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1. INTRODUCTION 

Throughout this paper, we let A, BeCnXn be normal with eigenvalues a«, ..., a„ 
and j8 l 9 . . . , j8n, respectively. For 1 = m ^ «, denote by em(xl, ..., xn) the m'th 
elementary symmetric function of xl9 ..., x„ e C, and by Fm(C) the m'th elementary 
symmetric function of the eigenvalues of C e CnXn. We study the conjectures 

(Em) Em(A + B) e co{em(ai + j8,(1), ..., ccn + Pa(n)) \veSn}, 

(Fm) Em(AB) e c o ^ a ^ i ) , ..., ccja{n)) \ G e Sn} . 

Here co denotes the convex hull. 

(Ex) is trivially true (tr (A + B) = tr A + tr B). 

Marcus [4] and de Oliveira [7] conjectured 

(E„) det (A + B) e co {n (a,- + A,(l)) | o e Sn} , 
i 

which is still open. It is true if A and B are Hermitian, i.e., if all the a/s and J_»,'s 
are real [2]. It is also true in certain other special cases, see [6] and the references 
therein. 

(E2) is known to be true in the Hermitian case [2]. 

We will show (E2) and (E3). 
Due to de Oliveira [7], and in fact tracing back to Horn [3, Theorem 7], we have 

(FO t r A B e c o { X a A ( o k ^ 5 n } . 
i 

(F„) is clearly true (det AB = det A det B). We will show (F„_ t ) . 

By a unitary similarity transformation, (Em) and (Fm) can be seen equivalent to 

(Em) Em(A' + UB'UH) € co {em(at + pa(l),..., oe„ + /?„<„,) | a e S„} , 

(Fn) Em(A'UB'UH) _ co {em(xja(l), ..., aja(n)) \aeSn}. 

Here A' = diag(a,), B' = diag^j) , and UeC*n is unitary. 
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2 . (E2) 

We prove (E2). Let us denote by yu ...,yn the eigenvalues of C = A + B and 
by C(w) the m'th compound of C. Since 

- I l M , - = (Ir,)2-Er2, 
i <j i i 

i.e., 
2 tr C(2) = (tr C)2 - tr C2 , 

we have 

(1) 2 tr (A + B)(2) = (tr (A + B))2 - tr (A + B)2 = 

= / - tr (AB + BA) = f - 2 tr AB . 

Here 
/ = ( t r ( A + B ) ) 2 - t r ( A 2 + £ 2 ) . 

On the other hand, denoting 

rf. = «£ + £ r f ( f ) , 

we have 

(2) 2e2(^,...,^) = (I'/T)2-E('/T)2 = 
i i 

= (E («. + /U))2 - E («« + / W 2 = / - 2 E«A(o • 
i i i 

Now (E2) follows from (1) and (2) by (F.). 

3. (E3) 

Analogously, let us start from 

6 E E E w * = (E JiY - 3(E y«) (E r2) + 2 E ??, 
i<j<k i i i i 

i.e., 
6 tr C(3) = (tr C)3 - 3 tr C tr C2 + 2 tr C3 , 

which implies 

6 tr (A + B)(3) = (tr (A + B))3 - 3 tr (A + B) tr (A + B)2 + 

+ 2 tr (A + B)3 = g - 3 tr (A + B) tr (AB + BA) + 

+ 2 tr (A2B + ABA + BA2 + AB2 + BAB + B2A) = 

= g - 6 tr (A + B) tr AB + 6 tr (A2B + AB2) . 

Here 
g = (tr (A + B))3 - 3 tr (A + B) tr (A2 + B2) + 2 tr (A3 + B3) . 
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On the other hand, 

6e3(rfi> • • •> ll) = (X tff - 3 (1 tf) X (r,°)2 + 2 X 0/?)3 = 
I I 

= a - 6 tr (A + B) X «A(.> + 6 X «,/W) + 6 X «A2
(i) • 

i i i 

By (F.), there exists a convex combination 

(3) tr AB = X '„ I «A(o ('„ = 0, X '„ = 1)> 
aeSn i a 

and the t^'s are obtained as follows [3, 7]: For some unitary U, 

(4) tr AB = tr A'UB'UH . 

By BirkhofF's theorem, there exists a convex combination 

(5) |U |2 = X t0P. 
a 

where |*|2 is understood elementwise and the P^'s are permutation matrices with 
rows corresponding to o\ Since this U satisfies also tr A2B = tr (A ) 2 UB'UH, 
tr AB2 = tr A'U(B')2 UH, these same t„'s satisfy also 

(6) t rA 2B = X ^ L ^ 0 ( i ) , t rAB 2 = X ^ Z a A 2
( i ) . 

a i a i 

Now (E3) follows. 

4. (E4) 

By Newton's formula, 

2 4 X X X X w * y ( = ... + 3(X-/2)2 + ..., 
i<j<k<l i 

and so 
24 tr (A + B)(4) = ... + 3(tr (A + B)2)2 + ... = ... + 12(tr AB)2 + . . . . 

On the other hand, 

24e4(i,T, ..., rfi) = ... + 3(£ (a, + P.w)2)2 + ... = 
i 

= . . . + 1 2 ( X a A ( 0 ) 2 + . . . . 
i 

Let U be as in (4) and the ttf's as in (5). Using (3), (6), and the analogous results 
for tr A3B etc., we could do as before if these same t^'s would satisfy also 

(trAB)2 = Xt„(X«A(,-))2< 
a i 

which is obviously not true in general. Therefore the case m = 4 remains open. 
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5. (E„) 

Let U eC"x" be unitary. Consider the following condition: 

(P) There exist tjs (a e Sn) with ta = 0, ]T ta = 1, satisfying 

|t/(m)|2 = It<,|pH 
<T 

for all m = \, ..., n. 

It is easy to see that (P) is true for all U if n = 3. Drury [1] proved that (P) is not 
generally valid if n = 4. (Dropping out the requirement ta = 0, we obtain a weaker 
condition, which always holds [6].) Now let C = A' + UB'UH be as in (E^). We 
claim that 

U satisfies (P) => C satisfies (E'n). 

For the proof, let N = {V ..., n}, 1 = m = n, S = {I c N | |/ | = m], |-| = 
= card. Order S lexicographically. For J, K e S, the matrix 

e = («,*) = I t.lpH 
a 

has (6(1, K) = 0 if / * K, and 3(1,1) = 1) 

IJK = Z t,<5(<TO), K) = I I . . 
a <T,<T(J) = K 

Now, for 0 + J, K cz N, denote UJK = the corresponding submatrix of U, ay = 
= OLJX ... OLJP if J = {j!, . . . , j p } , /?j respectively, and J~ = N\ J. Since 

rf = det C = det (A ' + U£'U") = £ X X |det U^|2 a , - ^ 
/ = o J,|J| = / K,|K| = / 

[7] and, by (P), 

|det UJK\2 = qJK = £ < - , , 
<r,«r(J) = K 

we have 

<i = Z Z I Z ta^pK = i E I ' A - ^ , = 
1 = 0 J,|J|=/ K,|K| = / <r,<r(J) = K I \J\ = l a 

= z z *.*/-&(/> = z <« z «/-/w> = z i* n & + P«J>) • 
J a <r J a j 

Thus C satisfies (En). 

6. (Fn-0 

We prove (F„-i). For 1 = i = n, denote at = %u ; } , bj = Av\{I-}. Now A(n_1) and 
^(«-D a r e n o r m a i wjth eigenvalues aiy ..., an and fex, ..., b„, respectively. Applying 
(FjtoAl*-1*, B^'l\ we have 

trCAB)^-^ = t r A ^ ^ ^ - ^ e c o l a ! ^ ! ) + ... + anitf(n) | a e Sn} . 
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Since 

Qxba(l) + ••• + <*nh{n) = *i i- l(aiAr<l). • ' •> a A ( n ) ) > 

(Pn_!) follows. 

7. (Fm) , 1<: m^ n 

Let U e CnXn be unitary, 1 = m ^ n. Consider the following condition: 

( P J There exist tjs (G e Sn) with t(T = 0,Yt<r= 1, satisfying 

IU ( i2 - z t,\p*r>\ • 
a 

Drury [1] proved that (Pm) is not generally valid if n ^ 4 and 2 ^ m <̂  n — 2. 
Let G = A'UB'UH be as in (Fm). We claim that, for 1 = m = n, 

U satisfies (Pm) => G satisfies (Fm) . 

For the proof, denoting by su the sum of elements, we have 

Em(G) = tv(A'UB'UHym) = tv((A'ym)U^m)(B'ym)(UHym)) = 

= su((Afym) |U(m)|2 (B')(m)) = su ((A'ym)(Y t&\pim)\)(B'ym)) = 

= ltffsu((A'ym)\nmf(B'ym)) = 
a 

= I t<rtr((AT)Pim\BT)(PlYm>) = 
a 

= £ t, tr (A ' P .B 'P j )^ = X t^m(«,/?.(,„ •... « A W ) • 
<7 <T 

Therefore (Fm) holds. 

Let us add one remark. For 1 = m = p <i n, let Ap e CpXp be the principal sub-
matrix of A corresponding to the p first rows and columns. Marcus and Sandy ([5], 
see also [4]) proved that 

Em(Ap) e co {em(aff(1), ..., a,(p)) | a e Sn) . 

It is easy to see that this is a special case of (Fm) where 

- f r o). 
Thus (Fm) holds in this special case. 
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