
Czechoslovak Mathematical Journal

Yin-Zhu Gao
LJ -spaces

Czechoslovak Mathematical Journal, Vol. 57 (2007), No. 4, 1223–1237

Persistent URL: http://dml.cz/dmlcz/128235

Terms of use:
© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/128235
http://dml.cz


Czechoslovak Mathematical Journal, 57 (132) (2007), 1223–1237

LJ-SPACES

Yin-Zhu Gao, Nanjing

(Received October 29, 2005)

Abstract. In this paper LJ-spaces are introduced and studied. They are a common
generalization of Lindelöf spaces and J-spaces researched by E.Michael. A space X is
called an LJ-space if, whenever {A, B} is a closed cover of X with A ∩ B compact, then
A or B is Lindelöf. Semi-strong LJ-spaces and strong LJ-spaces are also defined and
investigated. It is demonstrated that the three spaces are different and have interesting
properties and behaviors.
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1. Introduction

The Jordan curve theorem is one of the classical theorems of mathematics; it says

that if C is a simple closed curve in the plane R2 , then R2 \ C has precisely two

components W1 and W2, of which C is the common boundary [M].

Generalizing these properties, E.Michael [3] introduced and studied the following

J-spaces.

A space X is a J-space if, whenever {A, B} is a closed cover of X with A ∩ B

compact, then A or B is compact.

A compact space is a J-space, but a J-space need not be compact.

We wonder whether in the definition of the J-space, “A or B is compact” is

equivalent to “A or B is Lindelöf”. If not, what properties would the following space

have?

Definition 1. A space X is an LJ-space if, whenever {A, B} is a closed cover

of X with A ∩ B compact, then A or B is Lindelöf.

The project is supported by NSFC (No. 10571081).
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Obviously, both the Lindelöf spaces and J-spaces are LJ-spaces. In this note, we

show that the LJ-space is different from the J-space or the Lindelöf space. Related

spaces—strong LJ-spaces and semi-strong LJ-spaces are also introduced and stud-

ied. That the three classes of spaces are different is demonstrated by examples; their

characterizations and relationships are investigated. They have interesting properties

and behavior.

Throughout the note, spaces are topological spaces which are Hausdorff. A space

X is Lindelöf if every open cover of X has a countable subcover. All maps are

continuous. A map f : X → Y is boundary-perfect ([3]) if f is closed and ∂(f−1(y))

is compact for any y ∈ Y . For a subset A of the space X , we reserve ∂A and

A◦ for the boundary and interior of A respectively, and the symbols R and Z+

for the sets of all real numbers and all non-negative integers respectively. Further,R+ = {x ∈ R : x > 0} and R− = {x ∈ R : x 6 0}. The cardinality of a set A

is denoted by |A|. As a space, every ordinal has the usual order topology unless

specifically stated otherwise. Other terms and symbols will be found in [1].

2. Definitions and implications

The following two spaces are related to J-spaces. A space X is a strong J-space

[3] if every compact K ⊂ X is contained in a compact subset M of X such that

X \M is connected. A space X is a semi-strong J-space [3] if every compact K ⊂ X

is contained in a compact subset M of X such that M ∪C = X for some connected

C ⊂ X \K. In [3], it is shown that the following implications hold while the inverses

are not true:

compactness ⇒ strong J⇒ semi-strong J ⇒ J .

We are naturally interested in the properties introduced below.

Definition 2. A space X is a strong LJ-space if every compact K ⊂ X is

contained in a closed Lindelöf L ⊂ X such that X \ L is connected.

Definition 3. A space X is a semi-strong LJ-space if every compact K ⊂ X

is contained in a closed Lindelöf L ⊂ X such that L ∪ C = X for some connected

C ⊂ X \ K.

Clearly, Lindelöf spaces are strong LJ-spaces and LJ-spaces. So R+ , R− , Rn

(n > 1), the real line R and the Sorgenfrey line S are strong LJ-spaces. In [3], it

is shown that R+ , R− and Rn (n > 1) are also strong J-spaces while R is not a
J-space.
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Proposition 1. The Sorgenfrey line S is not a J-space.

P r o o f. The closed cover {(−∞, 0], [0,∞)} of S satisfies that (−∞, 0]∩[0,∞) =

{0} is compact, but neither (−∞, 0] nor [0,∞) is compact. �

It was shown that every topological linear spaceX 6= R is a strong J-space (Propo-

sition 2.6 of [3]). Since strong J-spaces are strong LJ-spaces and the real line R is a
strong LJ-space, we have

Proposition 2. All topological linear spaces are strong LJ-spaces.

The long line Z (see [8] and [3]) (that is, Z = [0, ω1)× [0, 1) with the order topol-

ogy generated by the lexicographical order) is connected, non-compact, countably

compact and locally compact.

Proposition 3.

(1) The long line Z is a strong J-space (so a strong LJ-space), but not a Lindelöf

space.

(2) The product {0, 1} × Z is not an LJ-space.

P r o o f. Let K ⊂ Z be compact. Then K is bounded and so there exists an

α0 ∈ [0, ω1) such that K ⊂ [〈0, 0〉, 〈α0, 0〉]. Then L = [〈0, 0〉, 〈α0, 0〉] is compact and

Z \ L is connected. Thus Z is a strong J-space. Clearly, Z is not Lindelöf.

(2) Put A = {0}×Z, B = {1}×Z. Then the closed cover {A, B} of {0, 1}×Z is

the desired one. �

Proposition 4.

(1) [0, ω1) is a J-space (so an LJ-space), but not a semi-strong LJ-space. Moreover,

any closed subsapce of [0, ω1) is a J-space.

(2) The product [0, ω1) × [0, ω1) is not an LJ-space (so not a J-space).

P r o o f. (1) Let {A, B} be a closed cover of [0, ω1) and let A ∩ B be compact.

Then A or B is bounded in [0, ω1). In fact, assume that both A and B are unbounded

in [0, ω1); then A ∩ B is unbounded, which contradicts the compactness of A ∩ B.

Without loss of generality, we assume that A is bounded in [0, ω1), then there exists

a β ∈ [0, ω1) such that A ⊂ [0, β]. Thus A is compact since [0, β] is compact. So

[0, ω1) is a J-space.

Let us note that if A ⊂ [0, ω1) with |A| > 2, then A is not connected. For the

compact K = {0} ⊂ [0, ω1), if L ⊃ K is closed, Lindelöf, and C ⊂ ([0, ω1) \ K) is

connected, then L∪C 6= [0, ω1), so the LJ-space [0, ω1) is not a semi-strong LJ-space.

Let F be a closed subspace of [0, ω1). If F is compact, then it is a J-space. If F

is not compact, then F is also a J-space since F and [0, ω1) are homeomorphic.
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(2) Put A = {0} × [0, ω1), B = [1, ω1) × [0, ω1), then {A, B} is a closed cover of

[0, ω1) × [0, ω1) with A ∩ B compact, however, neither A nor B is Lindelöf. �

In Example 5 we present an ω1-broom space Y (ω1) and show that it is a semi-

strong LJ-space and has interesting properties, but it is not a strong LJ-space.

Theorem 1. Let X be a space and let us consider the following assertions:

(A) X is a strong LJ-space; (a) X is a strong J-space;

(B) X is a semi-strong LJ-space; (b) X is a semi-strong J-space;

(C) X is an LJ-space; (c) X is a J-space.

Then (A) ⇒ (B) ⇒ (C), (a) ⇒ (A), (b) ⇒ (B), (c) ⇒ (C) and the implications

are not reversible.

P r o o f. (A) ⇒ (B) is clear. To show (B) ⇒ (C), let {A, B} be a closed cover

of X with A ∩ B compact. Then there is a closed Lindelöf L ⊂ X and a connected

C ⊂ X \ (A ∩ B) such that A ∩ B ⊂ L and L ∪ C = X . Since {A ∩ C, B ∩ C} is

a disjoint closed cover of the connected set C, so A ∩ C = ∅ or B ∩ C = ∅. Thus

A ⊂ X \ C ⊂ L or B ⊂ X \ C ⊂ L is Lindelöf. So X is an LJ-space.

The other implications are obvious.

The Sorgenfrey line S satisfies the conditions (A), (B) and (C), but by Proposi-

tion 1, it does not satisfy (c), (b) or (a). (C) ; (B) follows by Proposition 4 (1);

(B) ; (A) follows by Example 5; (A) ; Lindelöf follows by Proposition 3 (1). �

3. Internal characterizations

Proposition 5. The following conditions are equivalent for a space X .

(1) X is a strong LJ-space (or a strong J-space).

(2) If W is a disjoint open cover of X \K with K compact, then there is a W ∈ W

and a connected open C ⊂ W such that X \ C is Lindelöf (compact, respec-

tively).

(3) Same as (2), but with |W | = 2.

P r o o f. (1) ⇒ (2). By (1), X has a connected open C ⊂ X \ K with X \ C

Lindelöf (compact). So C ⊂ ∪W . Since C is connected and W is disjoint and open,

we have a W ∈ W such that C ⊂ W . (2) ⇒ (3) and (3) ⇒ (1) are obvious. �
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Proposition 6. The following conditions are equivalent for a space X .

(1) X is a semi-strong LJ-space (a semi-strong J-space).

(2) If W is a disjoint open cover of X \K with K compact, then there is a W ∈ W

and a connected C ⊂ W such that X \ C is Lindelöf (compact).

(3) Same as (2), but with |W | = 2.

P r o o f. (1) ⇒ (2). By (1), X has a connected C ⊂ X \K and a closed Lindelöf

(a compact) L ⊃ K with C ∪ L = X . So C ⊂ W for a W ∈ W since C ⊂ ∪W and

X \ C ⊂ L is Lindelöf (compact). (2) ⇒ (3) and (3) ⇒ (1) are obvious. �

Lemma 1. If B is a closed non-Lindelöf subset of X and C ⊂ B is Lindelöf, then

there is a closed non-Lindelöf D ⊂ B with D ∩ C = ∅.

P r o o f. Let U be an open cover of B with no countable subcover. Pick a

countable F ⊂ U covering C. Then D = B \
⋃

F has the required properties. �

Theorem 2. The following conditions are equivalent for a space X .

(1) X is an LJ-space.

(2) For any A ⊂ X with compact ∂A, A or X − A is Lindelöf.

(3) If A and B are disjoint closed subsets of X with ∂A or ∂B compact, then A or

B is Lindelöf.

(4) If W is a disjoint open cover of X \K with K compact, then X \W is Lindelöf

for some W ∈ W .

(5) Same as (4), but with |W | = 2.

P r o o f. (1) ⇒ (2) is clear since ∂A = A ∩ X − A and {A, X − A} covers X .

(2) ⇒ (3). Let A, B be disjoint closed subsets of X and let ∂A be compact, then

A or X \ A is Lindelöf by (2). Since B ⊂ (X \ A), A or B is Lindelöf.

(3) ⇒ (1). Let {A, B} be a closed cover of X with A ∩ B compact. Suppose B is

not Lindelöf. By Lemma 1 there is a closed non-LindelöfD ⊂ B withD∩(A∩B) = ∅.

Thus A and D are disjoint closed subsets of X and ∂A ⊂ A ∩ B is compact. So A

or D is Lindelöf. Since D is not Lindelöf, A must be Lindelöf.

(1) ⇔ (5) and (4) ⇒ (5) are obvious.

(5) ⇒ (4). Assume (5). If for some W0 ∈ W , W0 ∪ K is not Lindelöf, that is,

{W0, W
∗}, whereW ∗ = ∪{W ∈ W : W 6= W0}, hasW ∗ such that X \W ∗ = W0∪K

is not Lindelöf, so by (5), X \W0 is Lindelöf. If for any W ∈ W , W ∪K is Lindelöf,

then W ⊂ W ∪ K is Lindelöf and X is Lindelöf. To show this, for any open cover

U of X take a finite F ⊂ U covering K. Put U =
⋃

F . It is enough to show that

W ′ = {W ∈ W : W 6⊂ U} is countable. Suppose not. Then W = W1 ∪ W2 with

W1 ∩ W2 = ∅, W1 ∩ W ′ and W2 ∩ W ′ both uncountable. Let Vi =
⋃

Wi (i = 1, 2).

Then {V1, V2} is a disjoint open cover of X \K. By (5), X \V1 or X \V2 is Lindelöf.
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Let X \V2 be Lindelöf. Then V1 ⊂ V1 ∪K = X \V2 is Lindelöf and so C = V1 \U is

also Lindelöf. Put W ′

1 = W1∩W ′. Then W ′

1 covers C and eachW ∈ W ′

1 intersects

C. This is a contradiction since C is Lindelöf and W ′

1 is uncountable and disjoint.

So for any W ∈ W , X \ W is Lindelöf. �

Theorem 3. Let {X1, X2} be a closed cover of X with X1 ∩ X2 compact, then

the following conditions are equivalent.

(1) X is an (resp. a semi-strong, a strong) LJ-space.

(2) One of X1 and X2 is Lindelöf and the other is an (resp. a semi-strong, a strong,

respectively) LJ-space.

P r o o f. (a) For the LJ-space. (1) ⇒ (2). By (1), X1 or X2 is Lindelöf. Let X2

be Lindelöf. Let {A, B} be a closed cover of X1 with A∩B compact. Then X has a

closed cover {A, B ∪X2} with A∩ (B ∪X2) compact. Hence A or B ∪X2 is Lindelöf

and so A or B is Lindelöf. (2) ⇒ (1). Let X2 be Lindelöf, X1 an LJ-space and

{A, B} a closed cover of X with A∩B compact. Put Ai = A∩Xi and Bi = B ∩Xi

(i = 1, 2). Then {A1, B1} is a closed cover of X1 with A1 ∩ B1 compact. So A1 or

B1 is Lindelöf. Let B1 be Lindelöf. Then B = B1 ∪ B2 is also Lindelöf.

(b) For the semi-strong LJ-space. (1) ⇒ (2). By (1) and Theorem 1 ((B) ⇒ (C)),

let X2 be Lindelöf and K1 ⊂ X1 compact. Then K = K1 ∪ (X1 ∩ X2) is compact.

So K ⊂ L for a closed Lindelöf L ⊂ X and L ∪ C = X for a connected C ⊂ X \ K.

Let L1 = L ∩ X1. Put Mi = C ∩ Xi, i = 1, 2, then C = M1 ∪ M2. So M1 = ∅ or

M2 = ∅ since C is connected. If M2 = ∅, then C ∪ L1 = X1 with C ⊂ X1 and the

Lindelöf L1 ⊃ K1. If M1 = ∅, then the Lindelöf X1 = L1 is a semi-strong LJ-space.

(2) ⇒ (1). Let X2 be Lindelöf, K ⊂ X be compact and K1 = K ∩X1. Then X1 has

a closed Lindelöf L1 ⊃ K1 and a connected C ⊂ X1 \ K1 such that L1 ∪ C = X1.

Put L = L1 ∪ X2, then is closed Lindelöf, L ⊃ K, L ∪ C = X and C ⊂ X \ K.

(c) For the strong LJ-space. (1) ⇒ (2). By (1), let X2 be Lindelöf. Let K1 ⊂ X1

be compact. Then K = K1 ∪ (X1 ∩ X2) is compact, so K ⊂ L for a closed Lindelöf

L ⊂ X with X \ L connected. Put L1 = L ∩ X1, Mi = (X \ L) ∩ Xi, i = 1, 2,

then X \ L = M1 ∪ M2. So M1 = ∅ or M2 = ∅. If M2 = ∅, then X1 \ L1 = X \ L

is connected with L1 ⊂ X1 Lindelöf and L1 ⊃ K1. If M1 = ∅, then the Lindelöf

X1 = L1 is a strong LJ-space. (2) ⇒ (1). Let X2 be Lindelöf and X1 a strong

LJ-space. Let K ⊂ X be compact. Then K1 = (K ∪ X2) ∩ X1 is compact, so

K1 ⊂ L1 for a closed Lindelöf L1 ⊂ X1 with X1 \ L1 connected. Put L = L1 ∪ X2,

then L ⊃ K is Lindelöf and X \ L = X1 \ L1 is connected. �

Corollary 1. Let A ⊂ X be closed with ∂A compact. Then if X is an (a semi-

strong, a strong) LJ-space, so is A.
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P r o o f. PutX1 = A, X2 = X \ A. Then the conclusion follows from Theorem 3.

�

Corollary 2. Let {X1, X2} be a closed cover of X with X2 Lindelöf. Then

(1) if X1 is an (a semi-strong) LJ-space, so is X .

(2) if X1 is a strong LJ-space with ∂(X1) compact, so is X .

P r o o f. (1) See Theorem 3 (case (a), (2) ⇒ (1) and case (b), (2) ⇒ (1)).

(2) Let K ⊂ X be compact and K1 = (K ∩ X1) ∪ ∂(X1). Then X1 has a closed

Lindelöf L1 ⊃ K1 with X1 \L1 connected. Put B = X2 \X1
◦ and L = L1 ∪B, then

the closed Lindelöf L ⊃ K and X \ L = X1 \ L1 is connected. �

Corollary 3. Let X = E ∪ U with U open in X and U compact. Then if E is

an (a semi-strong, a strong) LJ-space, so is X .

P r o o f. The closed A = X \ U ⊂ E has a compact boundary in X and thus

in E, so A is an LJ-space by Corollary 1 since E is an LJ-space. X has a closed

cover {A, U} with U compact, so by Theorem 3, X is an LJ-space. The proofs of

the other cases are similar. �

Remark 1. (1) (a) If {X1, X2} is a closed cover of X with X1 ∩ X2 compact,

then X is a semi-strong J-space iff one of X1 and X2 is compact and the other is a

semi-strong J-space (since semi-strong J⇒J , the proof is similar to Theorem 3 (b)).

(b) Corollaries 1 and 3 are also true for a semi-strong J-space (this follows from (a)).

(2) In Theorem 3 and Corollary 2, the “Lindelöf” cannot be removed. In fact, the

long line Z is a strong J-space, but not a Lindelöf one (see Proposition 3), but the

topological sum Z ⊕ Z is not an LJ-space.

(3) In Corollary 1, the “∂A compact” cannot be omitted (see Theorem 6(2)).

Proposition 7. Let E be a component of X . If X is a (semi-)strong LJ-space,

so is E. Moreover, if a closed subset A is a union of components of X , so is A.

P r o o f. Let K ⊂ E be compact, then X has a closed Lindelöf L ⊃ K with X \L

connected since X is a strong LJ-space. If L ⊃ E, then the Lindelöf E is a strong

LJ-space. If L 6⊃ E, then the connected set X \L intersects E and hence X \L ⊂ E.

So E has a closed Lindelöf L′ = L ∩ E ⊃ K and E \ L′ = X \ L is connected. The

proof for a semi-strong LJ-space is similar. �
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Theorem 4. Let {X1, X2} be a closed cover of X with X1 ∩ X2 non-Lindelöf. If

X1 and X2 are (semi-strong) LJ-spaces, so is X .

P r o o f. To show that X is an LJ-space, let {A, B} be a closed cover of X with

A ∩ B compact. For i = 1, 2, let Ai = A ∩ Xi and Bi = B ∩ Xi. Then {Ai, Bi} is a

closed cover of the LJ-space Xi with Ai ∩Bi compact, so either Ai or Bi is Lindelöf.

Note that X1 ∩ X2 = (A1 ∪ B1) ∩ (A2 ∪ B2) ⊂ (A ∩ B) ∪ B1 ∪ A2. If B1 is Lindelöf,

A2 cannot be Lindelöf since A ∩B is compact while X1 ∩X2 is not Lindelöf. Hence

B2 is Lindelöf, so B = B1 ∪ B2 is also Lindelöf. The case for A1 being Lindelöf is

similar.

To show thatX is a semi-strong LJ-space, letK ⊂ X be compact andKi = K∩Xi

for i = 1, 2. Then Ki is compact, and so there is a closed Lindelöf Li ⊃ Ki in Xi

and connected Ci ⊂ Xi \ Ki with Ci ∪ Li = Xi for i = 1, 2. Let L = L1 ∪ L2 and

C = C1 ∪ C2. Clearly L ⊃ K is closed Lindelöf and C ∪ L = X . Since X1 ∩ X2

is non-Lindelöf, (X1 ∩ X2) \ L 6= ∅. Also Xi \ L ⊂ Xi \ Li ⊂ Ci for i = 1, 2, so

(X1 ∩ X2) \ L ⊂ (C1 ∩ C2). Hence C1 ∩ C2 6= ∅ and thus C is connected. Clearly

C ⊂ X \ K. �

Remark 2. Theorem 4 is not true for strong LJ-spaces (see Example 5(2)) and is

not reversible (in fact, the semi-strong LJ-space Y in Example 5 has a closed cover

{Y, F} with Y ∩ F = F non-Lindelöf. Y is a semi-strong LJ-space, but F is not an

LJ-space since it is discrete and uncountable). In Theorem 4, the assumption that

X1 ∩ X2 is non-Lindelöf is also needed (see Remark 1 (1)).

4. External characterizations

To characterize the LJ-space, we introduce the notion of an L-map.

Definition 4. A map f : X → Y is an L-map if f is closed and f−1(y) is

Lindelöf for any y ∈ Y .

Clearly, a perfect map is an L-map and is boundary-perfect (for the definition,

see Introduction). A boundary-perfect map need not be an L-map (see the map g in

Remark 6). Example 1 shows that an L-map need not be perfect or boundary-perfect.

Theorem 5. The following conditions are equivalent for a space X .

(1) X is an LJ-space.

(2) If a closed f : X → Y has ∂(f−1(y0)) compact and f−1(y0) non-Lindelöf for a

y0 ∈ Y , then f−1(y) is Lindelöf for any y ∈ Y \ {y0}.

(3) Every boundary-perfect map f : X → Y onto a non-Lindelöf space Y is an

L-map.
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P r o o f. (1) ⇒ (2). For any y ∈ Y \ {y0}, A0 = f−1(y0) and A = f−1(y) are

disjoint closed subsets ofX with ∂(A0) compact. Since A0 = f−1(y0) is not Lindelöf,

by Theorem 2, A = f−1(y) is Lindelöf.

(2) ⇒ (1). Let A1, A2 be disjoint closed subsets ofX with ∂(A1) or ∂(A2) compact.

Suppose that ∂(A1) is compact. Let Y be the quotient space obtained from X by

identifying Ai with a point yi for i = 1, 2, and let f : X → Y be the quotient

map. Clearly f is closed and ∂(A1) = ∂(f−1(y1)) is compact. If A1 = f−1(y1) is

not Lindelöf, then since y2 ∈ Y \ {y1}, by (2), A2 = f−1(y2) is Lindelöf. So by

Theorem 2, X is an LJ-space.

(1) ⇒ (3). Let f : X → Y be as in the assumption and y ∈ Y . Since ∂(f−1(y)) is

compact, by Theorem 2, f−1(y) or X − f−1(y) is Lindelöf. But X − f−1(y) is not

Lindelöf because Y is not Lindelöf, so f−1(y) is Lindelöf. Hence f is an L-map.

(3) ⇒ (1). Let {A, B} be a closed cover of X with A ∩ B compact and let

Y = X/B, let f : X → Y be the quotient map and y0 = f(B). Then f is closed, and

if y ∈ Y , then ∂(f−1(y)) is compact. So f is boundary-perfect. If Y is non-Lindelöf,

then f is an L-map by the given condition, so B = f−1(y0) is Lindelöf. If Y is

Lindelöf, then the closed f(A) is also Lindelöf. Then f |A : A → f(A) is perfect.

Hence A = f |−1
A (f(A)) is Lindelöf. �

Remark 3. Theorem 5 is false if the assumption that Y is non-Lindelöf is omitted.

Indeed, f : X → Y , where X is the non-Lindelöf LJ-space Z in Proposition 3 and

Y is a singleton, is such an example.

Corollary 4. Every closed map f : X → Y from a paracompact LJ-space X

onto a non-Lindelöf q-space Y is an L-map.

P r o o f. This follows from Theorem 5 and the result that every closed map

f : X → Y from a paracompact space X onto a q-space Y is boundary-perfect

(see [4]). �

Remark 4. (1) Example 2 shows that the paracompactness of X in Corollary 4

cannot be omitted.

(2) In Corollary 4 the assumption that X is an LJ-space cannot be deleted. In

fact, let R be discrete, X = R × R and Y = R. Let f : X → Y be the projection,

then f is a closed map, but not an L-map.

Proposition 8. Let f : X → Y be a perfect map onto Y . Then

(1) if X is an (a semi-strong) LJ-space, so is Y .

(2) when f is open, if X is a strong LJ-space, so is Y .

P r o o f. (1) is obvious since the inverse image of a compact set is compact for a

perfect map.
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(2) Let K ⊂ Y be compact. Then X has a closed Lindelöf L′ ⊃ f−1(K) with

X \ L′ connected. Put L = Y \ f(X \ L′), then L ⊃ K and Y \ L = f(X \ L′) is

connected. Since f−1(L) ⊂ L′, f−1(L) is Lindelöf and thus L is also Lindelöf. �

Remark 5. In Proposition 8 (2) the “open” cannot be omitted (see Example 5

(4)).

Recall that a continuous map f : X → Y is monotone if all fibers f−1(y) are

connected.

Proposition 9. Let f : X → Y be a monotone L-map onto Y. Then, if Y is an

(a semi-strong, a strong) LJ-space, so is X .

P r o o f. (a) Let {A, B} be a closed cover of X with A ∩ B compact. Then

{f(A), f(B)} is a closed cover of Y . By Lemma 5.5 of [3], f(A) ∩ f(B) = f(A ∩ B)

is compact. So f(A) or f(B) is Lindelöf. Thus f−1(f(A)) or f−1(f(B)) is Lindelöf

since f is an L-map. So A or B is Lindelöf and X is an LJ-space.

(b) Let K ⊂ X be compact. Then Y has a closed Lindelöf L′ ⊃ f(K) and a

connected C′ ⊂ Y \ f(K) with C′ ∪ L′ = Y . Then L = f−1(L′) is closed Lindelöf.

Since f is closed and monotone, C = f−1(C′) is connected by Theorem 6.1.29 of [1].

Clearly L ⊃ K, C ⊂ X \ K and L ∪ C = X . Thus X is a semi-strong LJ-space.

(c) Let K ⊂ X be compact. Then Y has a closed Lindelöf L ⊃ f(K) with Y \ L

connected. So f−1(L) ⊃ K is Lindelöf and X \ f−1(L) = f−1(Y \ L) is connected

since f is closed and monotone. So X is a strong LJ-space. �

Remark 6. (1) Let f : X → Y be a monotone perfect map onto Y. Then, if Y is

a semi-strong J-space, so is X (the proof is similar to the case (b) of Proposition 9).

(2) In Proposition 9 the “monotone” cannot be deleted: let Y be the long line

Z which is a connected, non-Lindelöf, strong J-space and let X = Y ⊕ Y . Then

the obvious map f : X → Y is perfect, but clearly X is not an LJ-space. Also, the

assumption in Proposition 9 that f is an L-map cannot be omitted or replaced by f

being boundary-perfect. Indeed, ifX is as above and E is a two-point space, then the

obvious map g : X → E is boundary-perfect and monotone with each f−1(e)(e ∈ E)

being a strong J-space, but X is not an LJ-space.

Proposition 10. The following conditions are equivalent for a space Y .

(1) Y is an (a semi-strong, a strong) LJ-space.

(2) Y ×Z is an (a semi-strong, a strong) LJ-space for every connected and compact

space Z.

(3) Y ×Z is an (a semi-strong, a strong) LJ-space for some connected and compact

space Z.
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P r o o f. (1) ⇒ (2) is by Proposition 9 with X = Y × Z and f : X → Y the

projection. (2) ⇒ (3) is obvious. (3) ⇒ (1) is by Proposition 8 with X = Y ×Z and

f : X → Y the projection. �

Proposition 11. Each of the following conditions implies that Y × Z is an (a

semi-strong, a strong) LJ-space.

(1) Y and Z are connected (semi-strong, strong) LJ-spaces.

(2) Y is a connected, non-compact (semi-strong, strong) LJ-space and Z is con-

nected.

P r o o f. (1) If Y or Z is compact, this follows from Proposition 10. If neither Y

nor Z is compact, by Proposition 2.5 of [3], Y ×Z is a strong J-space and it follows

from Theorem 1.

(2) If Z is compact, this follows from Proposition 10. If Z is not compact, it

follows from Propositions 2.5 of [3] and Theorem 1. �

Remark 7. (1) Propositions 10 and 11 are true for semi-strong J-spaces (by

Proposition 8.5 of [3] and Remark 6 (1)).

(2) In (1) and in Proposition 10 (2), (3) (Proposition 5.7(b), (c) of [3]), the con-

nectedness cannot be omitted: by Proposition 3 (2), the long line Z is a strong

J-space, but Z × {0, 1} is not an LJ-space.

5. Relationships

Recall a space X is called hereditarily disconnected if X does not contain any

connected subsets of cardinality larger than one.

Theorem 6. Let (A), (B), (C), (a), (b) and (c) be the same as in Theorem 1.

Then

(1) for a locally connected space X ; (A)⇔(B)⇔(C).

(2) none of the six properties is productive (additive, preserved by the quotient

mapping, hereditary with respect to closed subspaces);

(3) for a countably compact space X , (A) ⇔ (a), (B) ⇔ (b), (C) ⇔ (c), (D) ⇔ (d)

and (E) ⇔ (e);

(4) for a hereditarily disconnected space X , “X is Lindelöf” ⇔ (A) ⇔ (B) and “X

is compact” ⇔ (a) ⇔ (b).

P r o o f. (1) (A) ⇒ (B) ⇒ (C) follows by Theorem 1. (C) ⇒ (A). Let K ⊂ X

be compact. Since X is locally connected, there is a disjoint open cover W of X \K
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with each W ∈ W connected. By Theorem 2, there exists a W0 ∈ W such that

L = X \ W0 is Lindelöf. Clearly L ⊃ K and X \ L is connected.

(2) Not productive: by Proposition 3 (2). Not additive: by Remark 1 (1). Not

preserved by the quotient mapping: by Example 4.

Not hereditary with respect to closed subspaces.

For (a), (b) and (c): the strong J-space R+ has a closed discrete subspace Z+

which is not a J-space.

For (A): the long ling Z is a strong LJ-space having a closed subspace [0, ω1)×{0}

homeomorphic to [0, ω1) which is not a strong LJ-space by Proposition 4.

For (B) and (C): in Example 5, the semi-strong LJ-space Y has a discrete closed

subspace F which is uncountable, so F is not an LJ-space.

(3) is obvious since in a countably compact space Lindelöfness⇔ compactness.

(4) Clearly, “X is Lindelöf” ⇒ (A) ⇒ (B) and “X is compact” ⇒ (a) ⇒ (b). To

show that (B) ⇒ “X is Lindelöf” ((b) ⇒ “X is compact”), let K ⊂ X be compact.

By (B) ((b)) X has a closed Lindelöf (a compact) L ⊃ K and a connected C ⊂ X \K

such that L∪C = X . Since X is hereditarily disconnected, C = ∅ or C is a one-point

set. So X is Lindelöf (compact). �

6. Examples

Example 1. An L-map which is not boundary-perfect (so not perfect).

Let Ii = [oi, 1i] (i ∈ ω) be the copy of the unit closed interval I = [0, 1] and let

X = ⊕{Ii : i ∈ ω} be the topological sum. Define an equivalence relation R on X

as follows: for each xi ∈ Ii, if xi 6= oi, then xiRxi; if xi = oi, then oiRoj , j ∈ ω.

Then the natural map f : X → Y = X/R is an L-map, but not a boundary-perfect

map.

Example 2. A closed and open map f : X → Y from a locally compact strong

J-space (so a strong LJ-space) X onto a non-Lindelöf q-space Y which is not an

L-map.

P r o o f. Let Z be the long line. Then Z is non-Lindelöf and first countable (so

a q-space). Let X = Z × Z, Y = Z and let f : X → Y be the projection onto the

first coordinate. Then f is open. Let us show that f is also closed. Note that X is

countably compact since Z is countably compact and first countable (see Theorem

3.10.36 of [1]). Let F ⊂ X be closed, then F is countably compact and therefore

f(F ) is countably compact in Z and thus closed in Z. Since Z is connected non-

compact, X = Z × Z is a strong J-space by Proposition 2.5 of [3]. Clearly f is not

an L-map. �
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Example 3. The Niemytzki plane X is not an LJ-space.

P r o o f. Let A = [0, 1] × [0, 1], B = X \ (0, 1) × [0, 1). Then {A, B} is a closed

cover with A ∩ B compact, but neither A nor B is Lindelöf. �

Example 4. A strong J-space X whose quotient space Q is not an LJ-space.

P r o o f. Let Q be the Niemytzki plane. Put X = Q × R, where R is the real
line. By Proposition 2.5 of [3], the product space X is a strong J-space. Clearly Q

is a quotient space and the projection p : Q × R → Q is the quotient map. �

The following ω1-broom space Y (ω1) is an interesting space. From Theorem 1,

Theorem 6 (2), Remarks 2 and 5, we have seen that it plays an important role in

this note.

Let Z be the long line and X = Z × R+ with the product topology, where R+ is

with the usual topology. For α ∈ [0, ω1) and integer i > 1, let Eα,i be the closed

segment joining 〈〈α, 0〉, 0〉) to 〈〈α + 1, 0〉, 1
i
〉, where 〈α, 0〉 and 〈α + 1, 0〉 are points

of Z. Put

Eα =

( ∞
⋃

i=1

Eα,i

)

∪ ([〈α, 0〉, 〈α + 1, 0〉] × {0}),

where [〈α, 0〉, 〈α + 1, 0〉] is a closed interval of Z.

We define Y (ω1) = ∪{Eα : α ∈ [0, ω1)} to be a subspace of X and call Y (ω1) the

ω1-broom space; we also write Y instead of Y (ω1).

Example 5. The ω1-broom space Y is a semi-strong LJ-space such that

(1) Y is not a strong LJ-space;

(2) Y has a closed cover {A, B} with A ∩ B non-Lindelöf and both A and B are

strong LJ-spaces;

(3) Y has a closed discrete subspace F which is uncountable;

(4) there is a perfect map f : M → Y from a strong LJ-space M onto Y .

P r o o f. For any α ∈ [0, ω1), let Lα = {〈y1, y2〉 ∈ Y : y1 6 〈α, 0〉} and Cα =

Y \ Lα. Then Lα is Lindelöf, Cα is connected and Lα ∪ Cα = Y . Now for any

compact K ⊂ Y , pick α such that K ⊂ Lα. Then K ⊂ Lα+1, Cα+1 ⊂ Y \ K and

Lα+1 ∪ Cα+1 = Y . So Y is a semi-strong LJ-space.

(1) Y is not a strong LJ-space. In fact, for the “beginning point” 〈〈0, 0〉, 0〉 of

Y , let the compact subset H be the one-point set {〈〈0, 0〉, 0〉}. If L ⊂ Y is closed,

Lindelöf and H ⊂ L, then we can see that Y \ L is not connected.

(2) Put A = (Z × {0}) ∪
(

⋃

{Eα : α ∈ [0, ω1

)

, α is a successor ordinal}), B =

(Z × {0}) ∪ (
⋃

{Eα : α ∈ [0, ω1), α is a limit ordinal}.

Then {A, B} is a closed cover of Y with A ∩ B = Z × {0} non-Lindelöf.
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Let us show that A is a strong LJ-space. For a limit ordinal α, put LA
α = {〈z, y〉 ∈

A : z 6 〈α, 0〉}, then LA
α is closed Lindelöf, A \ LA

α is connected and each compact

K ⊂ A is a subset of some LA
α .

Similarly, B is also a strong LJ-space.

(3) Put F = {〈〈α + 1, 0〉, 1〉 : α ∈ [0, ω1)}, then the uncountable F is a closed

discrete subspace of Y .

(4) Let M = B be a subspace of Y and D = {α ∈ [0, ω1) : α is a limit ordinal}.

Then D with the order topology is homeomorphic to [0, ω1). So there exists an order

preserving homeomorphic map ϕ : D → [0, ω1). For any α ∈ D, let fα : Eα → Eϕ(α)

be a homeomorphic map. Now we define f : M → Y as follows.

For any 〈z, y〉 ∈ M ,

f(〈z, y〉) =

{

f(〈z, y〉) = fα(〈z, y〉), 〈z, y〉 ∈ Eα, α ∈ D,

f(〈z, 0〉) = 〈〈α + 1, 0〉, 0〉, 〈z, 0〉 ∈ [〈α + 1, 0〉, 〈α+, 0〉] × {0},

where α+ is the smallest of the limit ordinals greater than α. Then f is a perfect

map. �

Corollary 5.

(1) The ω1-broom space Y (ω1) cannot be the image under an open perfect map of

the long line Z.

(2) Under CH, the Niemytzki plane cannot be the the image under an perfect map

of the long line Z or the ω1-broom space Y (ω1).

P r o o f. (1) The long line Z is a strong LJ-space, thus by Proposition 8 (2),

so is its open perfect image. But by Example 5, the ω1-broom space Y (ω1) is not a

strong LJ-space.

(2) The long line Z and the ω1-broom space Y (ω1) are LJ-spaces by Proposition 8

(1), so their perfect images, but the Niemytzki plane is not an LJ-spaces. �

Now we illustrate the harmonious relationships with a diagram.

compact

��

// Lindelöf

��

strong J

��

// strong LJ

��

semi-strong J //

��

semi-strong LJ

��

J // LJ

1236



Acknowledgment. The author would like to thank the referee for the suggestion

of using the present title of the paper instead of the former title “L-spaces” which

was used before for denoting regular, hereditarily Lindelöf and nonseparable spaces.

References

[1] R.R. Engelking: General Topology. Revised and completed edition, Heldermann Verlag,
Berlin, 1989. zbl

[2] Y.Kodama and K.Nagami: Theory of General Topology. Iwanami, Tokyo, 1974. (In
Japanese.)

[3] E.Michael: J-spaces. Top. Appl. 102 (2000), 315–339. zbl
[4] E.Michael: A note on closed maps and compact sets. Israel Math. J. 2 (1964), 173–176. zbl
[5] E.Michael: A survey of J-spaces. Proceeding of the Ninth Prague Topological Sympo-
sium Contributed papers from the Symposium held in Prague Czech Republic, August
19–25, 2001, pp. 191–193. zbl

[6] J.R.Munkres: Topology. Prentice-Hall, Englewood Cliffs, NJ, 1975. zbl
[7] K.Nowinski: Closed mappings and the Freudenthal compactification. Fund. Math. 76
(1972), 71–83. zbl

[8] L.A. Steen and J.A. Seebach, Jr: Counterexamples in Topology. Springer-Verlag, New
York, 1978. zbl

Author’s address: Y i n - Z hu G a o, Department of Mathematics, Nanjing University,
Nanjing 210093, P.R. China, e-mail: yzgao@jsmail.com.cn.

1237


		webmaster@dml.cz
	2020-07-03T17:06:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




