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SUBDIRECTLY IRREDUCIBLE SECTIONALLY

PSEUDOCOMPLEMENTED SEMILATTICES

R. Halaš, Olomouc, J. Kühr, Olomouc

(Received April 19, 2005)

Abstract. Sectionally pseudocomplemented semilattices are an extension of relatively
pseudocomplemented semilattices—they are meet-semilattices with a greatest element such
that every section, i.e., every principal filter, is a pseudocomplemented semilattice. In
the paper, we give a simple equational characterization of sectionally pseudocomplemented
semilattices and then investigate mainly their congruence kernels which leads to a charac-
terization of subdirectly irreducible sectionally pseudocomplemented semilattices.
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A pseudocomplemented semilattice is an algebra (S,∧,∗ , 0) of type (2, 1, 0) such
that (S,∧, 0) is a meet-semilattice with a least element and for all x, y ∈ S,

(1) y 6 x∗ iff y ∧ x = 0.

A relatively pseudocomplemented semilattice is an algebra (S,∧, ∗, 1) of type (2, 2, 0),
where (S,∧, 1) is a meet-semilattice with a greatest element and for all x, y, z ∈ S,

(2) z 6 x ∗ y iff z ∧ x 6 y.

Relatively pseudocomplemented semilattices appear in the literature also under the
name Brouwerian semilattices or implicative semilattices, respectively (see [7], [8]).
For every a ∈ S, we call the principal filter [a) = {x ∈ S : x > a} a section of

S. It is easy to see that if (S,∧, ∗, 1) is a relatively pseudocomplemented semilattice
then for any a ∈ S and x ∈ [a), xa := x ∗ a is the pseudocomplement of x in
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the section [a), i.e., y 6 xa iff y ∧ x = a for every y ∈ [a). Thus ([a),∧,a , a) is
a pseudocomplemented semilattice, and consequently, for every interval [a, b] of S,
([a, b],∧,ab , a) is a pseudocomplemented semilattice with xab := xa ∧ b = (x ∗ a) ∧ b.

We know that a lattice is relatively complemented if every interval is a com-

plemented lattice. From this point of view, the concept of a relatively pseudo-
complemented (semi)lattice may seem to be a bit misleading since a (semi)lattice

whose intervals are pseudocomplemented (semi)lattices in general need not be rela-
tively pseudocomplemented. For instance, the pentagon N5 (see Figure 1) is such a

(semi)lattice. This observation leads to the extension of relative pseudocomplemen-
tation we deal with in this paper.

1. Sectionally pseudocomplemented semilattices

Definition 1 [4]. A meet-semilattice (S,∧, 1) with a greatest element is said to
be sectionally pseudocomplemented if for every a ∈ S, the structure ([a),∧,a , a) is
a pseudocomplemented semilattice, i.e., every x ∈ [a) has the pseudocomplement xa

in the section [a).

Remark. The concept of a sectionally pseudocomplemented lattice was invented
by I. Chajda in [2]; similar ideas are contained also in J. C.Varlet’s paper [9].

The difficulity arises concerning the number of partial unary operations a : [a) →
[a) which we overcome by defining a new total binary operation “◦” as follows:

(3) x ◦ y := xx∧y.

Thus x ◦ y is the pseudocomplement of x in the section [x ∧ y).

It can be easily seen that if the relative pseudocomplement x ∗ y of x with respect
to y exists then x◦y = x∗y. Indeed, we have (x∗y)∧x = x∧y, so that x∗y 6 x◦y,

and conversely, (x ◦ y) ∧ x = x ∧ y 6 y entails x ◦ y 6 x ∗ y.

On the other hand, x ◦ y need not be the relative pseudocomplement of x with

respect to y. For instance, a non-distributive lattice (that is not relatively pseudo-
complemented since relatively pseudocomplemented lattices are distributive) may be

sectionally pseudocomplemented.

Example 2. Consider the (meet-semi)lattice that is shown in Figure 1. We
obviously have c ◦ a = ca = a, while c ∗ a does not exist since the set of all x with
x ∧ c 6 a has no top element. The operation “◦” is given by Table 1.
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b

1
c

a

0
Figure 1

◦ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b c c 1 c 1
c b a b 1 1
1 0 a b c 1

Table 1

Remark. In the case of sectionally pseudocomplemented lattices, one can define
another binary operation “•” by

x • y := (x ∨ y)y.

Obviously, x ◦ y = x • (x ∧ y) and x • y = (x ∨ y) ◦ y.

Theorem 3. A meet-semilattice (S,∧, 1) is sectionally pseudocomplemented if
and only if there exists a binary operation “◦” on S such that, for all x, y, z ∈ S,

x ◦ x = 1,(4)

x ∧ (x ◦ y) = x ∧ y,(5)

x ∧ ((x ∧ y) ◦ z) = x ∧ (y ◦ (x ∧ z)).(6)

���������
. Let (S,∧, 1) be a sectionally pseudocomplemented semilattice and

let a binary operation “◦” be defined by (3). Then clearly x ◦ x = xx = 1 and
x∧ (x◦y) = x∧xx∧y = x∧y since xx∧y is the pseudocomplement of x in the section

[x ∧ y). Thus (4) and (5) hold.
It is known and straightforward to show that any pseudocomplemented semilattice

satisfies the identity
x ∧ (x ∧ y)∗ = x ∧ y∗.

Hence for the section [x ∧ y ∧ z) we have

x ∧ ((x ∧ y) ◦ z) = x ∧ (x ∧ y)x∧y∧z = x ∧ yx∧y∧z = x ∧ (y ◦ (x ∧ z))

which is (6).

Conversely, let “◦” be a binary operation on S that fulfils the identities (4), (5) and
(6). Let a ∈ S. We have to show that for any x ∈ [a), x◦a is the pseudocomplement

of x in the section. By (5) we see that x ∧ (x ◦ a) = x ∧ a = a, and so y ∧ x = a for
every y ∈ [a) with y 6 x ◦ a. On the other hand, if y ∧ x = a then (6) and (4) yield

y ∧ (x ◦ a) = y∧ (x ◦ (y ∧ a)) = y ∧ ((x∧ y) ◦a) = y ∧ (a ◦a) = y ∧ 1 = y, so y 6 x ◦a.
Thus xa = x ◦ a. �
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Remark. In the light of the previous theorem, sectionally pseudocomplemented
semilattices can be treated as algebras (S,∧, ◦, 1) of type (2, 2, 0). Of course, they
form a variety that is axiomatized, relatively to the variety of meet-semilattices with
1, by the above identities (4), (5) and (6).

Let us recall that a meet-semilattice is said to be distributive if a > b ∧ c implies
the existence of b1 > b and c1 > c with a = b1 ∧ c1 (see [6]). It is worth noticing that

a semilattice is distributive if and only if its filters form a distributive lattice.

Theorem 4. Every distributive sectionally pseudocomplemented semilattice is
relatively pseudocomplemented.
���������

. Let (S,∧, ◦, 1) be a distributive sectionally pseudocomplemented semi-
lattice. We prove that z 6 x ◦ y is equivalent to z ∧ x 6 y. Obviously, if z 6 x ◦ y

then z ∧ x 6 (x ◦ y) ∧ x = x ∧ y 6 y. Conversely, if z ∧ x 6 y then y = x1 ∧ z1,

where x1 > x and z1 > z, whence we obtain x∧ y = x∧x1 ∧ z1 = x∧ z1 which yields
z 6 z1 6 xx∧y = x ◦ y. Therefore x ◦ y is the relative pseudocomplement of x with

respect to y. �

2. Congruence kernels

First, we recall several well-known concepts from universal algebra (see e.g. [1],
[3]).

Let A be an algebra with a constant 1. By the kernel of a congruence Θ ∈ Con(A)
we mean the equivalence class [1]Θ = {a ∈ A : (a, 1) ∈ Θ}. An algebra A is called
weakly regular if Θ = Φ whenever [1]Θ = [1]Φ for any Θ, Φ ∈ Con(A). A variety V

with a constant 1 is weakly regular if every A ∈ V is weakly regular. It is known
that V is weakly regular if and only if there exist binary terms t1, . . . , tn (n ∈ � )
such that

t1(x, y) = . . . = tn(x, y) = 1 iff x = y.

An algebra A with a constant 1 is arithmetical at 1 if for all Θ, Φ, Ψ ∈ Con(A),

[1]Θ◦Φ = [1]Φ◦Θ and [1]Θ∩(Φ∨Ψ) = [1](Θ∩Φ)∨(Θ∩Ψ).

A variety V is arithmetical at 1 if so is each A ∈ V . Arithmeticity at 1 can be
captured by a simple Maltsev type condition: a variety V is arithmetical at 1 if and
only if there exists a binary term t with

t(x, x) = t(1, x) = 1 and t(x, 1) = x.
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Finally, a variety V is called congruence distributive if the congruence lattice

Con(A) of every A ∈ V is distributive.

Theorem 5. The variety of all sectionally pseudocomplemented semilattices is
weakly regular and arithmetical at 1.
���������

. Consider the terms t1(x, y) = x ◦ y and t2(x, y) = y ◦ x. Clearly,
t1(x, x) = t2(x, x) = 1. Conversely, if t1(x, y) = t2(x, y) = 1 then x = x ∧ (x ◦ y) =
x ∧ y = y ∧ (y ◦ x) = y by the identity (5) of Theorem 3.

For arithmeticity at 1, consider the term t(x, y) = y◦x. Then certainly t(x, x) = 1,
t(x, 1) = 1 and t(1, x) = x. �

Corollary 6. The variety of all sectionally pseudocomplemented semilattices is
congruence distributive.

As known (e.g. [8], [7]), filters of relatively pseudocomplemented semilattices are
in a one-to-one correspondence with their congruence relations. More precisely, given

a filter F of (S,∧, ∗, 1), the relation ΘF defined via

(x, y) ∈ ΘF iff (x ∗ y) ∧ (y ∗ x) ∈ F,

or equivalently,

(x, y) ∈ ΘF iff x ∧ a = y ∧ a for some a ∈ F,

is a congruence on (S,∧, ∗, 1) such that [1]ΘF = F . This is in contrast to the
situation for sectionally pseudocomplemented semilattices: there exist filters that

are not congruence kernels (see Example 8). However, any congruence is determined
by its kernel in the following manner:

Lemma 7. Let (S,∧, ◦, 1) be a sectionally pseudocomplemented semilattice and
let F be a filter of a semilattice (S,∧). Define a binary relation ΦF by

(7) (x, y) ∈ ΦF iff x ∧ a = y ∧ a for some a ∈ F.

Then F is the kernel of a congruence Θ ∈ Con(S) if and only if Θ = ΦF .

In particular, a principal filter [a) is the kernel of Θ ∈ Con(S) if and only if
Θ = Φa, where

(8) (x, y) ∈ Φa iff x ∧ a = y ∧ a.

729



���������
. Let Θ be a congruence such that F = [1]Θ. If (x, y) ∈ Θ then (x ◦

y, 1), (y ◦ x, 1) ∈ Θ, i.e., x ◦ y, y ◦ x ∈ F whence it follows that (x ◦ y) ∧ (y ◦ x) ∈ F .
It is obvious that x ∧ (x ◦ y) ∧ (y ◦ x) = x ∧ y = y ∧ (x ◦ y) ∧ (y ◦ x), so we may take
a = (x ◦ y) ∧ (y ◦ x) which yields (x, y) ∈ ΦF . If (x, y) ∈ ΦF then x ∧ a = y ∧ a for

some a ∈ F = [1]Θ. Since (a, 1) ∈ Θ implies (x, x ∧ a) ∈ Θ and (y, y ∧ a) ∈ Θ, we
have (x, y) ∈ Θ. Thus Θ = ΦF .

Conversely, one readily sees that [1]ΦF = F , so if Θ = ΦF ∈ Con(S) then F is the
kernel of Θ. �

Example 8. Let us return to Example 2. Then Φb is an equivalence with the

partition {b, 1}, {0, a, c}, but it is not a congruence since (a, c) ∈ Φb while (c◦a, c◦c) =
(a, 1) /∈ Φb.

Let (S,∧, ◦, 1) be a sectionally pseudocomplemented semilattice, a ∈ S and (a] =
{x ∈ S : x 6 a}. Then upon defining

x ◦a y := (x ◦ y) ∧ a,

the structure ((a],∧, ◦a, a) is a sectionally pseudocomplemented semilattice, too.
Hence

Corollary 9. A principal filter [a) is a congruence kernel if and only if the
mapping f : x 7→ x ∧ a is a homomorphism of (S,∧, ◦, 1) onto ((a],∧, ◦a, a).
���������

. Assume first that [a) = [1]Θ, where Θ = Φa ∈ Con(S). From (a, 1) ∈ Θ
it follows that (x, x∧a), (y, y ∧a) ∈ Θ and hence (x ◦ y, (x∧a) ◦ (y ∧a)) ∈ Θ. Seeing
that Θ = Φa, we obtain (x◦y)∧a = ((x∧a)◦ (y∧a))∧a, i.e., f(x◦y) = f(x)◦a f(y).
On the other hand, if f : x 7→ x ∧ a is a homomorphism then Φa is equal to Θf , the
congruence induced by f , thus [a) = [1]Θf

. �

As an immediate consequence we obtain:

Corollary 10. A principal filter [a) is a congruence kernel if and only if

(x ◦ y) ∧ a = ((x ∧ a) ◦ (y ∧ a)) ∧ a

for all x, y ∈ S.

It turns out that relatively pseudocomplemented semilattices are those sectionally

pseudocomplemented semilattices in which every filter is a congruence kernel:
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Theorem 11. Let (S,∧, ◦, 1) be a sectionally pseudocomplemented semilattice.
Then the mapping Θ 7→ [1]Θ is a one-to-one correspondence between congruences
and filters, the inverse of which is given by F 7→ ΦF , if and only if (S,∧, ◦, 1) is a
relatively pseudocomplemented semilattice.

���������
. If every filter F is a congruence kernel then the lattice of all filters is

isomorphic to the congruence lattice Con(S). Thus the lattice of filters is distributive
which implies that S is a distributive semilattice, and hence by Theorem 4, (S,∧, ◦, 1)
is a relatively pseudocomplemented semilattice. �

Given a lattice (L,∨,∧), an element a ∈ L is called standard (see [6]) if

x ∧ (a ∨ y) = (x ∧ a) ∨ (x ∧ y)

for all x, y ∈ L.

Let (S,∧, 1) be a meet-semilattice with a greatest element. A filter F is called

standard if it is a standard element of the lattice of all filters of (S,∧, 1); this is
equivalent to

[x) ∩ (F ∨ [y)) = ([x) ∩ F ) ∨ ([x) ∩ [y))

for all x, y ∈ S.

It was proved in [5] that the congruence kernels of sectionally pseudocomplemented

lattices are precisely the standard filters, but this is not the case of sectionally pseu-
docomplemented semilattices:

Example 12. In the pentagon (cf. Example 2, Figure 1), F = {c, 1} is the kernel
of the congruence given by the partition {c, 1}, {a}, {0, b}, but F is not a standard
filter since [a) ∩ (F ∨ [b)) = [a) while ([a) ∩ F ) ∨ ([a) ∩ [b)) = [c).

In order to capture the congruence kernels of sectionally pseudocomplemented
semilattice, we extend the concept of standardness as follows:

Let (L,∨,∧) be a lattice. We say that a ∈ L is weakly standard if for all x, y ∈ L,

x 6 y implies x ∨ (a ∧ y) = (x ∨ a) ∧ y.

Theorem 13. Let (L,∨,∧) be a lattice. An element a ∈ L is weakly standard

if and only if there exist no x1, y1 ∈ L such that a ∧ x1 = a ∧ y1, x1, a, y1 and

a ∨ x1 = a ∨ y1 form a sublattice isomorphic to the pentagon N5 (see Figure 2).

731



a

a ∨ x1 = a ∨ y1

y1

x1

a ∧ x1 = a ∧ y1

Figure 2

���������
. It is clear that if there exist such x1, y1 ∈ L then a is not weakly

standard since x1 ∨ (a ∧ y1) = x1 while (x1 ∨ a) ∧ y1 = y1.

Conversely, assume that a ∈ L is not weakly standard, i.e., there are x, y ∈ L with
x 6 y, but x ∨ (a ∧ y) < (x ∨ a) ∧ y. We put x1 = x ∨ (a ∧ y) and y1 = (x ∨ a) ∧ y.
Then a ∨ x1 = a ∨ x ∨ (a ∧ y) = a ∨ x and a ∨ y1 = a ∨ ((x ∨ a) ∧ y) 6 a ∨ (x ∨ a) =
a∨ x 6 a∨ ((x ∨ a)∧ y) = a∨ y1 as x = (x ∨ a) ∧ x 6 (x ∨ a)∧ y, so a∨ x1 = a∨ y1.

Similarly, a ∧ y1 = a ∧ (x ∨ a) ∧ y = a ∧ y and a∧ x1 = a∧ (x ∨ (a∧ y)) > a ∧ y >
a ∧ (x ∨ (a ∧ y)) = a ∧ x1 since y = y ∨ (a ∧ y) > x ∨ (a ∧ y), thus a ∧ x1 = a ∧ y1.

Therefore, one readily sees that a ∧ x1 = a ∧ y1, x1, a, y1, a ∨ x1 = a ∨ y1 form a
sublattice of L that is isomorphic to N5 (cf. Figure 2). �

In a semilattice (S,∧, 1), a filter F is called weakly standard if F is a weakly

standard element of the lattice of all filters of S. It is straightforward to prove that
F is weakly standard if and only if for all x, y ∈ S,

x 6 y implies [x) ∩ (F ∨ [y)) = ([x) ∩ F ) ∨ [y).

Lemma 14. Let (S,∧, ◦, 1) be a sectionally pseudocomplemented semilattice, F
a weakly standard filter and x, y ∈ S with x 6 y. Then (x, y) ∈ ΦF if and only if

there exists b ∈ F such that x = y ∧ b.

���������
. Let (x, y) ∈ ΦF , i.e. x ∧ a = y ∧ a for some a ∈ F . Clearly, x ∧ a =

y∧a ∈ F ∨ [y) and so x ∈ [x)∩(F ∨ [y)) = ([x)∩F )∨ [y) since F is a weakly standard
filter. Then x > b ∧ y for some b ∈ [x) ∩ F , i.e. b > x, whence b ∧ y > x > b ∧ y, so

x = b ∧ y.

Conversely, if there is b ∈ F with x = y∧ b, then x∧ b = y∧ b, so that (x, y) ∈ ΦF .
�

For sectionally pseudocomplemented semilattices we have the following analogue

of [5]:
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Theorem 15. Let (S,∧, ◦, 1) a sectionally pseudocomplemented semilattice and
F a filter of a semilattice (S,∧, 1). Then F is a congruence kernel if and only if F is

a weakly standard filter.

���������
. Let F = [1]Θ for some Θ ∈ Con(S). We have to show that [x) ∩ (F ∨

[y)) ⊆ ([x) ∩ F ) ∨ [y) provided x 6 y. For, let z ∈ [x) ∩ (F ∨ [y)). Then z > x and
z > a∧ y for some a ∈ F , so that a∧ y ∧ z = a∧ y which means (y, y∧ z) ∈ ΦF = Θ.
Hence 1 = y ◦ y Θ y ◦ (y ∧ z) = y ◦ z, thus y ◦ z ∈ F = [1]Θ. But we also have
y ◦ z ∈ [x) since x 6 y ∧ z 6 y ◦ z, so y ◦ z ∈ F ∩ [x). Finally, y ∧ (y ◦ z) = y ∧ z 6 z

yields z ∈ (F ∩ [x)) ∨ [y).
Conversely, suppose that a filter F is weakly standard. First, we note that the

relation ΦF defined by (8) is compatible with “∧”.
Now, we put Θ = ΦF . It is obvious that F = [1]Θ, so we have to prove that Θ

is compatible with the operation “◦”. For that purpose, it suffices to show that the
quotient semilattice (S/Θ,∧, [1]Θ) is a sectionally pseudocomplemented semilattice
in which [x]Θ ◦ [y]Θ = [x ◦ y]Θ.
Let [a]Θ ∈ S/Θ and [x]Θ > [a]Θ. Without loss of generality we may assume that

x > a. We show that [x ◦ a]Θ is the pseudocomplement of [x]Θ in the section [[a]Θ)
of the quotient semilattice. One readily sees that [x]Θ ∧ [x ◦ a]Θ = [x ∧ (x ◦ a)]Θ =
[x ∧ a]Θ = [a]Θ. Let now [y]Θ ∧ [x]Θ = [a]Θ; again, we assume that y > a. Then by
Lemma 14, [x ∧ y]Θ = [a]Θ along with a 6 x ∧ y yields the existence of b ∈ F with

a = x∧ y ∧ b whence y ∧ b 6 xa = x ◦ a. This implies that [y]Θ = [y ∧ b]Θ 6 [x ◦ a]Θ.
Therefore, (S/Θ,∧, [1]Θ) is a sectionally pseudocomplemented semilattice with

[x]Θ ◦ [y]Θ = [x][x]Θ∧[y]Θ
Θ = [x][x∧y]Θ

Θ = [x ◦ (x ∧ y)]Θ = [x ◦ y]Θ. �

Corollary 16. A sectionally pseudocomplemented semilattice (S,∧, ◦, 1) is sub-
directly irreducible if and only if it has a smallest non-trivial weakly standard filter.

Since each standard filter is weakly standard, we obtain

Corollary 17. Let (S,∧, ◦, 1) be a sectionally pseudocomplemented semilattice.
Then every standard filter of (S,∧, 1) is the kernel of some congruence Θ ∈ Con(S).

It is well-known (e.g. [7], [8]) that a relatively pseudocomplemented semilattice
(S,∧, ∗, 1) is subdirectly irreducible if and only if it has a smallest non-trivial filter;
in other words, the set S \ {1} has a greatest element. This easily follows from
the fact that filters agree with congruence kernels. Sectionally pseudocomplemented
semilattices generalize relative pseudocomplemented ones, however, the situation is

rather different.
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Lemma 18. For any sectionally pseudocomplemented semilattice (S,∧, ◦, 1), if
S \ {1} has a greatest element then (S,∧, ◦, 1) is subdirectly irreducible.
���������

. Let Θ ∈ Con(S) \ {ω} and let u be a greatest element of S \ {1}. Then
(a, b) ∈ Θ for some a 6= b; of course, we may assume that a < b. If b = 1 then clearly
(u, 1) ∈ Θ. If b 6 u then (a, b) ∈ Θ yields (b ◦ a, 1) ∈ Θ. But b ◦ a 6 u since b ◦ a

is the pseudocomplement of b in the section [a), and hence (b ◦ a, 1) ∈ Θ implies
(u, 1) ∈ Θ. Thus Θ(u, 1) ⊆ Θ proving that Θ(u, 1) is the monolith of the congruence
lattice Con(S). �

Unfortunately, the converse statement fails to be true:

Example 19. Consider the sectionally pseudocomplemented (semi)lattice S as
shown in Figure 3; the operation “◦” is given by Table 2. By Theorem 13 it is easy
to see that S and [1) are the only weakly standard filters of S and so S is simple by
Theorem 15.

1
c

a

0
b

d

Figure 3

◦ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 c 1 1
c d a d 1 d 1
d c c b c 1 1
1 0 a b c d 1

Table 2

Example 20. Another example of a subdirectly irreducible sectionally pseudo-
complemented semilattice such that the set of all x 6= 1 has no greatest element is
that from Example 2. There are two proper weakly standard filters, namely, [a) and
[c). Thus the congruence lattice is a four-element chain ω ⊂ Φc ⊂ Φa ⊂ ι, and

consequently, N5 (as a sectionally pseudocomplemented semilattice) is subdirectly
irreducible.
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