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Abstract. Let S′ be the class of tempered distributions. For f ∈ S′ we denote by J−αf

the Bessel potential of f of order α. We prove that if J−αf ∈ BMO, then for any λ ∈ (0, 1),
J−α(f)λ ∈ BMO, where (f)λ = λ−nf(ϕ(λ−1

·)), ϕ ∈ S. Also, we give necessary and
sufficient conditions in order that the Bessel potential of a tempered distribution of order
α > 0 belongs to the VMO space.
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1. Introduction

The space of functions of bounded mean oscillation first appeared in the work

of John and Nirenberg [1] in the context of nonlinear partial differential equations

that arise in the study of minimal surfaces. The space of function of bounded mean

oscillation, or BMO, naturally arises as the class of functions whose deviation from

their means over cubes is bounded; L∞ functions have this property, but there

exist unbounded functions with bounded mean oscillation. Such functions are slowly

growing and they typically have at most logarithmic blow up. The space BMO shares

similar properties with the space L∞ and it often serves as a substitute for it. For

instance classical singular integrals do not map L∞ into L∞ but L∞ into BMO.

And in many instances interpolation between Lp and BMO works just as well as

between Lp and L∞. But the role of the space BMO is deeper and more far reaching

than that. This space crucially arises in many situations in analysis, such as in the

characterization of the L2 boundedness of nonconvolution singular integral operators

with standard kernels.
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The following remarkable result is due C. Fefferman (announced in Characteriza-

tions of bounded mean oscillation, Bull. Amer. Soc. 77 (1971), 587–588): the dual

of H1 is BMO.

In this paper we prove that if J−αf ∈ BMO, where f is a tempered distribu-

tion and J−αf is the Bessel potential of f of order α, then for any λ ∈ (0, 1),

J−α(f)λ ∈ BMO (see Theorem 1), where (f)λ = λ−nf(ϕ(λ−1·)), ϕ ∈ S. Also,

we prove (see Theorem 2) that J−αf ∈ VMO if and only if J−αf ∈ BMO and

lim
λ→0+

λα‖J−α(f)λ‖BMO = 0.

2. Definition and notations

In this section, we gather definitions and notations that will be used throughout

the paper.

For any r > 0 and x ∈ Rn we will denote by B(x, r) the closed ball of radius r inRn centered at x. A function is said to be of bounded mean oscillation if its mean

oscillation over all cubes is bounded. Precisely, given a locally integrable function f

on Rn and a measurable set Q in Rn , denote by

fQ =
1

|Q|

∫

Q

f(y) dy,

the mean of f over Q, where | · | denotes the Lebesgue measure on Rn . Then the

oscillation of f over Q is the function |f − fQ| and the mean oscillation of f over Q

is
1

|Q|

∫

Q

|f(x) − fQ| dx.

Definition 1. For f a real-valued locally integrable function on Rn , set

‖f‖BMO = sup
Q

1

|Q|

∫

Q

|f(x) − fQ| dx,

where the supremum is taken over all cubes Q in Rn . The function is called of

bounded mean oscillation if ‖f‖BMO <∞.

For instance, if F is an integrable function on Rn × Rn such that F (·, y) ∈ BMO

for all y ∈ Rn , then the function f given by

f(x) =

∫Rn

F (x, y) dy

satisfies

(1)

∥∥∥∥
∫Rn

F (·, y) dy

∥∥∥∥
BMO

6

∫Rn

‖F (·, y)‖BMO dy.
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Indeed, let Q be a cube in Rn , then using Fubini’s theorem we have

1

|Q|

∫

Q

|f(x) − fQ| dx =
1

|Q|

∫

Q

∣∣∣∣
∫Rn

F (x, y) dy −
1

|Q|

∫

Q

∫Rn

F (z, y) dy dz

∣∣∣∣dx

6
1

|Q|

∫

Q

∫Rn

∣∣∣∣F (x, y) −
1

|Q|

∫

Q

F (z, y) dz

∣∣∣∣dy dx

=

∫Rn

1

|Q|

∫

Q

∣∣∣∣F (x, y) −
1

|Q|

∫

Q

F (z, y) dz

∣∣∣∣dxdy

6

∫Rn

‖F (·, y)‖BMO dy.

This completes the proof of (1).

The space of functions of vanishing mean oscillation VMO was introduced by

Sarason [2] as the set of integrable functions f on Rn satisfying

lim
δ→0

sup
Q:|Q|6 δ

(
1

|Q|

∫

Q

|f(x) − fQ| dx

)
= 0

or

lim
N→∞

sup
Q:l(Q)>N

(
1

|Q|

∫

Q

|f(x) − fQ| dx

)
= 0,

here Q denotes cubes in Rn . Then VMO (Rn ) is the closure in the BMO(Rn ) norm of

the space of continuous functions that vanish at infinity. It is known that f ∈ VMO

if and only if

(2) lim
h→0

‖f − f(· − h)‖BMO = 0

(see Theorem 1 in [2]).

Let S′ denote the space of tempered distributions on Rn , note that BMO ⊂ S′.

For every f ∈ S′ and s > 0, we define the dilation (f)s of the distribution f as

follows:

(f)s(ϕ) = s−nf(ϕ(s−1·)), ϕ ∈ S.

If f is a function, them (f)s(x) = f(sx), for almost all x ∈ Rn .

Let −∞ < α <∞. The Bessel potential J−α of order α is defined by

F (J−αψ) = (1 + |ξ|2)−α/2F (ψ),

ξ ∈ Rn , ψ ∈ S′. Here F : S′ → S′ denotes the Fourier transform on S′. For f ∈ L1

we have

F (f)(ξ) =

∫Rn

f(x)e−iξ·x dx.
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If α > 0, then the Bessel potential J−α is a convolution type operator,

J−αf(x) =

∫Rn

f(y)Gα(x − y) dy,

where the Bessel potential kernel Gα is defined by

(3) Gα(x) =
1

(2π)n/22α/2Γ
(

α
2

)
∫ ∞

0

t(α−n)/2e−|x|2/2te−t/2 dt

t
.

It is also known that ∫Rn

Gα(x) dx = 1,

(see [3]).

3. Main results

Suppose f ∈ BMO and g ∈ L1. In general, the convolution f ∗ g is not defined

as an absolutely convergent integral. However, the operator f → f ∗ g is defined

on the space BMO as the adjoint to the corresponding convolution operator on H1.

Moreover we have the following.

Lemma 1. If f ∈ BMO and g ∈ L1, then f ∗ g ∈ BMO and

‖f ∗ g‖BMO 6 ‖g‖1‖f‖BMO.

P r o o f. We have,

1

|Q|

∫

Q

|(f ∗ g)(x) − (f ∗ g)Q| dx

=
1

|Q|

∫

Q

∣∣∣∣
1

|Q|

∫

Q

((f ∗ g)(x) − (f ∗ g)(y)) dy

∣∣∣∣dx

=
1

|Q|

∫

Q

∣∣∣∣
1

|Q|

∫

Q

[ ∫

Q

(f(x− t) − f(y − t))g(t) dt

]
dy

∣∣∣∣dx;

by Fubini’s theorem

1

|Q|

∫

Q

|(f ∗ g)(x) − (f ∗ g)Q| dx(4)

=
1

|Q|

∫

Q

∣∣∣∣
1

|Q|

∫

Q

[∫

Q

(f(x− t) − f(y − t)) dy

]
g(t) dt

∣∣∣∣ dx

6
1

|Q|

∫

Q

∫

Q

|f(x− t) − fQ||g(t)| dxdt

6

( ∫

Q

|g(t)| dt

)
‖f‖BMO.
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Thus

‖f ∗ g‖BMO 6 ‖g‖1‖f‖BMO.

This completes the proof of Lemma 1. �

Theorem 1. Let f ∈ S′, α > 0, and J−αf ∈ BMO. Then for every λ with

0 < λ < 1 we have J−α(f)λ ∈ BMO. Moreover, there exists a constant Cα > 0,

depending only on α, such that

sup
0<λ<1

λα‖J−α(f)λ‖BMO 6 Cα‖J
−αf‖BMO.

P r o o f. Let us begin by observing that

J−α(f)λ = (f)λ ∗Gα,

so

λα‖J−α(f)λ‖BMO = λα sup
Q

|Q|−1

∫

Q

|J−α(f)λ(x) − (J−α(f)λ)Q| dx

= λα sup
Q

|Q|−1

∫

Q

∣∣∣∣
∫Rn

(f)λ(y)Gα(x− y) dy − |Q|−1

∫

Q

J−α(f)λ(z) dz

∣∣∣∣dx

= λα−n sup
Q

|Q|−1

∫

Q

|f ∗ (Gα) 1
λ

(x) − (f ∗ (Gα) 1
λ

)Q| dx;

thus

(5) λα‖J−α(f)λ‖BMO = λα−n‖f ∗ (Gα) 1
λ

‖BMO.

On the other hand we have

(6) (Gα) 1
λ

= Gα ∗ Yλ

where

(7) F (Yλ)(ξ) = λn

(
1 + |ξ|2

1 + λ2|ξ|2

)α/2

.

Consider the expansion

(1 − t)α/2 = 1 +

∞∑

m=1

Am,αt
m,
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where |t| < 1. The explicit formula for the coefficients Am,α is as follows:

(8) Am,α =
(−1)m α

2 (α
2 − 1) . . . (α

2 −m+ 1)

m!

for all m > 1. We already know that

(9) Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
;

thus we can write (8) as follows

Am,α =
(−1)m α

2

(
α
2 − 1

)
. . .

(
α
2 −m+ 1

) (
α
2 + 1

)
. . .

(
α
2 +m+ 1

)

(m!)2m(1+α/2)

×
[ m!m(1+α/2)

(
α
2 + 1

)
. . .

(
α
2 +m+ 1

)
]
.

By (9) we obtain

Γ
(
1 +

α

2

)
= lim

m→∞

m!m(1+α/2)

(
α
2 + 1

)
. . .

(
α
2 +m+ 1

) .

Thus there exists Mα such that

∣∣∣
m!m(1+α/2)

(
α
2 + 1

)
. . .

(
α
2 +m+ 1

)
∣∣∣ 6 Mα,

for all m. Then

|Am,α| 6

∣∣(α
2 +m+ 1

)
. . .

(
α
2 + 1

)
α
2

(
α
2 − 1

)
. . .

(
α
2 −m+ 1

)∣∣
(m!)2m(1+α/2)

Mα,

thus

(10) |Am,α| 6 Cαm
−(1+α/2)

where

Cα =
∣∣∣
(α

2
+m+ 1

)
. . .

(α
2

+ 1
)α

2

(α
2
− 1

)
. . .

(α
2
−m+ 1

)∣∣∣Mα.

Next, since
1 + |ξ|2

1 + λ2|ξ|2
= λ−2

(
1 −

(1 − λ2)

1 + λ2|ξ|2

)
,
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we get from (7)

F (Yλ)(ξ) = λn
( 1 + |ξ|2

1 + λ2|ξ|2

)α/2

= λn
[
λ−2

(
1 −

(1 − λ2)

1 + λ2|ξ|2

)]α/2

= λn−α
(
1 −

1 − λ2

1 + λ2|ξ|2

)α/2

= λn−α

[
1 +

∞∑

m=1

Am,α

( 1 − λ2

1 + λ2|ξ|2

)m
]

= λn−α + λn−α
∞∑

m=1

Am,α(1 − λ2)m(1 + λ2|ξ|2)−m,

therefore

(11) Yλ = λn−αδ + λn−α
∞∑

m=1

Am,α(1 − λ2)m(G2m)λ,

where δ denote the delta-measure at 0.

Let us denote

Xλ =
∞∑

m=1

Am,α(1 − λ2)m(G2m)λ.

Then

∫
|Xλ| 6

∫ ∞∑

m=1

|Am,α||(1 − λ2)m||(G2m)λ|

6 Cα

∞∑

m=1

m−(1+ α

2 )(1 − λ2)m

∫
|(G2m)λ|

for 0 < λ 6 1; but
∫
(G2m)λ =

∫
|(G2m)λ| = F ((G2m)λ)(0) = 1, thus Xλ ∈ L1 for all

0 < λ 6 1.

Now we can write (11) as follows

(12) λα−nYλ = δ +Xλ.

By (5), (6) and (12) we have

λα−n‖f ∗ (Gα) 1
λ

‖BMO = λα−n‖f ∗Gα ∗ Yλ‖BMO

= ‖f ∗Gα ∗ λα−nYλ‖BMO

= ‖f ∗Gα ∗ (δ +Xλ)‖BMO

= ‖f ∗Gα ∗ δ + f ∗Gα ∗Xλ‖BMO

6 ‖f ∗Gα‖BMO + ‖f ∗Gα ∗Xλ‖BMO

6 ‖f ∗Gα‖BMO + ‖Xλ‖1‖f ∗Gα‖BMO

6 (1 + ‖Xλ‖1)‖f ∗Gα‖BMO,
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where we have used Lemma 1. Finally

sup
0<λ<1

{λα‖J−α(f)λ‖BMO} 6 Cα‖J
−αf‖BMO.

This completes the proof of Theorem 1. �

Theorem 2. Let f ∈ S′ and α > 0. Then the following are equivalent:

(i) J−αf ∈ BMO and

lim
λ→0

λα‖J−α(f)λ‖BMO = 0,

(ii) J−αf ∈ VMO.

P r o o f. Let f ∈ S′. The following equality can be easily checked:

1

(1 + |ξ|2)α/2
−

1

(1 + |ξ|2)α/2

(1 + λ2|ξ|2)α/2 − λα|ξ|α

(1 + λ2|ξ|2)α/2
(13)

=
λα

(1 + λ2|ξ|2)α/2
+

λα|ξ|α − λα(1 + |ξ|2)α/2

(1 + |ξ|2)α/2(1 + λ2|ξ|2)α/2
.

It is known that there exists Φα ∈ L1 such that

(14)
(1 + |ξ|2)α/2 − |ξ|α

(1 + |ξ|2)α/2
= F (Φα)(ξ)

for all ξ ∈ Rn (see [3], p. 134). It follows from (13) and (14) that

J−αf − J−αf ∗ (λ−nΦα(λ−1·))(15)

= λαf ∗ (λ−nGα(λ−1·)) − λα[f ∗ (λ−nGα(λ−1·))] ∗ Φα.

Thus by Lemma 1 we have

‖J−αf − J−αf ∗ (λ−nΦα(λ−1·))‖BMO(16)

6 λα‖f ∗ (λ−nGα(λ−1·))‖BMO + λα‖f ∗ (λ−nGα(λ−1·))‖BMO‖Φα‖1

= λα‖J−α(f)λ‖BMO(1 + ‖Φα‖1) → 0 as λ→ 0.

On the other hand by (2) and using Lemma 1 together with the Lebesgue dominated

convergence theorem one can see that the functions

gλ = J−αf ∗ (λ−nΦα(λ−1·))

belong to the space VMO for every 0 < λ 6 1. Thus, since the space VMO is a closed

subspace of the space BMO, (16) implies J−αf ∈ VMO. This proves the implication

(i) ⇒ (ii).
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Let f ∈ S′ and J−αf ∈ VMO. It is not hard to check that

λα

(1 + λ2|ξ|2)α/2
=

(1 + |ξ|2)α/2

1 + |ξ|α

×
[ 1

(1 + |ξ|2)α/2
−

1

(1 + |ξ|2)α/2

(1 + λ2|ξ|2)α/2 − λα|ξ|α

(1 + λ2|ξ|2)α/2

+
λα

(1 + λ2|ξ|2)α/2(1 + |ξ|2)α/2

]
.

There exists a function ψα ∈ L1 such that

(17) F (ψα)(ξ) + 1 =
(1 + |ξ|2)α/2

1 + |ξ|α
,

for all ξ ∈ Rn (see [3], p. 134). Now we get from (17) and (14) that

λαf ∗ (λ−nGα(λ−1·)) = ψα ∗ [J−αf − J−αf ∗ (λ−nΦα(λ−1·))](18)

+ [J−αf − J−αf ∗ (λ−nΦα(λ−1·))]

+ ψα ∗ (λα[J−αf ∗ (λ−nGα(λ−1·))])

+ λα[J−αf ∗ (λ−nGα(λ−1·))].

Using Lemma 1, we obtain

‖ψα ∗ (λα[J−αf ∗ (λ−nGα(λ−1·))])‖BMO(19)

6 λα‖ψα‖1‖J
−αf ∗ (λ−nGα(λ−1·))‖BMO

6 λα‖ψα‖1‖J
−αf‖BMO‖(λ

−nGα(λ−1·))‖1

and

‖λα[J−αf ∗ (λ−nGα(λ−1·))]‖BMO(20)

= λα‖J−αf ∗ (λ−nGα(λ−1·))‖BMO 6 λα‖J−αf‖BMO‖(λ
−nGα(λ−1·))‖1.

Thus (19) and (20) tend to zero as λ → 0 and the last two terms on the right-hand

side of (18) tend to zero (in BMO). Next, we will prove that the first two terms on

the right-hand side of (18) also tend to zero (in BMO). In order to do that let us

pick B1 = B(0, 1) the unit ball centered at the origin, and δ > 0, then we have

∫Rn

|J−αf(x)|

(1 + |x|)n+δ
dx 6

∫Rn

|J−αf(x) − (Jαf)B1
|

(1 + |x|)n+δ
dx+

∫Rn

|(J−αf)B1
|

(1 + |x|)n+δ
dx

6 C‖J−αf‖BMO + C1.
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Thus

(21)

∫Rn

|J−αf(x)|

(1 + |x|)n+δ
dx <∞.

Next, we need to prove that the convolution of the function J−αf with the function

λ−nΦα(λ−1·) is defined as an absolutely convergent integral. Observe that from (21)

the function J−αf ∗ g exists as an absolutely convergent integral for any function

g ∈ L1(Rn ) satisfying the estimate

(22) |g(x)| 6
C

|x|n+δ
,

for all |x| > 1 and some δ > 0.

Next, we will show that the function Φα satisfies the condition (22). The following

formula holds (see [3])

(23) Φα(x) = −
∞∑

m=1

Am,αG2m(x).

Using formula (3) for the Bessel potential kernel G2m, we obtain that for |x| > 1 and

0 < δ 6 1,

G2m(x) =
1

(2π)n/22m(m− 1)!

∫ ∞

0

t(2m+δ)/2t−(n+δ)/2e−|x|2/2te−t/2 dt

t
(24)

6
1

(2π)n/22m(m− 1)!
sup
t>0

{t−(n+δ)/2e−|x|2/2t}

∫ ∞

0

t(2m+δ)/2e−t/2 dt

t

6
2(2m+δ)/2Γ(1

2 (2m+ δ))

(2π)n/22m(m− 1)!
sup
t>0

{t−(n+δ)/2e−|x|2/2t}

6 an

Γ
(

1
2 (2m+ δ)

)

(m− 1)!
|x|−(n+δ).

Using Stirling’s formula (see [4]) for the Gamma function, we have

(25)
Γ

(
1
2 (2m+ δ)

)

(m− 1)!
6 cmδ/2,

for allm > m0. In (25) the constant c does not depend on δ andm, and the constant

m0 does not depend on δ. It follows from (24) and (25) that there exists a constant

c̃n,δ such that

(26) G2m(x) 6 c̃n,δm
δ/2|x|−(n+δ),
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for all m > 1 and |x| > 1. Next (10), (23) and (26) show that the function Φα

satisfies condition (22). Hence, the function given by

λ−n|J−αf | ∗ |Φα(λ−1·)|(x) =

∫Rn

λ−n|J−αf(y)|
∣∣∣Φα

(x− y

λ

)∣∣∣dy

is well defined. Therefore, using Lemma 1, we have

‖J−αf ∗ (λ−nΦα(λ−1·))‖BMO 6 ‖J−αf‖BMO‖Φα‖1.

Since ∫Rn

Φα(y) dy = F (Φα)(0) = 1,

we have

‖J−αf − J−αf ∗ (λ−nΦα(λ−1·))‖BMO(27)

=

∥∥∥∥
∫Rn

(J−αf(·) − J−αf(· − y))λ−nΦα

( y
λ

)
dy

∥∥∥∥
BMO

6

∫Rn

λ−n
∣∣∣Φα

( y
λ

)∣∣∣‖J−αf(·) − J−αf(· − y)‖BMO dy,

where we have used the estimate (1). Since J−αf ∈ VMO and

lim
λ→0+

λ−n

∫

|y|>ε

|Φα

( y
λ

)
| dy = 0,

for every ε > 0, we get from (27)

(28) lim
λ→0+

‖J−αf − J−αf ∗ (λ−nΦα(λ−1·))‖BMO = 0.

Finally, from (18), (19), (20) and (28) we have

λα‖J−αf‖BMO = λα‖f ∗ (λ−nGα(λ−1·))‖BMO → 0,

as λ→ 0 and the proof of Theorem 2 is complete. �
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