Czechoslovak Mathematical Journal

Ján Jakubík
 On idempotent modifications of $M V$-algebras

Czechoslovak Mathematical Journal, Vol. 57 (2007), No. 1, 243-252

Persistent URL: http://dml.cz/dmlcz/128169

Terms of use:

© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON IDEMPOTENT MODIFICATIONS OF $M V$-ALGEBRAS

JÁn Jakubík, Košice

(Received January 4, 2005)

Abstract. The notion of idempotent modification of an algebra was introduced by Ježek. He proved that the idempotent modification of a group is subdirectly irreducible. For an $M V$-algebra \mathscr{A} we denote by \mathscr{A}^{\prime}, A and $\ell(\mathscr{A})$ the idempotent modification, the underlying set or the underlying lattice of \mathscr{A}, respectively. In the present paper we prove that if \mathscr{A} is semisimple and $\ell(\mathscr{A})$ is a chain, then \mathscr{A}^{\prime} is subdirectly irreducible. We deal also with a question of Ježek concerning varieties of algebras.

Keywords: $M V$-algebra, idempotent modification, subdirect reducibility
MSC 2000: 06D35

1. Introduction

The notion of idempotent modification \mathscr{A}^{\prime} of an algebra \mathscr{A} was introduced by Ježek [8]. It is defined as follows. Suppose that A and F are the underlying set of \mathscr{A} and the set of fundamental operations of \mathscr{A}, respectively. The underlying set of \mathscr{A}^{\prime} is equal to A; the system F^{\prime} of fundamental operations of \mathscr{A}^{\prime} consists of operations f^{\prime}, where $f \in F$ and

1) if f is a nullary operation, then $f^{\prime}=f$;
$2)$ if f is an n-ary operation, $n \in \mathbb{N}$, and if $a_{1}, \ldots, a_{n} \in A$, then

$$
f^{\prime}\left(a_{1}, \ldots, a_{n}\right)=\left\{\begin{array}{l}
a_{1} \quad \text { if } a_{1}=a_{2}=\ldots=a_{n} \\
f\left(a_{1}, \ldots, a_{n}\right) \quad \text { otherwise }
\end{array}\right.
$$

[^0]Let \mathscr{C} be a class of algebras. Consider the following condition for \mathscr{C}.
(c_{1}) If $\mathscr{A} \in \mathscr{C}$, then \mathscr{A}^{\prime} is subdirectly irreducible.
The main result of [9] is the following theorem:
(α) (Cf. [9], Theorem 1.) The class of all groups satisfies condition (c_{1}).
In the mentioned paper, Ježek remarks that it would be interesting to find another variety with the property of Theorem 1.

When we consider the idempotent modification of an $M V$-algebra, then the following fact must be taken into account. For defining the notion of an $M V$-algebra, different systems of axioms have been applied in literature (cf., e.g., Chang [2], Cignoli, D'Ottaviano and Mundici [3], Dvurečenskij and Pulmannová [4], Glushankof [6], Cattaneo and Lombardo [1]). An operation which is considered as fundamental in one of these systems can be taken as a derived operation in another system. In all cases, by means of the fundamental operations we can define binary operations \vee and \wedge on the corresponding underlying set A of the $M V$-algebra \mathscr{A} such that $(A ; \vee, \wedge)$ turns out to be a lattice.

By defining the idempotent modification, the question which operations are considered to be fundamental is essential.

In the approach of the present paper, we will apply the axioms from [2] with the distinction that we add the operations \vee and \wedge to the system of fundamental operations. For the detailed formulation, cf. Section 2 below.

We prove the following result
(β) Let \mathscr{C}_{1} be the class of all $M V$-algebras \mathscr{A} such that \mathscr{A} is semisimple and the underlying lattice $(A ; \vee, \wedge)$ is a chain. Then \mathscr{C}_{1} satisfies condition $\left(c_{1}\right)$.

We remark that \mathscr{C}_{1} fails to be a variety. There exists an infinite set of mutually nonisomorphic $M V$-algebras belonging to \mathscr{C}_{1}.

In the last section of the paper we deal with the suggestion proposed by Ježek. We construct a variety \mathscr{V} such that for each algebra $\mathscr{A} \in \mathscr{V}$, the idempotent modification \mathscr{A}^{\prime} of \mathscr{A} is subdirectly irreducible. Applying \mathscr{V}, an infinite system of varieties having the analogous property can be defined.

2. Preliminaries

The notion of an $M V$-algebra was introduced by Chang [2] as an algebraic description of many valued logics. It was investigated by several authors using different systems of axioms.

We recall the system of axioms from [2]. Suppose that A is a nonempty set, \oplus and \odot are binary operations, \neg is a unary operation, and 0,1 are nullary operations
(i.e., constants) on A. By means of these operations we define binary operations \vee and \wedge on A putting
(1) $x \vee y=(x \odot \neg y) \oplus y$,
(2) $x \wedge y=(x \oplus \neg y) \odot y$.
2.1. Definition. The algebraic structure $\mathscr{A}=(A ; \oplus, \odot, \neg, 0,1)$ is an $M V$ algebra if \vee, \wedge are binary operations on A defined by (1) and (2) and if the following axioms are satisfied:

Ax. 1. $x \oplus y=y \oplus x$,
Ax. $1^{\prime} . x \odot y=y \odot x$,
Ax. 2. $(x \oplus y) \oplus z=x \oplus(y \oplus z)$,
Ax. 2' $.(x \odot y) \odot z=x \odot(y \odot z)$,
Ax. 3. $x \oplus \neg x=1$,
Ax. $3^{\prime} . x \odot \neg x=0$,
Ax. 4. $x \oplus 1=1$,
Ax. $4^{\prime} . x \odot 0=0$,
Ax. 5. $x \oplus 0=x$,
Ax. $5^{\prime} . x \odot 1=x$,
Ax. 6. $\neg(x \oplus y)=\neg x \odot \neg y$,
Ax. $6^{\prime} . \neg(x \odot y)=\neg x \oplus \neg y$,
Ax. 7. $x=\neg(\neg x)$,
Ax. 8. $\neg 0=1$,
Ax. 9. $x \vee y=y \vee x$,
Ax. $9^{\prime} . x \wedge y=y \wedge x$,
Ax. 10. $x \vee(z \vee z)=(x \vee y) \vee z$,
Ax. 10'. $x \wedge(y \wedge z)=(x \wedge y) \wedge z$,
Ax. 11. $x \oplus(y \wedge z)=(x \oplus y) \wedge(x \oplus z)$,
Ax. 11'. $x \odot(y \vee z)=(x \odot y) \vee(x \odot z)$.
As we have already mentioned in Section 1 above, we modify the method from [2] in such a way that we consider the operations \vee and \wedge as belonging to the fundamental operations of \mathscr{A}. In other words, we deal with the algebra $(A ; \oplus, \odot, \neg, 0,1, \vee, \wedge)$ of type $(2,2,1,0,0,2,2)$ and we take as axioms the system from 2.1 augmented by the relations (1) and (2) considered as axioms. Below, the term ' $M V$-algebra' has always the just mentioned meaning.

It is clear that homomorphic images, subalgebras and direct products remain the same in both formulations.

In 2.2-2.4 we recall some well-known facts on $M V$-algebras (cf. e.g., [3], [4]).
2.2. The algebraic structure $\ell(\mathscr{A})=(A ; \vee, \wedge)$ is a distributive lattice with the least element 0 and the greatest element 1.
2.3. Let G be an abelian lattice ordered group with a strong unit u. Let A be the interval $[0, u]$ of G. For each $x, y \in A$ we put

$$
\begin{aligned}
& x \oplus y=(x+y) \wedge u, \quad \neg x=u-x, \quad 1=u, \\
& x \odot y=\neg(\neg x \oplus \neg y) .
\end{aligned}
$$

Then $\mathscr{A}=(A ; \oplus, \odot, \neg, 0,1, \vee, \wedge)$ is an $M V$-algebra; it will be denoted by $\Gamma(G, u)$.
2.4. Let \mathscr{A} be an $M V$-algebra. Then there exists an abelian lattice ordered group G with a strong unit u such that $\mathscr{A}=\Gamma(G, u)$.

In view of 2.3 and 2.4 we conclude that

$$
\begin{equation*}
x \odot y=\neg(\neg x \oplus \neg u) \tag{*}
\end{equation*}
$$

for each $M V$-algebra.
In what follows, when speaking about an $M V$-algebra \mathscr{A}, we always suppose that G and u are as in 2.4.

The partial order on A (or on G) induced by the operations \vee and \wedge will be denoted by \leqslant.

An $M V$-algebra \mathscr{A} is semisimple (or archimedean) if for any nonzero elements x_{1} and x_{2} of A there exists a positive integer n such that $n x_{1} \not \equiv x_{2}$.

Semisimple $M V$-algebras have been investigated by several authors; cf., e.g., the monograph [3], and the references in this monograph.

We say that an $M V$-algebra \mathscr{A} is linearly ordered if the lattice $(A ; \vee, \wedge)$ is a chain.

3. Two-Element congruence classes

For an algebra \mathscr{A} with the underlying set A we denote by $\operatorname{Con} \mathscr{A}$ the system of all congruence relations of \mathscr{A}; this system is partially ordered in the usual way. Then $\operatorname{Con} \mathscr{A}$ is a complete lattice. Its least element will be denoted by \sim_{0}.

It is well-known that \mathscr{A} is subdirectly reducible if and only if there exists a system $\left.\sim_{i}\right\}_{i \in I}$ of elements of Con \mathscr{A} such that $\bigwedge_{i \in I} \sim_{i}=\sim_{0}$ and $\sim_{i} \neq \sim_{0}$ for each $i \in I$.

In the opposite case, \mathscr{A} is subdirectly irreducible. Thus if card $A \leqslant 2$, then \mathscr{A} is subdirectly irreducible.

Suppose that \mathscr{A} is an $M V$-algebra and $\sim \in \operatorname{Con} \mathscr{A}^{\prime}$. Further, let \sim_{m} be the greatest element of Con \mathscr{A}^{\prime}. If card $A \leqslant 2$, then $\sim \in\left\{\sim_{0}, \sim_{m}\right\}$. In what follows we assume that card $A>2$. For $a \in A$ we put $\bar{a}=\{x \in A: x \sim a\}$.

Lemma 3.1. Let $a \in A$. Then \bar{a} is a convex sublattice of the lattice $(A ; \vee, \wedge)$. If $x, y \in \bar{a}$ and $x \neq y$, then $x \oplus y \in \bar{a}$ and $x \odot y \in \bar{a}$.

Proof. Since $\vee^{\prime}=\vee$ and $\wedge^{\prime}=\wedge$ we conclude that \sim is a congruence of the lattice $(A ; \vee, \wedge)$; it is well-known that each congruence class of a lattice is a convex sublattice. Let $x, y \in \bar{a}, x \neq y$. Then $x \oplus y=x \oplus^{\prime} y \sim a \oplus^{\prime} a=a$, whence $x \oplus y$ belongs to \bar{a}. Similarly we verify that $x \odot y$ belongs to \bar{a}.

Let \mathbb{Z} be the additive group of all integers with the natural linear order. Put $u=2$; then u is a strong unit of the linearly ordered group \mathbb{Z}. Consider the $M V$-algebra $\mathscr{A}_{1}=\Gamma(\mathbb{Z}, u)$.

Lemma 3.1.1. The idempotent modification \mathscr{A}_{1}^{\prime} of \mathscr{A}_{1} is simple.
Proof. We denote by A_{1} the underlying set of \mathscr{A}_{1}; hence $A_{1}=\{0,1,2\}$. In view of 3.1 it suffices to deal with the partitions

$$
\varrho_{1}\{\{0\},\{1,2\}\}, \quad \varrho_{2}=\{\{0,1\},\{2\}\}
$$

of the set A_{1}. For $i \in\{1,2\}$ let \sim_{i} be the equivalence on A_{1} corresponding to ϱ_{i}.
We have $1 \varrho_{1} 2$, but the relation $\neg^{\prime} 1 \varrho_{1} \neg^{\prime} 2$ fails to be valid. Also, $0 \varrho_{2} 1$, but $\neg^{\prime} 0 \varrho_{2} \neg^{\prime} 1$ does not hold. Hence neither ϱ_{1} nor ϱ_{2} is a congruence relation on \mathscr{A}_{1}^{\prime}. Therefore \mathscr{A}_{1}^{\prime} is simple.

In the remaining part of this section we assume that the lattice $(A ; \vee, \wedge)$ is a chain. It is well-known that in this case the lattice ordered group G is linearly ordered. We will be interested in two-element congruence classes of the congruence \sim.

Suppose that $a \in A$ and that \bar{a} is a two-element set, i.e., $\bar{a}=\{a, b\}$ with $a \neq b$. Then in view of 4.1, $\{a, b\}$ must be a chain and $a \oplus b \in\{a, b\}$. Without loss of generality we can assume that $a<b$. We have $a \oplus b \geqslant b$, thus

$$
b=a \oplus b=(a+b) \wedge u
$$

If $a+b \geqslant u$, then $(a+b) \wedge u=u$, hence $b=u$. If $a+b<u$, then $(a+b) \wedge u=a+b$, thus $a+b=b$ and so $a=0$. We obtain

Lemma 3.2. Assume that $\bar{a}=\{a, b\}$ is a two-element set and $a<b$. Then we have either $a=0$ or $b=u$.

Lemma 3.3. Let \bar{a} be as in 3.2 and let $a=0$. If $b=u$, then $\bar{a}=A$. If $b+b=u$, then A is a three element set, namely, $A=\{a, b, u\}$.

Proof. The first assertion is obvious. Suppose that $b+b=u$. Since the interval $[0, b+b]$ of the lattice $(A ; \vee, \wedge)$ is isomorphic to the interval $[0, b]$ and $[0, b]=\{0, b\}$, we get $[b, b+b]=\{b, b+b\}=\{b, u\}$. Because the interval $[0, u]$ is a chain we obtain that $A=[0, u]=\{0, b, u\}$ with $0<b<u$.

We remark that in the case $u=0$ and $b+b=u$ we have the same situation as in Lemma 3.1.1. Thus in this case, the algebra \mathscr{A}^{\prime} is subdirectly irreducible.

Again, let $a=0$ and let us now suppose that $b+b \neq u$. We cannot have $b+b>u$, since this relation would yield $\operatorname{card}[b, b+b]>2$, which is impossible. Let us apply the usual notation $b+b=2 b, b+b+b=3 b$.

The interval $[2 b, 3 b]$ of G is a two-element set, hence we cannot have $3 b>u$; thus either $3 b=u$ or $3 b<u$.

Suppose that $3 b=u$. Hence $2 b=\neg b$ and then $b \neq \neg b$. We get

$$
u=b \oplus \neg b=b \oplus \oplus^{\prime} \neg b \sim 0 \oplus^{\prime} \neg b=0 \oplus \neg b=\neg b .
$$

This yields that $A=\{0, b, 2 b, u\}$ and \sim has exactly two congruence classes, namely $\{0, b\}$ and $\{2 b, u\}$. If \sim_{1} is a congruence on \mathscr{A}^{\prime} such that $\sim_{1} \neq\left\{\sim, \sim_{0}, \sim_{m}\right\}$, then the partition of A corresponding to \sim_{1} must have the form $\{\{0\},\{b, 2 b\},\{u\}\}$. In view of $b \sim_{1} 2 b$ and in view of 3.2 we arrive at a contradiction. Hence we have

Lemma 3.4. Let \bar{a} be as in $3.2, a=0$ and $3 b=u$. Then A is a four-element set and \mathscr{A}^{\prime} is subdirectly irreducible.

We return to the assumption as above with the distinction that we suppose that $3 b<u$. In this case we have $b \neq 2 b, 0 \neq 2 b$, hence

$$
0 \oplus^{\prime} 2 b=0 \oplus 2 b=2 b, \quad b \oplus^{\prime} 2 b=b \oplus 2 b=b+2 b=3 b
$$

Since $0 \sim b$ we get $2 b \sim 3 b$. Also, $2 b \neq \neg b$.
If $3 b \neq \neg b$, then

$$
\begin{aligned}
& 2 b \oplus^{\prime} \neg b=2 b \oplus \neg b=2 b+(\neg b)=b, \\
& 3 b \oplus^{\prime} \neg b=3 b \oplus \neg b=3 b+(\neg b)=2 b,
\end{aligned}
$$

hence $b \sim 2 b$, which is a contradiction.

If $3 b=\neg b$, then

$$
\begin{aligned}
3 b \oplus^{\prime} \neg b & =3 b, \\
3 b \oplus^{\prime} \neg b \sim 2 b \oplus^{\prime} \neg b & =b,
\end{aligned}
$$

thus $b \sim 3 b$; again, we arrive at a contradiction.
Summarizing, we obtain
Lemma 3.5. Let \mathscr{A} be an $M V$-algebra such that the lattice $(A ; \vee, \wedge)$ is a chain. Let $\sim \in \operatorname{Con} \mathscr{A}, a \in A$ and assume that $\bar{a}=\{a, b\}, a<b$. Then some of the following conditions is satisfied:
(i) $b=u$ (i.e., $\operatorname{card} A=2$);
(ii) A is a three-element set, i.e., $A=\{0, b, u\}$, and \mathscr{A}^{\prime} is subdirectly irreducible;
(iii) A is a four-element set, $A=\{0, b, 2 b, u\}$ and \mathscr{A}^{\prime} is subdirectly irreducible.

Again, let us apply the assumptions and the notation as in 3.2. Suppose that $b=u$. Now we can apply the analogous method as above with the distinction that instead of dealing with the operation \oplus^{\prime} we deal with the operation \odot^{\prime}. We obtain a result analogous to 3.5 . Thus we have

Proposition 3.6. Let \mathscr{A} be an $M V$-algebra such that the lattice $(A ; \vee, \wedge)$ is a chain. Let $\sim \in \operatorname{Con} \mathscr{A}^{\prime}$ and suppose that there exists $a \in A$ with card $\bar{a}=2$. Then some of the following conditions is satisfied:
(i) $\operatorname{card} A=2$;
(ii) $\operatorname{card} A=3$ and \mathscr{A}^{\prime} is subdirectly irreducible;
(iii) $\operatorname{card} A=4$ and \mathscr{A}^{\prime} is subdirectly irreducible.

It is easy to verify that if \mathscr{A} and \mathscr{B} are linearly ordered $M V$-algebras with card $A=$ card $B=4$, then $\mathscr{A} \simeq \mathscr{B}$.

4. Subdirect irreducibility

In this section we assume that the $M V$-algebra under consideration is linearly ordered. Our aim is to prove the assertion (β) from Section 1. In view of the results of Section 3 it suffices to consider an $M V$-algebra \mathscr{A} with card $A \geqslant 5$ and a congruence \sim of \mathscr{A}^{\prime} such that $\sim_{0} \neq \sim \neq \sim_{m}$. Then according to 3.6, for each $a \in A$ we have either $\operatorname{card} \bar{a}=1$ or $\operatorname{card} \bar{a} \geqslant 3$. Since $\sim \neq \sim_{0}$, there exists $a \in A$ with card $A \geqslant 3$.

From the properties of the operation \odot we obtain by simple calculation

Lemma 4.1. If $x, y \in A$ and $x<y$, then $0=x \odot \neg x<y \odot \neg x$.

Lemma 4.2. Let a, b, c be mutually distinct elements of $A, c \neq u, \bar{a}=\bar{b}=\bar{c}$. Then there exists $c^{\prime} \in A$ such that $c<c^{\prime}$ and $\overline{c^{\prime}}=\bar{a}$.

Proof. Denote $b \oplus^{\prime} c=c^{\prime}$. We have $c^{\prime}=b \oplus c$ and in view of 3.1, $\overline{c^{\prime}}=\bar{a}$. Since \mathscr{A} is linearly ordered, we get $c^{\prime}=(b+c) \wedge u>c$.

Lemma 4.3. There exists $b_{0} \in A$ such that $0<b_{0}$ and $\overline{b_{0}}=\overline{0}$.
Proof. There exists $x \in A$ with card $\bar{x} \geqslant 3$. Thus there are $a, b, c \in \bar{x}$ with $a<b<c$.

1) Assume that $a \neq \neg a$ and $b \neq \neg a$. Put $b_{0}=b \odot^{\prime} \neg a$. Hence $b=b \odot \neg a$ and in view of $4.1, b_{0}>0$. Further

$$
b_{0} \sim a \odot^{\prime} \neg a=a \odot \neg a=0
$$

2) Assume that $a \neq \neg a$ and $b=\neg a$. Then $c \neq \neg a$. Put $b_{0}=c \odot^{\prime} \neg a$. Similarly as in 1), we get $b_{0}>0$ and $b_{0} \sim 0$.
3) Assume that $a=\neg a$. Then $b \neq \neg b$. Suppose that $c \neq \neg b$. Put $b_{0}=c \odot^{\prime} \neg b$. We obtain $b_{0}>0$ and $b_{0} \sim 0$.
4) Assume that $a=\neg a$ and $c=\neg b$. Then we have $b \neq \neg b$. Since $u \neq \neg b$, we get $c \neq u$. Thus in view of 4.2, there exists $c_{1} \in A$ with $c_{1}>c, c_{1} \sim a$. We obtain $c_{1} \neq \neg b$. Put $b_{0}=c_{1} \odot^{\prime} \neg b$. Then $b_{0}>0$ and $b_{0} \sim 0$.

Lemma 4.4. There exist $b_{1}, c_{1} \in A$ such that $0<b_{1}<c_{1}$ and $0 \sim b_{1} \sim c_{1}$.
Proof. In view of 4.3 , there exists $b_{0} \in \overline{0}$ with $b_{0}>0$. Hence card $\overline{0} \neq 1$. Then $\operatorname{card} \overline{0} \geqslant 3$. Thus there is $c_{0} \in \overline{0}$ such that $c_{0} \notin\left\{0, b_{0}\right\}$. Now it suffices to apply the fact that \bar{a} is linearly ordered.

Proposition 4.5. Assume that \mathscr{A} is an $M V$-algebra which is linearly ordered and semisimple. Then the algebra \mathscr{A}^{\prime} is simple.

Proof. Let \sim be a congruence of \mathscr{A}^{\prime} such that $\sim \neq \sim_{0}$. We have to verify that $\sim=\sim_{m}$. The case card $A \leqslant 2$ being trivial, in view of 3.1.1 we can assume that $\operatorname{card} A>3$.

Since A is semisimple, the corresponding unital group G is archimedean. Also, G is linearly ordered. Let b_{1} and c_{1} be as in Lemma 4.4.

Consider the element $b_{1}+c_{1}$ of G. If $b_{1}+c_{1} \geqslant u$, then $b_{1} \oplus c_{1}=\left(b_{1}+c_{1}\right) \wedge u=u$, thus in view of 3.1 we have $\overline{0}=\bar{u}$ and so $\sim=\sim_{m}$.

Further, assume that $b_{1}+c_{1}<u$. Denote $b_{1}+c_{1}=d_{0}$ and $d_{0}+n c_{1}=d_{n}$ for $n \in \mathbb{N}$. We have $b_{1} \oplus c_{1}=d_{0}$, thus $d_{0} \in \overline{0}$.

Since G is archimedean and linearly ordered there exists $n_{1} \in \mathbb{N}$ such that

$$
d_{n_{1}-1}<u \leqslant d_{n_{1}} .
$$

1) Assume that $n_{1}=1$. We have $d_{1}=d_{0}+c_{1}$ and $d_{0}>c_{1}$, thus

$$
\begin{equation*}
d_{0} \oplus^{\prime} c_{1}=d_{0} \oplus c_{1}=\left(d_{0}+c_{1}\right) \wedge u=u \tag{1}
\end{equation*}
$$

From $d_{0}, c_{1} \in \overline{0}$ we get $d_{0} \oplus c_{1} \in \overline{0}$, hence $\bar{u}=\overline{0}$ and $\sim=\sim_{m}$.
2) Assume that $n_{1}>1$. By the same method as in 1) and by induction we verify that $d_{n_{1}-1} \in \overline{0}, d_{n_{1}-1}>c_{1}$. Taking $d_{n_{1}-1}$ instead of d_{0} in (1) and applying steps analogous to those in 1) we again get $\bar{u}=\overline{0}$, hence $\sim=\sim_{m}$.

The assertion (β) from Section 1 is a corollary of Proposition 4.5.

5. On The VARIETY \mathscr{V}

Let (α) be as in Section 1. This section deals with Ježek's remark concerning the existence of further varieties with the property as in (α).

Let \mathscr{V} be the collection of all algebras having the form $\mathscr{A}=(A ; f, g, h, 0,1)$, where A is a nonempty set and \mathscr{A} is of the type $(3,3,3,0,0)$, such that for each $x, y \in A$ the relations

$$
\begin{array}{ll}
f(x, y, x)=0, & g(x, y, x)=1 \\
h(0, x, y)=x, & h(1, x, y)=y
\end{array}
$$

are valid. Then \mathscr{V} is a variety.
Under the terminology as in Section 1, let \mathscr{A}^{\prime} be the idenpotent modification of \mathscr{A}.

First suppose that $0=1$. Then for each $x, y \in A$ we have

$$
x=h(0, x, y)=h(1, x, y)=y,
$$

hence A is a one-element set. Thus \mathscr{A}^{\prime} is subdirectly irreducible.
Further, suppose that $0 \neq 1$. Then card $A \geqslant 2$. Let \sim be a congruence relation on $\mathscr{A}^{\prime}, \sim \neq \sim_{0}$. Thus there exist $x, y \in A$ such that $x \neq y$ and $x \sim y$. We obtain

$$
\begin{aligned}
& x=f^{\prime}(x, x, x) \sim f^{\prime}(x, y, x)=0, \\
& x=g^{\prime}(x, x, x) \sim g^{\prime}(x, y, x)=1,
\end{aligned}
$$

whence $0 \sim 1$ for each nontrivial congruence of \mathscr{A}. This yields that \mathscr{A}^{\prime} is subdirectly irreducible. Therefore we get

Proposition 5.1. Let \mathscr{A} be an algebra belonging to the variety \mathscr{V}. Then the idempotent modification of \mathscr{A} is subdirectly irreducible.

It is easy to verify that there exists a proper class of mutually nonisomorphic algebras belonging to the variety \mathscr{V}.

Let \mathscr{A} be as above and $n \in \mathbb{N}, n \geqslant 4$. Let f_{n} be an n-ary operation on A; we set $\mathscr{B}=\left(A ; f, g, h, f_{n}, 0,1\right)$. Suppose that, e.g., the identity

$$
f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{n}\left(x_{n}, x_{2}, \ldots, x_{n-1}, x_{1}\right)
$$

is satisfied in \mathscr{B}. The collection of all algebras \mathscr{B} of this form (where \mathscr{A} runs over \mathscr{V}) will be denoted by \mathscr{V}_{n}. Then \mathscr{V}_{n} is a variety and for each element \mathscr{B} of \mathscr{V}_{n}, the idenpotent modification \mathscr{B}^{\prime} of \mathscr{B} is subdirectly irreducible.

References

[1] G. Cattaneo and F. Lombardo: Independent axiomatization of $M V$-algebras. Tatra Mt. Math. Publ. 15 (1998), 227-232.
[2] C. C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490.
[3] R. Cignoli, I. M. L. D'Ottaviano and D. Mundici: Algebraic Foundation of Many Valued Reasoning. Kluwer Academic Publ., Dordrecht, 2000.
[4] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structure. Kluwer Academic Publ., Dordrecht and Ister, Bratislava, 2000.
[5] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford-New York-London-Paris, 1963.
[6] D. Glushankof: Cyclic ordered groups and MV-algebras. Czechoslovak Math. J. 43 (1993), 249-263.
[8] J. Ježek: A note on idempotent modifications of groups. Czechoslovak Math. J. 54 (2004), 229-231.

Author's address: Ján Jakubík, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: kstefan@saske.sk.

[^0]: This work was supported by Science and Technology Assistance Agency under the contract No. APVT-51-032002.
 This work has been partially supported by the Slovak Academy of Sciences via the project Center of Excellence-Physics and Information.

