×Φ Φ

where Φ: Y → Y is an FMm,n-morphism over Φ: M → M . Then GF is of order

(0, 0, q).
Conversely, let G : FMm,n → FM be a bundle functor of order (0, 0, q). Define

a bundle functor F = FG : M fm → FM by

(6) FM = G(M × � n )0, Fϕ = G(ϕ× id � n)0

where ϕ : M →M , 0 ∈ � n . Clearly, F = FG has order q.
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Proposition 7. Let G : FMm,n → FM be a bundle functor of order (0, 0, q)
and denote by F = FG its associated bundle functor (6) on M fm. Then we have a

natural equivalence

G ∼= G(F G).

�������	�
. Let Y →M be an FMm,n-object. Define a map IY : GY → GFY by

IY (w) = (GΦ(w), y) ∈ FM ×M Y = GFY,

where w ∈ (GY )y, y ∈ Yx, x ∈ M and Φ: Y → M × � n is an FMm,n-map such
that Φ(y) = (x, 0), Φ = idM . Since G is of order (0, 0, q) the definition of IY (w) is
independent of the choice of Φ. The inverse map JY : GFY → GY is given by

JY (v, y) = GΦ−1(v),

where (v, y) ∈ (GFY )x = (FM ×M Y )x, x ∈ M and Φ is as above. From the
regularity of G follows the smoothness of IY and JY , so that IY is a diffeomorphism.

Finally, from the functoriality of G it follows directly that I : G → GF is a natural
transformation. �

Obviously, a bundle functor G on FMm,n has order (0, 0, q) if and only if the
fiber order of G is zero.

Proposition 8. Let F, F : M fm → FM be natural bundles of order q. Then

FMm,n-natural transformations GF → GF are in bijection with M fm-natural

transformations F → F .
�������	�

. Let F, F : M fm → FM be natural bundles of order q and let I : F →
F be a natural transformation. Then we have the induced natural transformation
J = JI : GF → GF , JY (v, y) = (IM (v), y), (v, y) ∈ GFY , where Y → M is an

FMm,n-object. Conversely, let G,G : FMm,n → FM be bundle functors of order
(0, 0, q) and let J : G → G be a natural transformation. Then we have a natural

transformation I = IJ : FG → FG, where IM is the restriction of JM× � n . Clearly,
the correspondences I → J I and J → IJ are mutually inverse. �
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4. The solution of Problem 1

By [6], any bundle functor G : FMm,n → FM is of finite order. We first prove

Proposition 9. Let G : FMm,n → FM be a bundle functor of order s. Suppose

that the bundle functor G1 : M fm → FM defined by

G1M = G(M × � n ), G1ϕ = G(ϕ × id � n)

is of order zero. Then G is of order (0, s, 0).

�������	�
. Let Φ:

� m × � n → � m × � n be a (0, 0)-preserving FMm,n-map
satisfying j0,s,0

(0,0)Φ = j0,s,0
(0,0) id and let v ∈ G(0,0)(

� m × � n ). It remains to show that
GΦ(v) = v. In general, Φ is of the form Φ(x, y) = (Φ(x), ϕ(x, y)). Because of the zero
order of G1, replacing Φ by (Φ−1×id � n)◦Φ we can assume that Φ(x, y) = (x, ϕ(x, y)).
Further, as G1 is of order zero we have

GΦ(v) = G1
(1
t

id � m

)
◦GΦ ◦G1(t id � m)(v) = G(pr � m , ϕ ◦ (t id � m × id � n))(v),

where pr � m :
� m× � n → � m is the projection. Using the regularity of G and putting

t → 0 we get GΦ(v) = G(id � m ×ϕ0)(v), where ϕ0 = ϕ(0, ·) : � n → � n . Then the

assumption j0,s,0
(0,0)Φ = j0,s,0

(0,0) id gives js
(0,0)(id � m ×ϕ0) = js

(0,0) id. Finally, from the fact
that G is of order s we get GΦ(v) = v. �

By Corollary 1, a bundle functor G : FMm,n → FM is of order (0, s, 0) if and
only if G is isomorphic to some F -vertical functor V F . In Proposition 4 we have
proved that there is one and only one natural operator transforming connections on

Y → M into connections on V FY → M . On the other hand, from Proposition 1
it follows that if G1 is not of order zero, then G does not admit natural operators
transforming connections on Y →M into connections on GY →M . Finally, taking

into account Proposition 9 and summing up we have proved

Theorem 1. A bundle functor G : FMm,n → FM admits an FMm,n-natural

operator transforming connections on Y → M into connections on GY →M if and

only if G is isomorphic to some F -vertical bundle functor V F . For V F such natural

operator is unique.

Using Corollary 1 we have
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Corollary 2. Let G be a bundle functor on FMm,n. The following conditions

are equivalent:

(1) The order of G is (0, s, 0) for some s.
(2) The base order of G is zero.

(3) G is naturally equivalent to some F -vertical functor V F .

(4) There is an FMm,n-natural operator transforming connections on Y →M into

connections on GY →M .

By formula (3), an arbitrary bundle functor G on FMm,n admits a natural oper-
ator transforming connections on Y → M into connections on GY → M by means

of an auxiliary higher order linear connection ∇ on M . By Corollary 2, if the base
order of G is not zero, then the use of a linear connection ∇ is unavoidable.

5. The solution of Problem 2

Let G : FMm,n → FM be a bundle functor. Suppose first that there exists a
natural operator D transforming connections Γ on Y → M into connections D(Γ)
on GY → Y . Composing D(Γ) with Γ we obtain a connection D̃(Γ) on GY → M .
Clearly, if Γ: Y ×M TM → TY , then D̃(Γ) : GY ×M TM → TGY is defined by

D̃(Γ)(u, v) = D(Γ)(u,Γ(y, v)), (u, v) ∈ GY ×M TM, u ∈ (GY )y .

By Theorem 1, G ∼= V F and the order of G is (0, s, 0), s = ord (F ). From Proposi-
tion 2 it follows that the functor G2 : M fn → FM defined by

G2N = G(
� m ×N), G2ψ = G(id � m ×ψ)

is of order zero. Therefore F : M fn → FM is of order zero as well, i.e.F is
isomorphic to a trivial bundle functor

FW : M fn → FM , FWN = N ×W, FWψ = ψ × idW

for some manifold W . Then the corresponding F -vertical functor G = V (F W ) is also

isomorphic to a trivial bundle functor

GW : FMm,n → FM , GWY = Y ×W, GW Φ = Φ× idW

for some W . So we have proved
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Proposition 10. If there is a natural operator transforming connections on Y →
M into connections on GY → Y , then G is isomorphic to a trivial bundle functor

GW for some manifold W .

On the other hand, if G = GW is a trivial bundle functor, then we have a trivial
connection on Y ×W → Y . This defines a natural operator transforming connections
on Y →M into connections on GWY → Y . We have

Theorem 2. A bundle functor G onFMm,n admits anFMm,n-natural operator

transforming connections on Y → M into connections on GY → Y if and only if G

is isomorphic to a trivial bundle functor GW for some manifold W . For GW such

natural operator is unique.
�������	�

. Because of the existence of a trivial connection on GWY → Y , it

suffices to prove only the uniqueness part. Clearly, the difference of two connections
on Y ×W → Y is a map (Y ×W )×Y TY → V (Y ×W ). So it remains to show that
any FMm,n-natural vector bundle map

∆(Γ): (Y ×W )×Y TY → V (Y ×W )

over Y ×W is zero. First, the FMm,n-invariance implies that the map ∆ is deter-
mined by the values

(7) ∆(Γ)
(
(0, 0), w,

∂

∂x1 (0,0)

)
∈ V((0,0),w)(

� m,n ×W )

for all connections Γ on
� m,n → � m and all w ∈ W . In local coordinates (xi, yj) on� m,n a connection Γ has the coordinate expression

Γ =
m∑

i=1

dxi ⊗ ∂

∂xi
+

m∑

k=1

n∑

l=1

Γl
k dxk ⊗ ∂

∂yl
.

By the corollary of non-linear Peetre theorem (Corollary 19.8 in [6]), it suffices to

restrict ourselves to connections Γ on
� m,n → � m with coefficients of the form

Γl
k =

∑

|α|+|β|6K

Γl
kαβx

αyβ

for any K ∈ 
 . Using the invariance with respect to the homotheties t id � m,n , t 6= 0
and then the homogeneous function theorem from [6] we see that ∆ is determined by
the values (7) for all connections Γ on

� m,n → � m whose coefficients are polynomials
of degree 6 1 and all w ∈W . Further, taking into account the invariance of ∆ with
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respect to the base homotheties t id � m × � n and then using the homogeneous function

theorem we deduce that ∆ is determined by the values

∆
( ∑

dxi ⊗ ∂

∂xi
+ yj dxk ⊗ ∂

∂yl

)(
(0, 0), w,

∂

∂x1 (0,0)

)
∈ V((0,0),w)(

� m,n ×W )

and

∆
( ∑

dxi ⊗ ∂

∂xi
+ dxk ⊗ ∂

∂yl

)(
(0, 0), w,

∂

∂x1 (0,0)

)
∈ V(0,0),w)(

� m,n ×W )

for all w ∈ W and all k = 1, . . . ,m and j, l = 1, . . . , n. Hence ∆ is uniquely
determined by the values

∆
( ∑

dxi ⊗ ∂

∂xi
+ dxk ⊗ Y

)
((0, 0), w, v) ∈ V((0,0),w)(

� m,n ×W )

for all k = 1, . . . ,m, all vector fields Y on
� n , all w ∈ W and all v ∈ T(0,0)

� m,n .

Clearly, any non-vanishing vertical vector field Y on
� m,n not depending on xi can

be transformed locally into ∂/∂y1 by means of a fibered isomorphism of the form

(id � m ×ψ). Using the regularity and the invariance of ∆ with respect to FMm,n-
maps of the form id � m ×ψ we see that ∆ is determined by the values

∆
( ∑

dxi ⊗ ∂

∂xi
+ dxk ⊗ ∂

∂y1

)
((0, 0), w, v) ∈ V((0,0),w)(

� m,n ×W )

for all k, w, v as above. Because of the invariance of ∆ with respect to the FMm,n-
map

(x1, . . . , xm, y1 − xk , y2, . . . , yn),

∆ is uniquely determined by the values

∆
( ∑

dxi ⊗ ∂

∂xi

)
((0, 0), w, v)) ∈ V((0,0),w)(

� m,n ×W )

for v, w as above. Finally, using the invariance of ∆ with respect to the homotheties
t id � m,n , we get∆(

∑
dxi⊗∂/∂xi)((0, 0), w, v) = 0. Thus we have proved that ∆ = 0,

which completes the proof. �

Remark 3. By Theorem 2, if G is not isomorphic to a trivial bundle functor, then
there is no natural operator transforming connections on Y →M into connections on

GY → Y . However, if we restrict ourselves to some aditional structure on GY , then
natural operators may exist. For example, in 46.10 of [6] there are constructed first

order operators, natural on the local isomorphisms of affine bundles, which transform
connections on Y →M into connections on V Y → Y .
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Remark 4. There is another approach to the prolongation of connections. The
second author has recently proved that a vector bundle functor H on M f with
the point property admits natural operators transforming connections on a fibered
manifold p : Y →M into connections on Hp : HY → HM if and only if H preserves

products, see [8].
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