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Introduction

Let H be a Hilbert space of functions analytic on a plane domain G such that for

each λ in G the linear functional of evaluation at λ given by f 7→ f(λ) is a bounded

linear functional on H . By the Riesz representation theorem there is a vector Kλ

in H such that f(λ) = 〈f,Kλ〉. We call Kλ the reproducing kernel at λ.

Let T be a bounded linear operator on H . For x ∈ H , the orbit of x under T is

the set of images of x under the successive iterates of T :

orb(T, x) = {x, Tx, T 2x, . . .}.

The vector x is called hypercyclic for T if orb(T, x) is dense in H . Also a hypercyclic

operator is one that has a hypercyclic vector.

The first example of a hypercyclic operator on a Hilbert space was constructed by

Rolewicz in 1969 [12]. He showed that if B is the backward shift on ℓ2(N), then λB

is hypercyclic if and only if |λ| > 1.

This paper is a part of the second author’s Doctoral thesis written at Shiraz University
under the direction of the first author.
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A complex-valued function ψ on G is called a multiplier of H if ψH ⊂ H . The

operator of multiplication by ψ is denoted by Mψ and is given by f 7→ ψf . By the

closed graph theorem Mψ is bounded. The collection of all multipliers is denoted

by M(H). Each multiplier is a bounded analytic function on G. In fact, ‖ϕ‖G 6

‖Mϕ‖ ([14]).

If w is a multiplier of H and ϕ is a mapping from G into G such that f ◦ ϕ ∈ H

for all f ∈ H , then Cϕ (defined on H by Cϕf = f ◦ ϕ) and MwCϕ are called the

composition and the weighted composition operator, respectively. We define the

iterates ϕn = ϕ ◦ ϕ ◦ . . . ◦ ϕ (n times). Note that Cϕn
= Cnϕ for all n. In this paper

we investigate the hypercyclicity of the adjoint of a weighted composition operator

acting on a Hilbert space of analytic functions. For some sources on hypercyclic

topic see [1]–[13], [15], [16].

Main results

A nice criterion, namely the Hypercyclicity Criterion is used in the proof of

our main theorem. It was developed independently by Kitai [10], Gethner and

Shapiro [6]. This criterion has been used to show that hypercyclic operators arise

within the classes of composition operators [4], weighted shifts [13], adjoints of mul-

tiplication operators [5], and adjoints of subnormal and hyponormal operators [3].

The formulation of the Hypercyclicity Criterion in the following theorem was given

by J. Bes in his PhD. thesis [1] (see also [2]).

The Hypercyclicity Criterion Theorem. Suppose X is a separable Banach

space and T is a continuous linear mapping on X . If there exist two dense subsets Y

and Z in X and a sequence {nk} such that

1. T nky → 0 for every y ∈ Y , and

2. there exist functions Snk
: Z → X such that for every z ∈ Z, Snk

z → 0 and

T nkSnk
z → z,

then T is hypercyclic.

Throughout this section let H be a Hilbert space of analytic functions on the open

unit disc D such that H contains constants and the functional of evaluation at λ is
bounded for all λ in D . Further, let ϕ be an analytic univalent map from D onto D .
By ϕ−1

n we mean the nth iterate of ϕ−1.

Theorem. Suppose that the composition operator Cϕ is bounded on H and w is

a nonconstant multiplier of H such that the sets {λ ∈ D : sup
n

|w ◦ ϕn(λ)| < 1}

and {λ ∈ D : inf
n

|w ◦ ϕ−1
n (λ)| > 1} have limit points in D . Then the adjoint of the

weighted composition operator MwCϕ is hypercyclic.
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P r o o f. First we note that if λ ∈ D and f ∈ H , then we get

〈f,M∗

wKλ〉 = 〈wf,Kλ〉 = 〈f, w(λ)Kλ〉,

which implies that M∗

wKλ = w(λ)Kλ. Also

〈

f, C∗

ϕKλ

〉

= 〈f ◦ ϕ,Kλ〉 = f(ϕ(λ)) =
〈

f,Kϕ(λ)

〉

,

hence C∗

ϕKλ = Kϕ(λ). Thus we have

(MwCϕ)∗Kλ = C∗

ϕ(M∗

wKλ) = w(λ)C∗

ϕKλ = w(λ)Kϕ(λ).

Put A = MwCϕ and ϕ0 = I where I is the identity mapping on D . Then for all
n ∈ N and all λ in D we get

(A∗)nKλ =

(n−1
∏

i=0

w(ϕi(λ))

)

Kϕn(λ).

Put

E = {λ ∈ D : sup
n

|w(ϕn(λ))| < 1}

and

HE = span{Kλ : λ ∈ E}.

The set HE is dense in H , because if f ∈ H and 〈f,Kλ〉 = 0 for all λ in E, then

f(λ) = 0 for all λ in E. So by virtue of the hypothesis of the theorem, the zeros of f

have a limit point in D , which implies that f ≡ 0 on D . Thus HE is dense in H .

Note that if λ ∈ E, then there exists a number α such that 0 < α < 1 and

sup
n

|w(ϕn(λ))| < α < 1. Thus |w(ϕn(λ))| < α for all n and so we have

n−1
∏

i=0

|w(ϕi(λ))| 6

n−1
∏

i=0

α = αn.

Since lim
n→∞

αn = 0, we get
∞
∏

i=0

|w(ϕi(λ))| = 0

and so we have lim
n

(A∗)nKλ = 0. Thus (A∗)n → 0 pointwise on HE which is dense

in H .

Now we want to find a right inverse of A∗ on a dense subset of H . To see this put

F = {λ ∈ D : inf
n

|w(ϕ−1
n (λ))| > 1}.
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By a method similar to that we used to prove that HE is dense in H , we can see

that the set

HF = span{Kλ : λ ∈ F}

is dense in H , since F has a limit point in D . To find the desired right inverse
of A∗, first consider the special case when the collection of linear functionals of point

evaluations {Kλ : λ ∈ F} is linearly independent. Note that in the next definition

there is no possibility of dividing by zero.

Define B : HF → H by extending the definition

BKλ = (w(ϕ−1(λ)))−1Kϕ−1(λ) (λ ∈ F )

linearly to HF (it is good to note that if λ ∈ F , then ϕ−1(λ) ∈ F and indeed

B maps HF to HF ). Now we clearly get

B2Kλ = (w(ϕ−1(λ)))−1(w(ϕ−1(ϕ−1(λ))))−1Kϕ−1(ϕ−1(λ))

for all λ in F . Continuing in this manner we can see that

BnKλ =

( n
∏

i=1

(w(ϕ−1
i (λ)))−1

)

Kϕ
−1

n (λ),

where ϕ−1
i is the ith iterate of ϕ−1 and n ∈ N. By the definition of B we have

A∗BKλ = A∗((w(ϕ−1(λ)))−1Kϕ−1(λ)) = Kϕ(ϕ−1(λ)) = Kλ

for all λ in F . Thus A∗B is identity on the dense subset HF of H .

Now we want to show that Bn → 0 pointwise on HF . Note that if λ ∈ F , then

there exists a number β > 1 such that

inf
n

|w(ϕ−1
n (λ))| > β > 1.

Thus |w(ϕ−1
n (λ))| > β > 1 for all n and so we have

n
∏

i=1

|w(ϕ−1
i (λ))|−1

6

( 1

β

)n

.

Since 0 < 1/β < 1, we obtain that lim
n→∞

(1/β)n = 0 and so

lim
n

( n
∏

i=1

|w(ϕ−1
i (λ))|−1

)

Kϕ
−1

n (λ) = 0.
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This implies that Bn → 0 pointwise on HF which is dense in H . Thus by the

Hypercyclicity Criterion Theorem or by Corollary 1.5 in [7, p. 235], A∗ = (MwCϕ)∗

has a hypercyclic vector.

In the case when the linear functionals of point evaluations are not linearly in-

dependent, we use a standard method: consider a countable dense subset F1 =

{λn : n > 1} of F and inductively choose a subsequence {zn} as follows. Let z1 = λ1.

Define

F2 = F1 \ {λ ∈ F1 : Kλ ∈ span{Kz1}}.

Denote the first element of F2 by z2 and define

F3 = F2 \ {λ ∈ F2 : Kλ ∈ span{Kz1,Kz2}}.

Continuing in this manner, we obtain a subset G = {zn}n of F for which the set

HG = span{Kλ : λ ∈ G}

is dense in H with linearly independent linear functionals of point evaluations {Kλ :

λ ∈ G}. Now for each n ∈ N, define mappings Sn : HG → H by extending the

definition

SnKλ =

( n
∏

i=1

(w(ϕ−1
i (λ)))−1

)

Kϕ
−1

n (λ) (λ ∈ G)

linearly to HG.

Note that if we substitute ϕ−1
n (λ) instead of λ in the formula obtained earlier for

(A∗)nKλ, we get

(A∗)nKϕ−1

n (λ) =

(n−1
∏

i=0

w(ϕi(ϕ
−1
n (λ)))

)

Kϕn(ϕ−1

n (λ))

=

(n−1
∏

i=0

w(ϕ−1
n−i(λ))

)

Kϕn◦ϕ−1

n (λ)

=

n
∏

i=1

(w(ϕ−1
i (λ)))Kλ

for all λ in G.

By the definition of Sn we have

(A∗)nSnKλ = (A∗)n
(( n

∏

i=1

(w(ϕ−1
i (λ)))−1

)

Kϕ
−1

n (λ)

)

=

( n
∏

i=1

(w(ϕ−1
i (λ)))−1

)

(A∗)nKϕ
−1

n (λ) = Kλ
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for all λ in G. Thus for all n ∈ N, (A∗)nSn is identity on the dense subset HG

of H . Now, exactly as proved before we have that Bn → 0 pointwise on HF , we can

see that Sn → 0 pointwise on HG which is dense in H . Thus the conditions of the

Hypercyclicity Criterion Theorem are satisfied and so the proof is complete. �

Corollary. Suppose that w is a nonconstant multiplier of H such that ranw

intersects the unit circle. Then the adjoint of the multiplication operator Mw is

hypercyclic.

P r o o f. In the above theorem let ϕ be identity. Then ϕn(λ) = λ and ϕ−1
n (λ) = λ

for all λ in D . Further, we note that the condition 1 ∈ H implies that w ∈ H and so

w is analytic on the open unit disc D . Now by the Open Mapping Theorem w(D ) is

open. But ranw = w(D ) intersects the unit circle, thus the sets

{λ ∈ D : |w(λ)| < 1}

and

{λ ∈ D : |w(λ)| > 1}

are nonempty open sets in D and so clearly have limit points in D . Now we can apply
the result of the Theorem and so the proof of the Corollary is complete. �

Remark 1. Note that in the above theorem we restrict ourselves for simplicity

to the open unit disc but it remains true if we substitute the open unit disc D by
a connected open subset Ω of C n where n ∈ N. In this case H is a Hilbert space
of complex valued analytic functions on Ω such that H contains constants and the

functional of evaluation at λ is bounded for all λ in Ω. Also, ϕ is an analytic univalent

map from Ω onto Ω and w is an analytic complex valued function on Ω.

Remark 2. Let B, F , G, HF , HG and Sn be defined as in the proof of the main

theorem. Note that if we define the mapping B : HG → H exactly as it is defined

(in the proof of the theorem) on HF , then for defining B
2 : HG → H we should

have B(HG) ⊂ HG, which is not since we do not know that whether ϕ
−1(λ) ∈ G

whenever λ ∈ G. For this reason we have to define the mappings Sn on HG instead

of the operators Bn.
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