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ON RINGS ALL OF WHOSE MODULES ARE RETRACTABLE

Şule Ecevit and Muhammet Tamer Koşan

Abstract. Let R be a ring. A right R-module M is said to be retractable if
HomR(M,N) 6= 0 whenever N is a non-zero submodule of M . The goal of this
article is to investigate a ring R for which every right R-module is retractable.
Such a ring will be called right mod-retractable. We proved that
(1) The ring

∏
i∈I Ri is right mod-retractable if and only if each Ri is a right

mod-retractable ring for each i ∈ I, where I is an arbitrary finite set.
(2) If R[x] is a mod-retractable ring then R is a mod-retractable ring.

Throughout this paper, R is an associative ring with unity and all modules are
unital right R-modules.

Khuri [1] introduced the notion of retractable modules and gave some results for
non-singular retractable modules when the endomorphism ring is (quasi-)continuous.
For retractable modules, we direct the reader to the excellent papers [1],[2], [3] and
[4] for nice introduction to this topic in the literature.

Let M be an R-module. M is said to be a retractable module if HomR(M,N) 6= 0
whenever N is a non-zero submodule of M ([1]).
We give some examples.

(i) Free modules and semisimple modules are retractable.
(ii) Any direct sum of Zpi is retractable, where p is a prime number.
(iii) The Z-module Zp∞ is not retractable.
(iv) Let R be an integral domain with quotient ring F and F 6= R. Then R⊕F

is a retractable R-module, because EndR(M) =
(
F F
0 R

)
.

(v) Assume that MR is a finitely generated semisimple right R-module. Then
the module MR is retractable and EndR(M) is semisimple artinian By [3,
Corollary 2.2]

(vi) Take an R-module M . Let 0 6= N ≤ R⊕M ; take 0 6= n ∈ N and construct
the map ϕ : R⊕M → N by ϕ(1) = n and ϕ(m) = 0 for all m ∈M . Since
0 6= ϕ ∈ HomR(R⊕M,N), we have HomR(R⊕M,N) 6= 0, thus R⊕M is
retractable.
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In this note, we deal with some ring extensions of a ring R for which every (right)
R-module is retractable. Hence, such a ring will be called right mod-retractable.
This will avoid a conflict of nomenclature with the existing concept of retractability.
The following examples show that this definition is not meaningless.

We take Z-modules M = Q and N = Z. Note that Q is a divisible group, so
every its homomorphic image is a divisible group as well. Since the only divisible
subgroup of Z is 0, the only homomorphism of Q into Z is the zero homomorphism.

Let R, S be two rings and M be an R-S-bimodule. Then we consider the

ring R′ =
(
R M
0 S

)
. Let I =

(
0 M
0 0

)
and K = eR′, where e =

(
1 0
0 0

)
. We

claim that HomR′(K, I) = 0. Note that I * K. Let f ∈ HomR′(K, I). Then
f(K) = f(eR) = f(eeR) = f(e)eR = f(e)K ⊆ IK = 0, i.e., R′ is retractable.

A ring R is called (finitely) mod-retractable if all (finitely generated) right
R-modules are retractable.

Example 1. (i) Any semisimple artinian ring is mod-retractable.
(ii) Z is a finitely mod-retractable ring but is not mod-retractable ring.

We start the Morita invariant property for (finitely) mod-retractable rings.

Theorem 2. (Finite) mod-retractability is Morita invariant.

Proof. Let R and S be two Morita equivalent rings. Assume that f : Mod-R→
Mod-S and g : Mod-S → Mod-R are two category equivalences. Let M be a
retractable R-module. Then M is a retractable object in Mod-R. Let 0 6= N ≤ f(M).
Then HomR

(
M, g(N)

)
6= 0 since g(N) is isomorphic to a submodule of M . Thus,

we have 0 6= HomS
(
f(M), fg(N)

) ∼= HomS
(
f(M), N

)
. This follows that f(M) is

a retractable object in Mod-S. �

Let R be a ring, n a positive integer and the ring Mn(R) of all n× n matrices
with entries in R.

Corollary 3. If R is (finitely) mod-retractable, then Mn(R) is (finitely) mod-retrac-
table.

Proof. By Theorem 2. �

Theorem 4. The class of (finite) mod-retractable rings is closed under taking
homomorphic images.

Proof. Suppose R is a (finite) mod-retractable ring. It is well-known that
HomR(M,N) = HomR/I(M,N)

for each ideal I of R and M,N ∈ Mod-R/I. Now the proof is clear. �

Recall that a module M is said to be e-retractable if, for all every essential
submodule N of M , HomR(M,N) 6= 0 (see [1]).

Lemma 5. The following statements are equivalent for a ring R.
(1) R is (finitely) mod-retractable.
(2) Every (finitely generated) R-module M is e-retractable.
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(3) For every (finitely generated) R-module M and N ≤M , HomR(M,N) = 0
if and only if HomR

(
M,E(N)

)
= 0, where E(N) is an injective hull of N .

Proof. (1)⇒ (2) and (2)⇒ (3) are clear.
(2)⇒ (1) Let M be a (finitely generated) right R-module and N be a submodule
of M . Since E(N) is an injective module, we extend the inclusion N ⊆ E(N) to
the map α : M → E(N). This implies that α(N) = N . Thus α(M)∩N = N . Since
N ≤e N , we have N ≤e α(M). This implies that HomR

(
α(M), N

)
6= 0. Moreover,

for K = Ker(α),
HomR

(
α(M), N

)
= HomR

(
M/K,N

)
⊆ HomR(M,N) .

As such, HomR(M,N) 6= 0.
(3)⇒ (2) Let N be an essential submodule of a (finitely generated) right R-module
M . Then E(N) ∼= E(M). By (3), we can obtain that HomR(M,N) = 0, and so
HomR

(
M,E(N)

)
= 0. Hence HomR

(
M,E(M)

)
= 0. �

By Example 1, a commutative ring need not be retractable.

Theorem 6. Any ring that is Morita equivalent to a commutative ring is finitely
mod-retractable.

Proof. By Theorem 2, it suffices to prove the claim for a commutative ring R. Let
M be a finitely generated R-module and N ≤M . Assume that HomR

(
M,E(N)

)
6=

0, and take 0 6= α ∈ HomR
(
M,E(N)

)
. Since M is a finitely generated R-module,

we can write α(M) as follows (where the sum is not necessarily direct): α(M) =
Rm1 +Rm2 + . . . Rmn with mi ∈ E(N), 1 ≤ i ≤ n. Since N is essential in E(N),
thus there exists r ∈ R such that rmi ∈ N for all i and rα(M) 6= 0. Now we
can define 0 6= β : α(M) → N such that β(mi) = rmi for all 1 ≤ i ≤ n. Thus
0 6= βα ∈ HomR(M,N). This implies that HomR(M,N) 6= 0. By Lemma 5, the
R-module M is retractable. �

Example 7. Let R be a commutative artin ring. Assume that a ring S is Morita
equivalent to R. First, note that every S-module is retractable and has a maximal
submodule. We consider an S-module M . Let N be a maximal submodule of M .
Hence we have a simple submodule K of N . Then there exits an S-homomorphism
f : M → E(K), where E(K) is the injective hull of K. Clearly, f(M) is a finitely
generated S-module. By Theorem 6, f(M) is a retractable S-module and so M is
a retractable S-module.

Example 7 shows that the class of right mod-retractable rings is not closed under
direct sums.

Theorem 8. The ring
∏
i∈I Ri is right mod-retractable if and only if each Ri is a

right mod-retractable ring for each i ∈ I, where I is an arbitrary finite set.

Proof. :⇒ Indeed, Ri is a homomorphic image of
∏
i∈I Ri. So the result follows

from Theorem 4.
⇐: Let each ei denote the unit element of Ri for all i ∈ I. A module M over∏
i∈I Ri can be written as set direct product

∏
i∈IMi, where MiRi = Mei and

external operation defined as (ri)i∈I(mi)i∈I = (rimi)i∈I . Thus retractability of M
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is given by retractability of each Mii∈I . But, since each Ri is mod-retractable, this
condition is satisfied. �

Corollary 9. The class of all right mod-retractable rings is closed under taking
finite direct products.

Proof. By Theorem 8. �

Giving a ring R, R[X] denotes the polynomial ring with X a set of commuting
indeterminate over R. If X = {x}, then we use R[x] in place of R[{x}].

Theorem 10. If R[x] is a mod-retractable ring then R is a mod-retractable ring.

Proof. Since R ∼= R[x]/R[x]x, the result is clear from Theorem 4. �
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