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Abstract. Let ‖·‖ be a norm on the algebra Mn of all n × n matrices over
�
. An

interesting problem in matrix theory is that “Are there two norms ‖·‖1 and ‖·‖2 on
� n

such that ‖A‖ = max{‖Ax‖2 : ‖x‖1 = 1} for all A ∈ Mn?” We will investigate this
problem and its various aspects and will discuss some conditions under which ‖·‖1 = ‖·‖2.
Keywords: induced norm, generalized induced norm, algebra norm, the full matrix alge-

bra, unitarily invariant, generalized induced congruent
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1. Preliminaries

Throughout the paper Mn denotes the complex algebra of all n × n matrices

A = [aij ] with entries in � together with the usual matrix operations. Denote
by {e1, e2, . . . en} the standard basis for � n , where ei has 1 as its ith entry and

0 elsewhere. We denote by Eij the n × n matrix with 1 in the (i, j) entry and 0
elsewhere.

For 1 6 p 6 ∞ the `p-norm on � n is defined as follows:

`p(x) = `p

( n∑

i=1

xiei

)
=





(
n∑

i=1

|xi|p
)1/p

1 6 p < ∞,

max{|x1|, . . . , |xn|} p = ∞.

A norm ‖·‖ on � n is said to be unitarily invariant if ‖x‖ = ‖Ux‖ for all unitaries U

and all x ∈ � n .
By an algebra norm (or a matrix norm) we mean a norm ‖·‖ on Mn such that

‖AB‖ 6 ‖A‖‖B‖ for all A, B ∈ Mn. An algebra norm ‖·‖ on Mn is called unitarily
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invariant if ‖UAV ‖ = ‖A‖ for all unitaries U and V and all A ∈ Mn. See Chapter IV

of [2] for more information.

Example 1.1. The norm ‖A‖σ =
n∑

i,j=1

|aij | is an algebra norm, but the norm

‖A‖m = max{|ai,j | : 1 6 i, j 6 n} is not an algebra norm, since
∥∥∥∥
[

1 1
1 1

]2∥∥∥∥
m

>

∥∥∥∥
[

1 1
1 1

]∥∥∥∥
2

m

.

Remark 1.2. It is easy to show that for each norm ‖·‖ on Mn, the scaled norm

max
{
‖AB‖/‖A‖‖B‖: A, B 6= 0

}
‖·‖ is an algebra norm; cf. [1].

Let ‖·‖1 and ‖·‖2 be two norms on � n . Then for each A : ( � n , ‖·‖1) → ( � n , ‖·‖2)
we can define ‖A‖ = max{‖Ax‖2 : ‖x‖1 = 1}. If ‖·‖1 = ‖·‖2, then ‖I‖ = 1, and
there are many examples of ‖·‖1 and ‖·‖2 such that ‖I‖ 6= 1. This shows that
given ‖·‖ on Mn, we cannot deduce in general that there is a norm ‖·‖1 on � n with

‖A‖ = max{‖Ax‖1 : ‖x‖1 = 1}. Let us recall the concept of g-ind norm as follows.

Definition 1.3. Let ‖·‖1 and ‖·‖2 be two norms on � n . Then the norm ‖·‖1,2

onMn defined by ‖A‖1,2 = max{‖Ax‖2 : ‖x‖1 = 1} is called the generalized induced
(or g-ind) norm constructed via ‖·‖1 and ‖·‖2. If ‖·‖1 = ‖·‖2, then ‖·‖1,1 is called

induced norm.

Example 1.4. ‖A‖C = max
{ n∑

i=1

|ai,j | : 1 6 j 6 n
}
, ‖A‖R = max

{ n∑
j=1

|ai,j | : 1 6

i 6 n
}
and the spectral norm ‖A‖S = max{

√
λ : λ is an eigenvalue of A∗A} are

induced by `1, `∞ and `2, respectively.

It is known that the algebra norm ‖A‖ = max{‖A‖C , ‖A‖R} is not induced and
it is not hard to show that it is not g-ind too; cf. Corollary 3.2.6 of [1].

We need the following proposition which is a special case of a finite dimensional
version of the Hahn-Banach theorem [5] in which ∗ denotes the transpose; see Corol-
lary 5.5.15 of [3].

Proposition 1.5. Let ‖·‖ be a norm on � n and y ∈ � n be a given vector. There

exists a vector y0 ∈ � n such that y∗0y = ‖y‖ and for all x ∈ � n , |y∗0x| 6 ‖x‖.

In this paper we examine the following nice problems:
(i) Given a norm ‖·‖ on Mn. Is there any class A ofMn such that the restriction

of the norm ‖·‖ to A is g-ind?
(ii) When is a g-ind norm unitarily invariant?

(iii) If a given norm ‖·‖ is g-ind via ‖·‖1 and ‖·‖2, then is it possible to find ‖·‖1 and
‖·‖2 explicitly in terms of ‖·‖?
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(iv) When are two g-ind norms the same?

(v) Is there any characterization of the g-ind norms which are algebra norms?

2. Main results

We begin with some observations on generalized induced norms.

Let ‖·‖1,2 be a generalized induced norm onMn obtained via ‖·‖1 and ‖·‖2. Then
‖Eij‖1,2 = max{‖Eijx‖2 : ‖x‖1 = 1} = max{‖xjei‖2 : ‖(x1, . . . , xj , . . . , xn)‖1 =
1} = αj‖ei‖2, where αj = max{|xj | : ‖(x1, . . . , xj , . . . , xn)‖1 = 1}. In general, for
x ∈ � n and 1 6 j 6 n, if Cx,j ∈ Mn is defined by the operator Cx,j(y) = yjx then

‖Cx,j‖1,2 = αj‖x‖2.

Also if for x ∈ � n we define Cx ∈ Mn by Cx =
n∑

j=1

Cx,j , then clearly ‖Cx‖1,2 =

α‖x‖2, where α = max
{∣∣∣

n∑
j=1

yj

∣∣∣ : ‖(y1, . . . , yj , . . . , yn)‖1 = 1
}
.

Now we give a partial solution to Problem (i) and useful direction toward solving

Problem (iii):

Proposition 2.1. Let ‖·‖ be an algebra norm on Mn. Then ‖·‖ is a g-ind norm
on {A ∈ Mn : ‖A‖ = ‖A−1‖ = 1}.

�������	�
. Put ‖x‖1 = max{‖CAx‖ : ‖A‖ = 1}, λ−1 = max

{∣∣∣
n∑

i=1

xi

∣∣∣ : ‖x‖1 =

1
}
and ‖x‖2 = λ‖Cx‖. Then we have ‖Cy‖1,2 = max{‖Cyx‖2 : ‖x‖1 = 1} =

max
{∣∣∣

n∑
i=1

xi

∣∣∣‖y‖2 : ‖x‖1 = 1
}

= ‖y‖2λ
−1 = ‖Cy‖.

It follows that for each y ∈ � n there is some x ∈ � n such that ‖Cyx‖2 =
‖Cy‖ ‖x‖1 = ‖Cy‖max{‖CDx‖ : ‖D‖ = 1}.
Now let A be invertible and ‖A−1‖ = ‖A‖ = 1 and z = A−1Cyx. Then

λ−1‖Bz‖2 = λ−1‖BA−1Cyx‖2 = λ−1‖Dx‖2 = ‖CDx‖ 6 ‖Cy‖−1‖Cyx‖2 =
‖Cy‖−1‖Az‖2.

Now choose y so that ‖Cy‖ = 1. Then ‖CBz‖ 6 ‖CAz‖ for all B ∈ Mn. This
implies that ‖CAz‖ is an upper bound for the set {‖CBz‖ : ‖B‖ = 1} and indeed
‖CAz‖ = max{‖CBz‖ : ‖B‖ = 1} = ‖z‖1. It follows that ‖A‖ = 1 = ‖CA(z/‖z‖1)‖ =
max{‖CAu‖ : ‖u‖1 = 1} = max{‖Au‖2 : ‖u‖1 = 1} = ‖A‖1,2. �

Let us now answer Question (ii).
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Proposition 2.2. An induced norm ‖·‖1,2 is unitarily invariant if and only if so

are ‖·‖1 and ‖·‖2.

�������	�
. Let U , V be unital operators and A be an arbitrary operator on � n .

Suppose that ‖·‖1 and ‖·‖2 are unitarily invariant. Then

‖UAV ‖1,2 = max
x6=0

‖UAV x‖2

‖x‖1
= max

x6=0

‖AV x‖2

‖x‖1
= max

y 6=0

‖Ay‖2

‖V −1y‖1

= max
y 6=0

‖Ay‖2

‖y‖1
= ‖A1,2‖.

Conversely, if ‖·‖1,2 is unitarily invariant, then ‖Ux‖1 = max{‖AUx‖2 : ‖A‖1,2 6
1} = max{‖Bx‖2 : ‖U−1B‖1,2 6 1} = max{‖Bx‖2 : ‖B‖1,2 6 1} = ‖x‖1 and

‖Ux‖2 = α−1‖CUx‖ = α−1‖UCx‖ = α−1‖Cx‖ = ‖x‖2. �

Modifying the proof of Theorem 5.6.18 of [3], we obtain a similar useful result for

g-ind norms:

Theorem 2.3. Let ‖·‖1, ‖·‖2, ‖·‖3 and ‖·‖4 be four given norms on � n and

Ri,j = max
{ ‖x‖i

‖x‖j
: x 6= 0

}
, 1 6 i, j 6 4.

Then

max
{‖A‖1,2

‖A‖3,4
: A 6= 0

}
= R2,4R3,1.

In particular, max{‖A‖1,1/‖A‖2,2 : A 6= 0} = max{‖A‖2,2/‖A‖1,1 : A 6= 0} =
R1,2R2,1.

�������	�
. Let A be a matrix and x 6= 0. Then ‖Ax‖2/‖x‖1 = ‖Ax‖2/‖Ax‖4 ·

‖Ax‖4/‖x‖3 · ‖x‖3/‖x‖1. Hence ‖A‖1,2 6 R2,4‖A‖3,4R3,1. Thus ‖A‖1,2/‖A‖3,4 6
R2,4R3,1.

There are vectors y, z in � n such that ‖y‖2 = ‖z‖2 = 1, ‖y‖2 = R2,4‖y‖4 and
‖z‖3 = R3,1‖z‖1. By Proposition 1.5, there exists a vector z0 ∈ � n such that
|z∗0x| 6 ‖x‖3 and z∗0z = ‖z‖3.

Put A0 = yz0. Then ‖A0z‖2/‖z‖1 = ‖yz∗0z‖2/‖z‖1 = ‖y‖2‖z‖3/‖z‖1 = ‖y‖2R3,1.

Hence ‖A0‖1,2 > ‖y‖2/‖y‖4 · R3,1‖y‖4 = R2,4 · R3,1‖y‖4. On the other hand,
‖A0x‖4/‖x‖3 = ‖yz∗0x‖4/‖x‖3 = ‖y‖4|z∗0x|/‖x‖3 6 ‖y‖4. Thus ‖A0‖3,4 6 ‖y‖4.

Hence ‖A0‖1,2/‖A0‖3,4 > R2,4R3,1‖y‖4/‖y‖4 = R2,4R3,1. �
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Corollary 2.4.
(i) ‖·‖1,2 6 ‖·‖3,2 if and only if ‖·‖1 > ‖·‖3,

(ii) ‖·‖1,2 6 ‖·‖1,4 if and only if ‖·‖2 6 ‖·‖4.

�������	�
. (i) ‖·‖1,2 6 ‖·‖3,2 if and only if max{‖A‖1,2/‖A‖3,2 : A 6= 0} =

R2,2R3,1 6 1 and this happens if and only if R3,1 6 1 or equivalently ‖·‖3 6 ‖·‖1.

The proof of (ii) is similar. �

The following corollary completely answers Question (iv):

Corollary 2.5. ‖·‖1,2 = ‖·‖3,4 if and only if there exists γ > 0 such that ‖·‖1 =
γ‖·‖3 and ‖·‖2 = γ‖·‖4.

�������	�
. If ‖A‖1,2 = ‖A‖3,4, then R4,2R1,3 = max{‖A‖3,4/‖A‖1,2 : A 6=

0} = 1 = max{‖A‖1,2/‖A‖3,4 : A 6= 0} = R2,4R3,1. Hence max{‖x‖2/‖x‖4 : x 6=
0} = R2,4 = 1/R3,1 = min{‖x‖1/‖x‖3 : x 6= 0} 6 max{‖x‖1/‖x‖3 : x 6= 0} =
R1,3 = 1/R4,2 = min{‖x‖2/‖x‖4 : x 6= 0}. Thus there exists a number γ such that
‖x‖2/‖x‖4 = γ = ‖x‖1/‖x‖3. �

Remark 2.6. It is known that each induced norm ‖·‖1,1 is minimal in the sense

that for any matrix norm ‖·‖, the inequality ‖·‖ 6 ‖·‖1,1 implies that ‖·‖ = ‖·‖1,1.
But this is not true for g-ind norms in general. For instance, put ‖·‖α = `∞(·),
‖·‖β = 2`2(·) and ‖·‖γ = `2(·). Then ‖·‖γ,β 6 ‖·‖α,β but ‖·‖γ,β 6= ‖·‖α,β.

The following theorem is one of our main theorems and provides a complete solu-

tion for Problem (v):

Theorem 2.7. Let ‖·‖1 and ‖·‖2 be two norms on � n . Then ‖·‖1,2 is an algebra

norm on Mn if and only if ‖·‖1 6 ‖·‖2.

�������	�
. For each A and B in Mn we have

‖ABx‖2 6 ‖A‖1,2‖Bx‖1 6 ‖A‖1,2‖Bx‖2 6 ‖A‖1,2‖B‖1,2‖x‖1.

Hence ‖AB‖1,2 6 ‖A‖1,2‖B‖1,2.

Conversely, let ‖·‖1,2 be an algebra norm. Then for each A, B ∈ Mn we have

‖AB‖2 6 ‖A‖1,2‖B‖1,2‖x‖1. Let B be an arbitrary member of Mn. For Bx 6= 0,
take M to be the linear span of {Bx} and define f : (M, ‖·‖1) → � by f(cBx) =
c‖Bx‖1/‖Bx‖2. By the Hahn-Banach Theorem, there is an F : ( � n , ‖·‖1) → � with
F |M = f and ‖F‖ = ‖f‖ = max{|f(cBx)| : ‖cBx‖1 = 1} = max{|c|‖Bx‖1/‖Bx‖2 :
|c| ‖Bx‖1 = 1} = 1/‖Bx‖2. Define A : ( � n , ‖·‖1) → ( � n , ‖·‖2) by Ay = F (y)Bx.
Then ‖A‖1,2 = max{‖Ay‖2 : ‖y‖1 = 1} = max{|F (y)| ‖Bx‖2 : ‖y‖1 = 1} = 1, and
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‖ABx‖2 = |F (Bx)| ‖Bx‖2 = |f(Bx)| ‖Bx‖2 = (‖Bx‖1/‖Bx‖2)‖Bx‖2 = ‖Bx‖1.

Thus for all B,

‖Bx‖1 = ‖ABx‖2 6 ‖A‖1,2‖B‖1,2‖x‖1 = ‖B‖1,2‖x‖1,

or

‖Bx‖1 6 ‖B‖1,2‖x‖1.

Now take N to be the linear span of {x} and define g : (N, ‖·‖1) → � by g(cx) =
c‖x‖1/‖x‖2. By the Hahn-Banach Theorem, there is a G : ( � n , ‖·‖1) → � with
G|N = g and ‖G‖ = ‖g‖ = max{|g(cx)| : ‖cx‖1} = max{|c| ‖x‖1/‖x‖2 : |c|‖x‖1 =
1} = 1/‖x‖2. Define B : ( � n , ‖·‖1) → ( � n , ‖·‖2) by By = G(y)x. Then ‖B‖1,2 =
max{‖By‖2 : ‖y‖1 = 1} = max{|G(y)| ‖x‖2 : ‖y‖1 = 1} = ‖x‖2‖G‖ = 1, and
‖Bx‖1 = |G(x)| ‖x‖1 = |g(x)| ‖x‖1 = (‖x‖1/‖x‖2)‖x‖1 = ‖x‖2

1/‖x‖2.
So

‖x‖2
1

‖x‖2
= ‖Bx‖1 6 ‖B‖1,2‖x‖1 = ‖x‖1.

Thus ‖·‖1 6 ‖·‖2. �

Proposition 2.8. Suppose that ‖·‖1,2 is a g-ind norm and λ > 0. Then the scaled
norm λ‖·‖1,2 is a g-ind algebra norm if and only if λ > R1,2.
�������	�

. Evidently, λ‖·‖1,2 = ‖·‖‖·‖1,λ‖·‖2 . If ‖·‖3,4 = λ‖·‖1,2 = ‖·‖‖·‖1,λ‖·‖2
then Corollary 2.5 implies that there exists α > 0 such that ‖·‖3 = α‖·‖1 and
‖·‖4 = αλ‖·‖2. Now Theorem 2.7 implies that λ‖·‖1,2 = ‖·‖3,4 is an algebra norm if

and only if α‖·‖1 6 αλ‖·‖2 or equivalently R1,2 6 λ. �

Proposition 2.9. Let ‖·‖1 and ‖·‖2 be two norms on � n and 0 6= α, β ∈ � .
Define ‖·‖α and ‖·‖β on � n by ‖x‖α = ‖αx‖1 and ‖x‖β = ‖βx‖2, respectively. Then

‖·‖α and ‖·‖β are two norms on � n and ‖·‖α,β = |β/α| ‖·‖1,2.
�������	�

. We have ‖A‖α,β = max{‖Ax‖β : ‖x‖α = 1} = max{‖βAx‖2 : ‖αx‖1 =
1} = |β/α|max{‖Ay‖2 : ‖y‖1 = 1} = |β/α| ‖A‖1,2. �

The preceding proposition leads us to give the following definition:

Definition 2.10. Let (‖·‖1, ‖·‖2) and (‖·‖3, ‖·‖4) be two pairs of norms on � n .

We say that (‖·‖1, ‖·‖2) is generalized induced congruent (gi-congeruent) to (‖·‖3,

‖·‖4) and we write (‖·‖1, ‖·‖2) ≡gi (‖·‖3, ‖·‖4) if ‖·‖1,2 = γ‖·‖3,4 for some 0 < γ ∈ 
 .
Clearly ≡gi is an equivalence relation. We denote by [(‖·‖1, ‖·‖2)]gi the equivalence

class of (‖·‖1, ‖·‖2). Proposition 2.9 shows that for each 0 < α, β ∈ 
 we have
(α‖·‖1, β‖·‖2) ≡gi (‖·‖1, ‖·‖2). Indeed, we have the following result:
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Theorem 2.11. For each pair (‖·‖1, ‖·‖2) of norms on � n we have

[(‖·‖1, ‖·‖2)]gi = {(α‖·‖1, β‖·‖2) : 0 < α, β ∈ 
 }.

We can extend the above method to find some other norms on Mn which are not

necessarily gi-congruent to a given pair (‖·‖1, ‖·‖2):

Proposition 2.12. Let (‖·‖1, ‖·‖2) be a pair of norms on � n and K, L ∈ Mn

be two invertible matrices. Define ‖·‖K and ‖·‖L on � n by ‖x‖K = ‖Kx‖1 and

‖x‖L = ‖Lx‖2. Then ‖·‖K and ‖·‖L are norms on � n and ‖A‖K,L = ‖LAK−1‖1,2.
�������	�

. Clear. See also Lemma 3.1 of [4]. �

Remark 2.13. Note that the case K = αI and L = βI gives Proposition 2.9.
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