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Abstract. Bounded commutative residuated lattice ordered monoids (R`-monoids) are
a common generalization of, e.g., BL-algebras and Heyting algebras. In the paper, the
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Keywords: residuated `-monoid, residuated lattice, BL-algebra, MV -algebra, local R`-
monoid, filter

MSC 2000 : 06D35, 06F05

1. Introduction

Commutative residuated lattice ordered monoids (R`-monoids) were introduced

(in the dual form) by Swamy [15] as a common generalization of Abelian lattice
ordered groups and Heyting algebras. Moreover, bounded commutative R`-monoids

are in very close connections with algebras of fuzzy logics, i.e., with BL-algebras,
and consequently, with MV -algebras, which can be viewed as particular cases of

such R`-monoids. Many of important properties of BL-algebras are also satisfied in
all bounded commutative R`-monoids. Therefore bounded commutative R`-monoids

could be taken as an algebraic semantics of a more general logic than Hájek’s basic
fuzzy logic. Hence it is natural to study filters of those R`-monoids because from

the logical point of view they correspond to sets of provable formulas.

Local BL-algebras which are characterized e.g. by the property that they contain

a unique maximal filter, were studied by Turunen and Sessa [18]. In [12], we have
analogously introduced the notion of a local bounded commutative R`-monoid. In

the present paper, we study the properties of those R`-monoids in connection with
the properties of their filters.

The first author was supported by the Council of Czech Government, MSM 6198959214.
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For the notions and results concerning BL-algebras and MV -algebras see e.g. [3],

[4], [7], [17].

2. Addition in R`-monoids

Commutative dually residuated lattice ordered monoids (DR`-monoids) were in-

troduced by Swamy in [15] as a common generalization of Abelian `-groups and
Brouwerian algebras. In [9], [10], [11], it was shown that also algebras of fuzzy log-

ics can be viewed as particular cases of bounded commutative DR`-monoids. For
instance,MV -algebras coincide with bounded commutative DR`-monoids satisfying

the double negation law, and BL-algebras are exactly the duals of subdirect products
of linearly ordered bounded commutative DR`-monoids.

In this paper we deal with a generalization of local BL-algebras, hence we use the
duals of DR`-monoids that are called R`-monoids.

A commutative R`-monoid is an algebra M = (M ;�,∨,∧,→, 1) of type 〈2, 2, 2,

2, 0〉 satisfying the following conditions:
(i) (M ;�, 1) is a commutative monoid.
(ii) (M ;∨,∧) is a lattice.
(iii) The operation � distributes over the operations ∨ and ∧.
(iv) x� y 6 z if and only if x 6 y → z, for any x, y, z ∈ M .

(v) ((x → y) ∧ 1)� x = x ∧ y, for any x, y ∈ M .

By [15], commutative R`-monoids form a variety of algebras of the indicated type.
In the paper we will deal with bounded commutative R`-monoids. It is known that

an R`-monoid M is bounded if and only if it is lower bounded. In such a case, 1 is
the greatest element in M and identity (v) is in the form (x → y) � x = x ∧ y.

Let us denote by 0 the least element in a bounded R`-monoid, and consider such
R`-monoids as algebras M = (M ;�,∨,∧,→, 0, 1) of type 〈2, 2, 2, 2, 0, 0〉.
It is possible to show that bounded commutative R`-monoids are exactly the

bounded commutative integral generalized BL-algebras in the sense of [8] and [1],

and that, according to [2] and [8], condition (iii) in the definition of an R`-monoid
is then for bounded cases superfluous. (See also [5] or [6].) Therefore we can modify

the definition of a bounded commutative R`-monoid as follows.

A bounded commutative R`-monoid is an algebra M = (M ;�,∨,∧,→, 0, 1) of
type 〈2, 2, 2, 2, 0, 0〉 satisfying the following conditions:
(i) (M ;�, 1) is a commutative monoid.
(ii) (M ;∨,∧, 0, 1) is a bounded lattice.
(iii) x� y 6 z if and only if x 6 y → z, for any x, y, z ∈ M .

(v) x� (x → y) = x ∧ y, for any x, y ∈ M .
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For example, both BL-algebras and Heyting algebras are special cases of bounded

commutative R`-monoids, hence the class of bounded commutative R`-monoids is
essentially larger than that of BL-algebras.

In the sequel, by an R`-monoid we will mean a bounded commutative R`-monoid.

On any R`-monoid M let us define a unary operation negation − by x− := x → 0
for any x ∈ M . Further, put x1 := x and xn+1 := xn � x for each n ∈ � .

Lemma 2.1 ([15], [13]). In any bounded commutative R`-monoidM we have for

any x, y ∈ M :

(1) x 6 y ⇐⇒ x → y = 1.
(2) (x � y) → z = x → (y → z) = y → (x → z).
(3) (x ∨ y) → z = (x → z) ∧ (y → z).
(4) x → (y ∧ z) = (x → y) ∧ (x → z).
(5) (x ∨ y)� (x ∧ y) = x� y.

(6) (x → y)� (y → z) 6 x → z.

(7) 1−− = 1, 0−− = 0.
(8) x 6 x−−, x− = x−−−.

(9) x 6 y =⇒ y− 6 x−.

(10) (x ∨ y)− = x− ∧ y−.

(11) (x ∧ y)−− = x−− ∧ y−−.

(12) (x � y)− = y → x− = y−− → x− = x → y− = x−− → y−.

(13) (x � y)−− > x−− � y−−.

(14) (x → y)−− = x−− → y−−.

Remark 2.2. By Lemma 2.1 (8), x 6 x−− for any x ∈ M . In [9], [10] it is proved

that M satisfies the identity x−− = x if and only if M is an MV -algebra.

Lemma 2.3. If M is an R`-monoid then x → y 6 (y → z) → (x → z), for any
x, y, z ∈ M .

���������
. From the definition of an R`-monoid and from the fact that M is a

lattice ordered monoid we have

x� (x → y)� (y → z) = (x ∧ y)� (y → z) 6 y � (y → z) = y ∧ z 6 z.

Thus (x → y)� (y → z) 6 x → z, therefore x → y 6 (y → z) → (x → z). �

Corollary 2.4. For any x, y ∈ M , x → y 6 y− → x−.

397



Proposition 2.5. For any x, y ∈ M , x− → y− = y−− → x−−.
���������

. By Corollary 2.4 and Lemma 2.1 (8), x− → y− 6 y−− → x−− 6
x−−− → y−−− = x− → y−. �

Proposition 2.6. For any x, y ∈ M , (x− � y−)− = y− → x−− = x− → y−−.
���������

. It follows from Lemma 2.1 (12). �

In any MV -algebra there is a binary operation “⊕” dual to the operation “�”.
Now we will introduce an operation “⊕” also for arbitrary R`-monoids and study its

properties.
If M = (M ;�,∨,∧,→, 0, 1) is an R`-monoid, then we define a binary operation

“⊕” on M as follows:

∀x, y ∈ M : x⊕ y := (x− � y−)−.

Lemma 2.7. For any x, y ∈ M , (x⊕ y)− > x− � y−.
���������

. By Lemma 2.1 (8) and (12), (x⊕ y)− = (x− � y−)−− > x− � y−. �

We say that an R`-monoid M is normal if M satisfies the identity

(x � y)−− = x−− � y−−.

Remark 2.8. By [13, Proposition 5], every BL-algebra and every Heyting algebra
is normal, hence the variety of normal R`-monoids is considerably wide.

Proposition 2.9. Let M be a normal R`-monoid. Then for any x, y ∈ M ,

(x⊕ y)− = x− � y−.

���������
. By the normality and Lemma 2.1 (8), (x⊕y)− = (x−�y−)−− = x−�y−.

�

Proposition 2.10. If M is any R`-monoid, then (M ;⊕) is a semigroup.
���������

. Let x, y, z ∈ M . Then by Proposition 2.6 and Lemma 2.1 (2),

x⊕ (y ⊕ z) = x⊕ (y− � z−)− = (x− � (y− � z−)−−)− = x− → (y− � z−)−

= x− → (z− → y−−) = z− → (x− → y−−) = z− → (x− � y−)−

= ((x− � y−)−− � z−)− = (x− � y−)− ⊕ z = (x ⊕ y)⊕ z.

�
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Now we can put 1 · x = x, (n + 1)x = nx⊕ x for each n ∈ � .
Let us denote by R(M) = {x ∈ M : x−− = x} the set of all regular elements

in M . Obviously, 0, 1 ∈ R(M). If M = (M ;�,∨,∧,→, 0, 1) is any R`-monoid, then
by [13, Proposition 4], R(M) is a subalgebra of the reduct (M ;∧,→, 1). We will
show further properties of the set R(M).

Lemma 2.11. If M is an R`-monoid and x, y ∈ M , then

(a) x⊕ 0 = x−−;

(b) (x⊕ y)−− = x−− ⊕ y−− = x⊕ y.
���������

. (a) x⊕ 0 = x⊕ 1− = (x− � 1−−)− = (x− � 1)− = x−−.

(b) (x ⊕ y)−− = (x− � y−)−−− = (x− � y−)− = x ⊕ y, x−− ⊕ y−− = (x−−− �
y−−−)− = (x− � y−)− = x⊕ y. �

Remark 2.12.
a) By the previous lemma and Remark 2.2, 0 is a neutral element of (M ;⊕) if and
only if M is an MV -algebra.

b) The sum x⊕ y of any elements x, y ∈ M belongs to R(M).

Proposition 2.13. IfM is anR`-monoid, then R(M) is a subsemigroup of (M ;⊕)
and (R(M);⊕, 0) is a commutative monoid which, moreover, satisfies the identity
(x� y)− = x− ⊕ y−.
���������

. By Lemma 2.11, it is sufficient to prove that (x � y)− = x− ⊕ y−. (It
is obvious that (x � y)−, x− and y− belong to R(M).) Let x, y ∈ R(M). Then
(x� y)− = (x−− � y−−)− = x− ⊕ y−. �

Remark 2.14. Let an R`-monoid be normal. Then by [13, Theorem 7], R(M) =
(R(M);�,∨R(M),∧,→, 0, 1), where y∨R(M) z =: (y∨z)−− for any y, z ∈ R(M) and
the other operations are restrictions of the operations on M , is an MV -algebra. In

such a case, the operation “⊕” on R(M) is the dual operation to the operation “�”.

Proposition 2.15 ([13, Proposition 2]). IfM is an R`-monoid, then the following

conditions are equivalent for any x, y ∈ M .

(1) (x ∨ y)−− = x−− ∨ y−−.

(2) (x ∧ y)− = x− ∨ y−.

(3) (x ∧ y)− � ((x → y) ∨ (y → x)) = (x ∧ y)−.

Every BL-algebra satisfies the identity (x → y) ∨ (y → x) = 1, therefore it also
satisfies the identities (1), (2) and (3) from the previous proposition. (See also [13,
Proposition 2].)
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Proposition 2.16. If an R`-monoid M satisfies the identities from Proposi-

tion 2.15, then the operation “⊕” distributes over the operations “∨” and “∧”,
hence (M ;⊕,∨,∧) is a lattice ordered monoid.

���������
. If x, y, z ∈ M then by Lemma 2.1 (10),

x⊕ (y ∨ z) = (x− � (y ∨ z)−)− = (x− � (y− ∧ z−))− = ((x− � y−) ∧ (x− � z−))−

= (x− � y−)− ∨ (x− � z−)− = (x⊕ y) ∨ (x⊕ z),

x⊕ (y ∧ z) = (x− � (y ∧ z)−)− = (x− � (y− ∨ z−))− = ((x− � y−) ∨ (x− � z−))−

= (x− � y−)− ∧ (x− � z−)− = (x⊕ y) ∧ (x⊕ z).

�

3. Properties of local R`-monoids

If M is an R`-monoid and ∅ 6= F ⊆ M , then F is called a filter of M if

(i) x, y ∈ F =⇒ x� y ∈ F ;

(ii) x ∈ F , y ∈ M , x 6 y =⇒ y ∈ F .

By [5], the filters of M are exactly all deductive systems of M , i.e. F ⊆ M is a

filter of M if and only if

(1) 1 ∈ F ;

(2) x ∈ F , x → y ∈ F =⇒ y ∈ F .

Furthermore, by [16], the filters of R`-monoids coincide with the kernels of their

congruences. If F is a filter ofM then F is the kernel of the unique congruence θ(F )
such that 〈x, y〉 ∈ θ(F ) if and only if (x → y)∧ (y → x) ∈ F for any x, y ∈ M . Hence

we will consider quotient R`-monoids M/F of R`-monoids M with respect to their
filters F .

If for a filter F the quotient R`-monoid is an MV -algebra, then F is called an
MV -filter .

An element x ∈ M is called dense if x−− = 1. Denote by D(M) the set of all
dense elements in M . By [13, Theorem 8] and [14, Remark to Theorem 10], or

by [5, Proposition 3.3], D(M) is a proper MV -filter of M . Moreover, a filter F of
an R`-monoid M is an MV -filter if and only if D(M) ⊆ F .

Let us recall that an R`-monoidM is called local ifM contains a unique maximal
filter. (See [12].)

Let us put

A(M) := {x ∈ M : xn 6= 0 for every n ∈ � }.
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Define ord(x), the order of an element x ∈ M , as follows: ord(x) is the smallest
n ∈ �

such that xn = 0; otherwise ord(x) = ∞. Hence A(M) is the set of all
elements x ∈ M such that ord(x) = ∞. We have 0 /∈ A(M), thus A(M) 6= M .

Proposition 3.1 ([12, Theorem 3.9]). If M is an R`-monoid then the following

conditions are equivalent.

(1) M is local.

(2) A(M) is a filter of M .
(3) A(M) is the unique maximal filter of M .
(4) If xn 6= 0 6= yn for every n ∈ � , then xn � yn 6= 0 for all n ∈ � .

Corollary 3.2. If M is a local R`-monoid, then for any element x ∈ M ,

ord(x) < ∞ or ord(x−) < ∞.

Denote

A(M)− := {x ∈ M : x 6 y− for some y ∈ A(M)}.

Let us define now the notion of an ideal of an R`-monoidM . IfM is an R`-monoid
and ∅ 6= I ⊆ M , then I is called an ideal of M if

(i) x, y ∈ I =⇒ x⊕ y ∈ I ;

(ii) x ∈ I , z ∈ M , z 6 x =⇒ z ∈ I .

Proposition 3.3. If M is a local R`-monoid then A(M)− is an ideal of M and

A(M) ∩ A(M)− = ∅.
���������

. 0 ∈ A(M)−, hence A(M)− 6= ∅. Let x, y ∈ A(M)−. Then x 6 v− and

y 6 w− for some elements v, w ∈ A(M). Thus by Lemma 2.1 (8) and (9),

x⊕ y 6 v− ⊕ w− = (v−− � w−−)− 6 (v � w)−,

and since A(M) is by Proposition 3.1 a filter of M , we have x⊕ y ∈ A(M)−.
Let x ∈ M , y ∈ A(M)−, x 6 y and y 6 z−, where z ∈ A(M). Then x 6 z−,

hence x ∈ A(M).
Therefore A(M)− is an ideal of M . �

Let M be an R`-monoid and let F be a filter of M . Then F is called a primary

filter if it is satisfied for any x, y ∈ M : If there is n ∈ �
such that n(x ⊕ y) ∈ F ,

then there is m ∈ � such that mx ∈ F or my ∈ F .
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Proposition 3.4. For any R`-monoidM and anyMV -filter F ofM , the following

conditions are equivalent.

(1) M/F is a local R`-monoid.

(2) F is a primary filter.
���������

. (1) ⇒ (2): Let F be a filter of M such that M/F is local. Let us

suppose that x, y ∈ M , n ∈ �
and n(x ⊕ y) ∈ F , i.e., n(x ⊕ y)/F is the greatest

element 1 in M/F . Then (x−� y−)n/F is the smallest element 0 in M/F , and since

M/F is local, there exists m ∈ �
such that (x−/F )m = 0 or (y−/F )m = 0. Since

F is an MV -filter, this implies that there is m ∈ �
such that mx ∈ F or my ∈ F .

Therefore F is a primary filter.
(2) ⇒ (1): Let F be a primary MV -filter. Suppose that x, y ∈ M and that

there exists n ∈ �
such that (x/F � y/F )n = 0. Then n(x−/F ⊕ y−/F ) = F ,

i.e., n(x− ⊕ y−) ∈ F , hence there is m ∈ �
such that mx− ∈ F or my− ∈ F . This

yields (x/F )m = 0 or (y/F )m = 0, and thus M/F is local. �

Theorem 3.5. Let M be an R`-monoid. Then the following conditions are

equivalent.

(1) Every MV -filter of M is primary.

(2) D(M) is a primary filter.
(3) M/D(M) is a local MV -algebra.
���������

. (1) ⇒ (2): It follows from the fact that D(M) is the least MV -filter
of M .

(2) ⇔ (3): By Proposition 3.4.
(3) ⇒ (1): If F is an MV -filter of M , then D(M) ⊆ F , hence by the isomorphism

theorems for algebras we get that M/F also contains a unique maximal filter, which
means F is primary. �

Proposition 3.6. Let M be an R`-monoid.

a) If M is local then it satisfies the equivalent conditions from Theorem 3.5.
b) If {1} is a primary MV -filter then M is a local MV -algebra.
���������

. a) Let an R`-monoid M be local, let F be a filter of M , x, y ∈ M ,

n ∈ � and let n(x⊕ y) ∈ F . Then ord(n(x⊕ y)) = ∞, hence ord((x− � y−)n) < ∞.
Since M is local, we get ord(x−) < ∞ or ord(y−) < ∞. That is, there is m ∈ � such
that (x−)m = 0 or (y−)m = 0.
Therefore, if F is an MV -filter then mx = 1 ∈ F or my = 1 ∈ F for some m ∈ � ,

and thus F is a primary filter of M .

b) If {1} is an MV -filter then D(M) = {1}. Hence the assertion is a direct
consequence of Theorem 3.5. �
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Proposition 3.7. Every linearly ordered R`-monoid is a local BL-algebra.
���������

. Let M be a linearly ordered R`-monoid. By [11], BL-algebras are

exactly all R`-monoids which are subdirect products of linearly ordered R`-monoids.
Hence M is a BL-algebra.

Let x, y ∈ M , n ∈ �
and let (x � y)n = 0. Since x 6 y or y 6 x, we have

(x�y)n > x2n or (x�y)n > y2n, thus ord(x) < ∞ or ord(y) < ∞. Therefore by [12,
Theorem 3.9], M is local. �

Let M be a local R`-monoid. Then M is called

a) perfect if for any x ∈ M , ord(x) < ∞ implies ord(x−) = ∞;
b) singular if there exist x, y ∈ M such that ord(x) < ∞, ord(y) < ∞ and

ord(x⊕ y) = ∞.

Proposition 3.8. Every local R`-monoid M is either perfect or singular and

there is no M having both properties.
���������

. (a) LetM be a local R`-monoid which is not singular. Then ord(y) = ∞
or ord(z) = ∞ or ord(y ⊕ z) < ∞ for every y, z ∈ M .
If x is any element in M then

ord(x⊕ x−) = ord((x− � x−−)−) = ord(0−) = ord(1) = ∞,

hence ord(x) = ∞ or ord(x−) = ∞.
Therefore M is perfect.

(b) Let now M be a local R`-monoid that is simultaneously perfect and singular.
Then there exist x, y ∈ M such that ord(x) < ∞, ord(y) < ∞ and ord(x ⊕ y) = ∞,
and hence ord(x−) = ord(y−) = ∞ and ord((x ⊕ y)−) < ∞. By Proposition 2.9,
(x⊕y)− = x−�y−, hence we get, becauseM is local, ord(x−) < ∞ or ord(y−) < ∞,
a contradiction. �

Let M be an R`-monoid and F a filter of M . Then F is called a perfect filter
if it is primary and if, for each x ∈ M , there is n ∈ �

with nx ∈ F if and only if

mx− /∈ F for each m ∈ � .

Theorem 3.9. Let M be an R`-monoid and F an MV -filter of M . Then the

following conditions are equivalent.

(1) M/F is a perfect R`-monoid.

(2) F is a perfect filter.
���������

. (1) ⇒ (2): Let F be an MV -filter of M and let M/F be a perfect

R`-monoid. Then M/F is local by definition, and thus, by Proposition 3.4, F is a
primary filter.

403



Let x ∈ M , n ∈ �
and nx ∈ F . Then nx/F = 1 and (x−)n/F = 0 in M/F .

Hence ord(x−/F ) < ∞, and since M/F is perfect, ord(x−−/F ) = ∞. Moreover,
F is an MV -filter, thus also ord(x/F ) = ∞, therefore xn/F 6= 0 for each n ∈ �

.
This implies nx−/F 6= 1, thus nx− /∈ F for each n ∈ � .
The converse implication can be proved analogously, and therefore F is perfect.

(2) ⇒ (1): Let F be perfect. Then F is primary, and since it is an MV -filter,

we get, by Proposition 3.4, that M/F is a local R`-monoid. Let x ∈ M and
ord(x−/F ) < ∞. Then there is n ∈ �

such that (x−)n/F = 0 in M/F , hence

nx/F = 1. Thus there exists n ∈ �
such that nx ∈ F , therefore mx− /∈ F for

every m ∈ �
. This implies mx−/F 6= 1 and xm/F 6= 0 for every m ∈ �

. Therefore

ord(x/F ) = ∞ in M/F . That is, M/F is perfect. �

Theorem 3.10. Let M be a local R`-monoid. Then the following conditions are

equivalent.

(a) M is perfect.

(b) M = A(M) ∪ A(M)−.
���������

. (a) ⇒ (b): Let M be perfect and x ∈ M \ A(M). Then x− ∈ A(M).
We have x 6 x−− = (x−)− and x− ∈ A(M), hence x ∈ A(M)−. Therefore M =
A(M) ∪ A(M)−.

(b) ⇒ (a): Since M is local, A(M) is by [12, Theorem 3.9] a filter of M , and by
Proposition 3.3, A(M)− is an ideal of M and A(M) ∩ A(M)− = ∅. Thus by the
assumption, we get A(M)− = {y ∈ M : ord(y) < ∞}. Let x ∈ M .

If ord(x) = ord(x−) = ∞, then x, x− ∈ A(M), thus 0 ∈ A(M), a contradiction.
If ord(x) < ∞ and ord(x−) < ∞, then x, x− ∈ A(M)−, and hence 1 ∈ A(M)−, a

contradiction.

Therefore ord(x) < ∞ if and only if ord(x−) = ∞, and this means that M is

perfect. �

IfM is an R`-monoid and F is a proper filter ofM , set (analogously as for A(M))

F− := {x ∈ M : x 6 y− for some y ∈ F}.

Obviously F ∩ F− = ∅.
An R`-monoidM is called bipartite if M = F ∪F− for some maximal filter of M ,

and it is called strongly bipartite if M = F ∪ F− for every maximal filter of M .

A filter F of M is called a Boolean filter if x ∨ x− ∈ F for any x ∈ M (or,

equivalently, if M/F is a Boolean algebra [12, Theorem 3.2]).
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Theorem 3.11. Let M be a local R`-monoid. Then the following conditions are

equivalent.

(1) M is perfect.

(2) M is (strongly) bipartite.

(3) A(M) is a Boolean filter.
(4) For any element x ∈ M , x ∈ A(M) or x− ∈ A(M).
���������

. (1) ⇔ (2): By [12, Theorem 3.9], A(M) is a unique maximal filter ofM ,
hence the equivalence follows from Theorem 3.10.

(2) ⇔ (3): By [12, Theorem 3.8], any R`-monoid M is strongly bipartite if and

only if every maximal filter of M is Boolean.

(3) ⇔ (4): If M is an R`-monoid and F is a filter ofM then by [12, Theorem 3.3],
F is maximal and Boolean if and only if F is a proper filter such that x ∈ F or

x− ∈ F for every x ∈ M . �
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