Czechoslovak Mathematical Journal

Jorma Kaarlo Merikoski; Ari Virtanen

On elementary symmetric functions of the eigenvalues of the sum and product of normal matrices

Czechoslovak Mathematical Journal, Vol. 42 (1992), No. 2, 193-198

Persistent URL: http://dml.cz/dmlcz/128332

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON ELEMENTARY SYMMETRIC FUNCTIONS OF THE EIGENVALUES OF THE SUM AND PRODUCT OF NORMAL MATRICES

Jorma Karlo Merikoski and Ari Virtanen, Tampere

(Received July 20, 1990)

1. INTRODUCTION

Throughout this paper, we let $A, B \in \mathbb{C}^{n \times n}$ be normal with eigenvalues $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$, respectively. For $1 \leqq m \leqq n$, denote by $e_{m}\left(x_{1}, \ldots, x_{n}\right)$ the m 'th elementary symmetric function of $x_{1}, \ldots, x_{n} \in \mathbb{C}$, and by $E_{m}(C)$ the m 'th elementary symmetric function of the eigenvalues of $C \in \mathbb{C}^{n \times n}$. We study the conjectures
$E_{m}(A+B) \in \operatorname{co}\left\{e_{m}\left(\alpha_{1}+\beta_{\sigma(1)}, \ldots, \alpha_{n}+\beta_{\sigma(n)}\right) \mid \sigma \in S_{n}\right\}$,
$\left(\mathrm{F}_{m}\right) \quad E_{m}(A B) \in \operatorname{co}\left\{e_{m}\left(\alpha_{1} \beta_{\sigma(1)}, \ldots, \alpha_{n} \beta_{\sigma(n)}\right) \mid \sigma \in S_{n}\right\}$.
Here co denotes the convex hull.
$\left(\mathrm{E}_{1}\right)$ is trivially true $(\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B)$.
Marcus [4] and de Oliveira [7] conjectured

$$
\begin{equation*}
\operatorname{det}(A+B) \in \operatorname{co}\left\{\prod_{i}\left(\alpha_{i}+\beta_{\sigma(i)}\right) \mid \sigma \in S_{n}\right\} \tag{n}
\end{equation*}
$$

which is still open. It is true if \mathbf{A} and \mathbf{B} are Hermitian, i.e., if all the α_{i} 's and $\beta_{i}{ }^{\text {'s }}$ are real [2]. It is also true in certain other special cases, see [6] and the references therein.
$\left(\mathrm{E}_{2}\right)$ is known to be true in the Hermitian case [2].
We will show $\left(E_{2}\right)$ and $\left(E_{3}\right)$.
Due to de Oliveira [7], and in fact tracing back to Horn [3, Theorem 7], we have

$$
\begin{equation*}
\operatorname{tr} A B \in \operatorname{co}\left\{\sum_{i} \alpha_{i} \beta_{\sigma(i)} \mid \sigma \in S_{n}\right\} . \tag{1}
\end{equation*}
$$

$\left(\mathrm{F}_{n}\right)$ is clearly true $(\operatorname{det} A B=\operatorname{det} A \operatorname{det} B)$. We will show $\left(F_{n-1}\right)$.
By a unitary similarity transformation, $\left(\mathrm{E}_{m}\right)$ and $\left(\mathrm{F}_{m}\right)$ can be seen equivalent to
$E_{m}\left(A^{\prime}+U B^{\prime} U^{H}\right) \in \operatorname{co}\left\{e_{m}\left(\alpha_{1}+\beta_{\sigma(1)}, \ldots, \alpha_{n}+\beta_{\sigma(n)}\right) \mid \sigma \in S_{n}\right\}$,
$\left(\mathrm{F}_{m}^{\prime}\right) \quad E_{m}\left(A^{\prime} U B^{\prime} U^{H}\right) \in \operatorname{co}\left\{e_{m}\left(\alpha_{1} \beta_{\sigma(1)}, \ldots, \alpha_{n} \beta_{\sigma(n)}\right) \mid \sigma \in S_{n}\right\}$.
Here $A^{\prime}=\operatorname{diag}\left(\alpha_{i}\right), B^{\prime}=\operatorname{diag}\left(\beta_{i}\right)$, and $U \in \mathbb{C}^{n \times n}$ is unitary.

We prove $\left(\mathrm{E}_{2}\right)$. Let us denote by $\gamma_{1}, \ldots, \gamma_{n}$ the eigenvalues of $C=A+B$ and by $C^{(m)}$ the m 'th compound of C. Since

$$
2 \sum_{i<j} \sum_{j} \gamma_{i} \gamma_{j}=\left(\sum_{i} \gamma_{i}\right)^{2}-\sum_{i} \gamma_{i}^{2}
$$

i.e.,

$$
2 \operatorname{tr} C^{(2)}=(\operatorname{tr} C)^{2}-\operatorname{tr} C^{2},
$$

we have
(1)

$$
\begin{aligned}
& 2 \operatorname{tr}(A+B)^{(2)}=(\operatorname{tr}(A+B))^{2}-\operatorname{tr}(A+B)^{2}= \\
& =f-\operatorname{tr}(A B+B A)=f-2 \operatorname{tr} A B
\end{aligned}
$$

Here

$$
f=(\operatorname{tr}(A+B))^{2}-\operatorname{tr}\left(A^{2}+B^{2}\right)
$$

On the other hand, denoting

$$
\eta_{i}^{\sigma}=\alpha_{i}+\beta_{\sigma(i)}
$$

we have

$$
\begin{align*}
& 2 e_{2}\left(\eta_{1}^{\sigma}, \ldots, \eta_{n}^{\sigma}\right)=\left(\sum_{i} \eta_{i}^{\sigma}\right)^{2}-\sum_{i}\left(\eta_{i}^{\sigma}\right)^{2}= \tag{2}\\
& =\left(\sum_{i}\left(\alpha_{i}+\beta_{\sigma(i)}\right)\right)^{2}-\sum_{i}\left(\alpha_{i}+\beta_{\sigma(i)}\right)^{2}=f-2 \sum_{i} \alpha_{i} \beta_{\sigma(i)} .
\end{align*}
$$

Now (E_{2}) follows from (1) and (2) by (F_{1}).

3. $\left(\mathrm{E}_{3}\right)$

Analogously, let us start from

$$
6 \sum_{i<j<k} \sum_{k} \gamma_{i} \gamma_{j} \gamma_{k}=\left(\sum_{i} \gamma_{i}\right)^{3}-3\left(\sum_{i} \gamma_{i}\right)\left(\sum_{i} \gamma_{i}^{2}\right)+2 \sum_{i} \gamma_{i}^{3},
$$

i.e.,

$$
6 \operatorname{tr} C^{(3)}=(\operatorname{tr} C)^{3}-3 \operatorname{tr} C \operatorname{tr} C^{2}+2 \operatorname{tr} C^{3},
$$

which implies

$$
\begin{aligned}
& 6 \operatorname{tr}(A+B)^{(3)}=(\operatorname{tr}(A+B))^{3}-3 \operatorname{tr}(A+B) \operatorname{tr}(A+B)^{2}+ \\
& +2 \operatorname{tr}(A+B)^{3}=g-3 \operatorname{tr}(A+B) \operatorname{tr}(A B+B A)+ \\
& +2 \operatorname{tr}\left(A^{2} B+A B A+B A^{2}+A B^{2}+B A B+B^{2} A\right)= \\
& =g-6 \operatorname{tr}(A+B) \operatorname{tr} A B+6 \operatorname{tr}\left(A^{2} B+A B^{2}\right)
\end{aligned}
$$

Here

$$
g=(\operatorname{tr}(A+B))^{3}-3 \operatorname{tr}(A+B) \operatorname{tr}\left(A^{2}+B^{2}\right)+2 \operatorname{tr}\left(A^{3}+B^{3}\right)
$$

On the other hand,

$$
\begin{aligned}
& 6 e_{3}\left(\eta_{1}^{\sigma}, \ldots, \eta_{n}^{\sigma}\right)=\left(\sum_{i} \eta_{i}^{\sigma}\right)^{3}-3\left(\sum_{i} \eta_{i}^{\sigma}\right) \sum_{i}\left(\eta_{i}^{\sigma}\right)^{2}+2 \sum_{i}\left(\eta_{i}^{\sigma}\right)^{3}= \\
& =g-6 \operatorname{tr}(A+B) \sum_{i} \alpha_{i} \beta_{\sigma(i)}+6 \sum_{i} \alpha_{i}^{2} \beta_{\sigma(i)}+6 \sum_{i} \alpha_{i} \beta_{\sigma(i)}^{2} .
\end{aligned}
$$

By $\left(F_{1}\right)$, there exists a convex combination

$$
\begin{equation*}
\operatorname{tr} A B=\sum_{\sigma \in S_{n}} t_{o} \sum_{i} \alpha_{i} \beta_{\sigma(i)} \quad\left(t_{\sigma} \geqq 0, \sum_{\sigma} t_{o}=1\right) \tag{3}
\end{equation*}
$$

and the t_{σ} 's are obtained as follows [3, 7]: For some unitary U,

$$
\begin{equation*}
\operatorname{tr} A B=\operatorname{tr} A^{\prime} U B^{\prime} U^{H} \tag{4}
\end{equation*}
$$

By Birkhoff's theorem, there exists a convex combination

$$
\begin{equation*}
|U|^{2}=\sum_{\sigma} t_{\sigma} P_{\sigma} \tag{5}
\end{equation*}
$$

where $|\cdot|^{2}$ is understood elementwise and the P_{σ} 's are permutation matrices with rows corresponding to σ. Since this U satisfies also $\operatorname{tr} A^{2} B=\operatorname{tr}\left(A^{\prime}\right)^{2} U B^{\prime} U^{H}$, $\operatorname{tr} A B^{2}=\operatorname{tr} A^{\prime} U\left(B^{\prime}\right)^{2} U^{H}$, these same t_{σ} 's satisfy also

$$
\begin{equation*}
\operatorname{tr} A^{2} B=\sum_{\sigma} t_{\sigma} \sum_{i} \alpha_{i}^{2} \beta_{\sigma(i)}, \quad \operatorname{tr} A B^{2}=\sum_{\sigma} t_{\sigma} \sum_{i} \alpha_{i} \beta_{\sigma(i)}^{2} \tag{6}
\end{equation*}
$$

Now $\left(E_{3}\right)$ follows.

$$
\text { 4. }\left(\mathrm{E}_{4}\right)
$$

By Newton's formula,

$$
24 \sum_{i<j<k<l} \sum_{i} \sum_{i} \gamma_{i} \gamma_{j} \gamma_{k} \gamma_{l}=\ldots+3\left(\sum_{i} \gamma_{i}^{2}\right)^{2}+\ldots,
$$

and so

$$
24 \operatorname{tr}(A+B)^{(4)}=\ldots+3\left(\operatorname{tr}(A+B)^{2}\right)^{2}+\ldots=\ldots+12(\operatorname{tr} A B)^{2}+\ldots
$$

On the other hand,

$$
\begin{aligned}
& 24 e_{4}\left(\eta_{1}^{\sigma}, \ldots, \eta_{n}^{\sigma}\right)=\ldots+3\left(\sum_{i}\left(\alpha_{i}+\beta_{\sigma(i)}\right)^{2}\right)^{2}+\ldots= \\
& =\ldots+12\left(\sum_{i} \alpha_{i} \beta_{o(i)}\right)^{2}+\ldots
\end{aligned}
$$

Let U be as in (4) and the t_{σ} 's as in (5). Using (3), (6), and the analogous results for $\operatorname{tr} A^{3} B$ etc., we could do as before if these same t_{σ} 's would satisfy also

$$
(\operatorname{tr} A B)^{2}=\sum_{\sigma} t_{\sigma}\left(\sum_{i} \alpha_{i} \beta_{\sigma(i)}\right)^{2},
$$

which is obviously not true in general. Therefore the case $m \geqq 4$ remains open.

Let $U \in \mathbb{C}^{n \times n}$ be unitary. Consider the following condition:
(P) There exist t_{σ} 's $\left(\sigma \in S_{n}\right)$ with $t_{\sigma} \geqq 0, \sum_{\sigma} t_{\sigma}=1$, satisfying

$$
\left|U^{(m)}\right|^{2}=\sum_{\sigma} t_{\sigma}\left|P_{\sigma}^{(m)}\right|
$$

for all $m=1, \ldots, n$.
It is easy to see that (P) is true for all U if $n \leqq 3$. Drury [1] proved that (P) is not generally valid if $n \geqq 4$. (Dropping out the requirement $t_{\sigma} \geqq 0$, we obtain a weaker condition, which always holds [6].) Now let $C=A^{\prime}+U B^{\prime} U^{H}$ be as in (E_{n}^{\prime}). We claim that

$$
U \text { satisfies }(\mathrm{P}) \Rightarrow C \text { satisfies }\left(\mathrm{E}_{n}^{\prime}\right)
$$

For the proof, let $N=\{1, \ldots, n\}, 1 \leqq m \leqq n, S=\{I \subset N| | I \mid=m\},|\cdot|=$ $=$ card. Order S lexicographically. For $J, K \in S$, the matrix

$$
Q=\left(q_{J K}\right)=\sum_{\sigma} t_{\sigma}\left|P_{\sigma}^{(m)}\right|
$$

has $(\delta(I, K)=0$ if $I \neq K$, and $\delta(I, I)=1)$

$$
q_{J K}=\sum_{\sigma} t_{\sigma} \delta(\sigma(J), K)=\sum_{\sigma, \sigma(J)=K} t_{\sigma} .
$$

Now, for $\emptyset \neq J, K \subset N$, denote $U_{J K}=$ the corresponding submatrix of $U, x_{J}=$ $=\alpha_{j_{1}} \ldots \alpha_{j_{p}}$ if $J=\left\{j_{1}, \ldots, j_{p}\right\}, \beta_{J}$ respectively, and $J^{\sim}=N \backslash J$. Since

$$
d=\operatorname{det} C=\operatorname{det}\left(A^{\prime}+U B^{\prime} U^{H}\right)=\sum_{l=0}^{n} \sum_{J,|J|=l} \sum_{K,|K|=l}\left|\operatorname{det} U_{J K}\right|^{2} \alpha_{J \sim} \beta_{K}
$$

[7] and, by (P),

$$
\left|\operatorname{det} U_{J K}\right|^{2}=q_{J K}=\sum_{\sigma, \sigma(J)=K} t_{\sigma},
$$

we have

$$
\begin{aligned}
& d=\sum_{l=0}^{n} \sum_{J,|J|=l} \sum_{K,|K|=l} \sum_{\sigma, \sigma(J)=K} t_{\sigma} \alpha_{J} \sim \beta_{K}=\sum_{l} \sum_{|J|=l} \sum_{\sigma} t_{\sigma} \alpha_{J \sim} \beta_{\sigma(J)}= \\
& =\sum_{J} \sum_{\sigma} t_{\sigma} \alpha_{J} \sim \beta_{\sigma(J)}=\sum_{\sigma} t_{\sigma} \sum_{J} \alpha_{J} \sim \beta_{\sigma(J)}=\sum_{\sigma} t_{\sigma} \prod_{j}\left(\alpha_{j}+\beta_{\sigma(j)}\right) .
\end{aligned}
$$

Thus C satisfies $\left(E_{n}^{\prime}\right)$.

$$
\text { 6. }\left(\mathrm{F}_{n-1}\right)
$$

We prove $\left(F_{n-1}\right)$. For $1 \leqq i \leqq n$, denote $a_{i}=\alpha_{N \backslash\{i\}}, b_{i}=\beta_{N \backslash\{i\}}$. Now $A^{(n-1)}$ and $\boldsymbol{B}^{(n-1)}$ are normal with eigenvalues a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}, respectively. Applying $\left(\mathrm{F}_{1}\right)$ to $A^{(n-1)}, B^{(n-1)}$, we have

$$
\operatorname{tr}(A B)^{(n-1)}=\operatorname{tr} A^{(n-1)} B^{(n-1)} \in \operatorname{co}\left\{a_{1} b_{\sigma(1)}+\ldots+a_{n} b_{\sigma(n)} \mid \sigma \in S_{n}\right\}
$$

Since

$$
a_{1} b_{\sigma(1)}+\ldots+a_{n} b_{\sigma(n)}=e_{n-1}\left(\alpha_{1} \beta_{\sigma(1)}, \ldots, \alpha_{n} \beta_{\sigma(n)}\right)
$$

$\left(F_{n-1}\right)$ follows.

$$
\text { 7. }\left(\mathrm{F}_{m}\right), 1 \leqq m \leqq n
$$

Let $U \in \mathbb{C}^{n \times n}$ be unitary, $1 \leqq m \leqq n$. Consider the following condition:
$\left(\mathrm{P}_{m}\right)$ There exist t_{σ} 's $\left(\sigma \in S_{n}\right)$ with $t_{\sigma} \geqq 0, \sum_{\sigma} t_{\sigma}=1$, satisfying

$$
\left|U^{(m)}\right|^{2}=\sum_{\sigma} t_{\sigma}\left|P_{\sigma}^{(m)}\right|
$$

Drury [1] proved that $\left(\mathrm{P}_{m}\right)$ is not generally valid if $n \geqq 4$ and $2 \leqq m \leqq n-2$. Let $G=A^{\prime} U B^{\prime} U^{H}$ be as in $\left(\mathrm{F}_{m}^{\prime}\right)$. We claim that, for $1 \leqq m \leqq n$,
U satisfies $\left(\mathrm{P}_{m}\right) \Rightarrow G$ satisfies $\left(\mathrm{F}_{m}^{\prime}\right)$.
For the proof, denoting by su the sum of elements, we have

$$
\begin{aligned}
& E_{m}(G)=\operatorname{tr}\left(A^{\prime} U B^{\prime} U^{H}\right)^{(m)}=\operatorname{tr}\left(\left(A^{\prime}\right)^{(m)} U^{(m)}\left(B^{\prime}\right)^{(m)}\left(U^{H}\right)^{(m)}\right)= \\
& =\operatorname{su}\left(\left(A^{\prime}\right)^{(m)}\left|U^{(m)}\right|^{2}\left(B^{\prime}\right)^{(m)}\right)=\operatorname{su}\left(\left(A^{\prime}\right)^{(m)}\left(\sum_{\sigma} t_{\sigma}\left|P_{\sigma}^{(m)}\right|\right)\left(B^{\prime}\right)^{(m)}\right)= \\
& =\sum_{\sigma} t_{\sigma} \operatorname{su}\left(\left(A^{\prime}\right)^{(m)}\left|P_{\sigma}^{(m)}\right|^{2}\left(B^{\prime}\right)^{(m)}\right)= \\
& =\sum_{\sigma} t_{\sigma} \operatorname{tr}\left(\left(A^{\prime}\right)^{(m)} P_{\sigma}^{(m)}\left(B^{\prime}\right)^{(m)}\left(P_{\sigma}^{T}\right)^{(m)}\right)= \\
& =\sum_{\sigma} t_{\sigma} \operatorname{tr}\left(A^{\prime} P_{\sigma} B^{\prime} P_{\sigma}^{T}\right)^{(m)}=\sum_{\sigma} t_{\sigma} e_{m}\left(\alpha_{1} \beta_{\sigma(1)}, \ldots, \alpha_{n} \beta_{\sigma(n)}\right) .
\end{aligned}
$$

Therefore (F_{m}^{\prime}) holds.
Let us add one remark. For $1 \leqq m \leqq p \leqq n$, let $A_{p} \in \mathbb{C}^{p \times p}$ be the principal submatrix of A corresponding to the p first rows and columns. Marcus and Sandy ([5], see also [4]) proved that

$$
E_{m}\left(A_{p}\right) \in \operatorname{co}\left\{e_{m}\left(\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(p)}\right) \mid \sigma \in S_{n}\right\}
$$

It is easy to see that this is a special case of $\left(\mathrm{F}_{m}\right)$ where

$$
B=\left(\begin{array}{cc}
I_{p} & 0 \\
0 & 0
\end{array}\right)
$$

Thus $\left(\mathrm{F}_{m}\right)$ holds in this special case.

ACKNOWLEDGEMENTS

A part of this paper was written by the first named author during his visit at the Institute of Mathematics of Czechoslovak Academy of Sciences in the autumn of 1989. He wishes to thank the Academy of Finland and Czechoslovak Academy
of Sciences for financial arrangements, and Professor Miroslav Fiedler and Dr. Zdeněk Vavřín for their hospitality.

We are grateful to Professor Natália Bebiano for calling our attention to references [3], [4], and [5].

References

[1] S. Drury: A counterexample to a question of Merikoski and Virtanen on the compounds of matrices. Linear Algebra Appl., to appear.
[2] M. Fiedler: Bounds for the determinant of the sum of Hermitian matrices. Proc. Amer. Math. Soc. 30: 27-31 (1971).
[3] A. Horn: Doubly stochastic matrices and the diagonal of a rotation matrix. Amer. J. Math. 76: 620-630 (1954).
[4] M. Marcus: Derivations, Plücker relations, and the numerical range. Indiana Univ. Math. J. 22: 1137-1149 (1973).
[5] M. Marcus and M. Sandy: Vertex points in the numerical range of a derivation. Linear and Multilinear Algebra 21:385-394 (1987).
[6] J. K. Merikoski and A. Virtanen: Some notes on de Oliveira's determinantal conjecture. Linear Algebra Appl. 121: 345-352 (1989).
[7] G. N. de Oliveira: Research problem: Normal matrices. Linear and Multilinear Algebra 12: 153-154 (1982).

Author's address: Department of Mathematical Sciences, University of Tampere, P.O. Box 607, SF-33101 Tampere, Finland.

