## Czechoslovak Mathematical Journal

## Ivan Chajda

Varieties with modular and distributive lattices of symmetric or reflexive relations

Czechoslovak Mathematical Journal, Vol. 42 (1992), No. 4, 623-630

Persistent URL:
http://dml.cz/dmlcz/128357

## Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project $D M L-C Z$ : The Czech Digital Mathematics Library http: //dml.cz

# VARIETIES WITH MODULAR AND DISTRIBUTIVE LATTICES OF SYMMETRIC OR REFLEXIVE RELATIONS 

Ivan Chajda, Olomouc

(Received April 26, 1991)

A binary relation $R$ on an algebra $(A, F)$ is called compatible if $R$ satisfies the Substitution Property with respect to $F$, i.e. if for each $n$-ary $f \in F,\left\langle a_{i}, b_{i}\right\rangle \in R$ for $i=1, \ldots, n$ imply $\left\langle f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in R$. It was shown in [1] that for any subcollection $C$ of the properties: reflexivity, symmetry, transitivity, the set of all compatible relations on $(A, F)$ satisfying $C$ forms an algebraic lattice (with respect to set inclusion). The modularity or distributivity of such lattices were characterized by some authors, especially for varieties of algebras. For congrüences (i.e. reflexive, symmetric and transitive compatible relations), it was done by A. Day [5] and B. Jónsson [6]. For tolerances (i.e. reflexive and symmetric compatible relations), it was solved in [2]. For quasiorders (i.e. reflexive and transitive compatible relations), the distributivity was characterized in [4]. For weak congruences (symmetric and transitive compatible relations), the answer has been given recently by G. Vojvodic and B. Sešelja in [8]. For general compatible relations, the solution is contained in [3].

The aim of this paper is to characterize varieties whose members have distributive or modular lattices of symmetric or reflexive compatible relations.

Notation. An algebra and its support will be denoted by the same letter. Let $A$ be an algebra. Denote by $\operatorname{Sym}(A)$ the lattice of all symmetric compatible relations on $A$. Clearly, the empty relation is the least and $A^{2}$ is the greatest element of $\operatorname{Sym}(A)$. The operation $\wedge$ (meet) in $\operatorname{Sym}(A)$ coincides with set intersection. Denote by $\vee$ the join in $\operatorname{Sym}(A)$. For $a, b \in A$ denote by $S(a, b)$ the least element of $\operatorname{Sym}(A)$ containing the pair $\langle a, b\rangle$. If $x_{1}, \ldots, x_{n}$ are elements of $A$, denote by $\mathbf{x}$ the sequence $x_{1}, \ldots, x_{n}$.

Lemma 1. Let $a, b, c, d, x, y, a_{i}, b_{i}(i=1, \ldots, n)$ be elements of an algebra $A$ and let $S_{j} \in \operatorname{Sym}(A)$ for $j \in J$. Then
(a) $\langle c, d\rangle \in S(a, b)$ if and only if $c=t(a, b), d=t(b, a)$ for some binary term $t(x, y)$ over $A$;
(b) $\langle x, y\rangle \in \vee\left\{S_{j} ; j \in J\right\}$ if and only if there exist an m-ary term $p$ and elements $x_{k}, y_{k}$ of $A(k=1, \ldots, m)$ such that $\left\langle x_{k}, y_{k}\right\rangle \in S_{j_{k}}$ for some $j_{k} \in J$ and $x=$ $p\left(x_{1}, \ldots, x_{m}\right), y=p\left(y_{1}, \ldots, y_{m}\right)$;
(c) $\langle x, y\rangle \in \bigvee\left\{S\left(a_{i}, b_{i}\right) ; i=1, \ldots, n\right\}$ if and only if there exists a $2 n$-ary term $q$ with $x=q\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right), y=q\left(b_{1}, \ldots, b_{n}, a_{1}, \ldots, a_{n}\right)$.

The proof is elementary, for details see e.g. [1].

Theorem 1. For a variety $V$, the following conditions are equivalent:
(1) $\operatorname{Sym}(A)$ is distributive for each $A \in V$;
(2) For every $n$-ary term $p$ there exist an $m$-ary term $q$ and binary terms $r_{j}, s_{j}$ $(j=1, \ldots, m)$ such that $p(\mathbf{x})=q\left(r_{1}(p(\mathbf{x}), p(\mathbf{y})), \ldots, r_{m}(p(\mathbf{x}), p(\mathbf{y}))\right)$, and for each $j \in\{1, \ldots, m\}$ there exists $i \in\{1, \ldots, n\}$ with $r_{j}(p(\mathbf{x}), p(\mathbf{y}))=s_{j}\left(x_{i}, y_{i}\right)$.

Proof. (1) $\Rightarrow(2)$ : Let $p$ be an $n$-ary term and let $A=F_{v}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ be a free algebra of $V$ with $2 n$ free generators $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$. Denote $x=p(\mathbf{x})$, $y=p(\mathbf{y})$. By Lemma 1 we have

$$
\langle x, y\rangle \in S(x, y) \wedge \bigvee\left\{S\left(x_{i}, y_{i}\right) ; i=1, \ldots, n\right\}
$$

Distributivity of $\operatorname{Sym}(A)$ implies

$$
\langle x, y\rangle \in \bigvee\left\{S(x, y) \wedge S\left(x_{i}, y_{i}\right) ; i=1, \ldots, n\right\}
$$

thus, by Lemma 1 , there exist an $m$-ary term $q$ and elements $u_{j}, v_{j} \in A(j=1, \ldots, m)$ such that $x=q\left(u_{1}, \ldots, u_{m}\right), y=q\left(v_{1}, \ldots, v_{m}\right)$, where for each $j \in\{1, \ldots, m\}$,

$$
\left\langle u_{j}, v_{j}\right\rangle \in S(x, y) \wedge S\left(x_{i}, y_{i}\right) \text { for some } i \in\{1, \ldots, n\}
$$

By Lemma 1, there exist binary terms $r_{j}, s_{j}$ with

$$
u_{j}=r_{j}(x, y)=s_{j}\left(x_{i}, y_{i}\right), v_{j}=r_{j}(y, x)=s_{j}\left(y_{i}, x_{i}\right)
$$

whence (2) is evident.
(2) $\Rightarrow$ (1): Let $A \in V$ and $R, S, Q \in \operatorname{Sym}(A)$. Suppose $\langle a, b\rangle \in R \wedge(S \vee Q)$. By Lemma 1 , there exist an $n$-ary term $p$ and elements $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ of $A$ such that

$$
a=p\left(a_{1}, \ldots, a_{n}\right), b=p\left(b_{1}, \ldots, b_{n}\right)
$$

and $\langle a, b\rangle \in R$, thus $S(a, b) \subseteq R$, and either $\left\langle a_{i}, b_{i}\right\rangle \in S$ or $\left\langle a_{i}, b_{i}\right\rangle \in Q$ for $i=1, \ldots, n$. By (2), there exist terms $q, s_{j}, r_{j}$ such that

$$
a=q\left(r_{1}(a, b), \ldots, r_{m}(a, b)\right), \quad b=q\left(r_{1}(b, a), \ldots, r_{m}(b, a)\right)
$$

and, for each $j$,

$$
r_{j}(a, b)=s_{j}\left(a_{i}, b_{i}\right) \quad \text { and } \quad r_{j}(b, a)=s_{j}\left(b_{i}, a_{i}\right)
$$

for some $i \in\{1, \ldots, n\}$. Hence, if $\left\langle a_{i}, b_{i}\right\rangle \in S$, then $\left\langle r_{j}(a, b), r_{j}(b, a)\right\rangle \in R \wedge S$, and $\left\langle r_{j}(a, b), r_{j}(b, a)\right\rangle \in R \wedge Q$ provided $\left\langle a_{i}, b_{i}\right\rangle \in Q$. By Lemma 1, we conclude $\langle a, b\rangle \in(R \wedge S) \vee(R \wedge Q)$.

Example 1. Every unary variety $V$ has distributive $\operatorname{Sym}(A)$ for each $A \in V$.
Evidently, every $n$-ary term in a unary variety $V$ is properly unary. Without loss of generality, suppose $p\left(x_{1}, \ldots, x_{n}\right)=p_{0}\left(x_{1}\right)$. We can put $m=1, q(x)=x$, $r_{1}(x, y)=x, s_{1}(x, y)=p_{0}(x)$. Then (2) of Theorem 1 is satisfied:
$p(\mathbf{x})=p_{0}\left(x_{1}\right)=q\left(r_{1}(p(\mathbf{x}), p(\mathbf{y}))\right)$ and $r_{1}(p(\mathbf{x}), p(\mathbf{y}))=p(\mathbf{x})=p_{0}\left(x_{1}\right)=s_{1}\left(x_{1}, y_{1}\right)$.
Now, we turn to the modularity of $\operatorname{Sym}(A)$.
Theorem 2. For a variety $V$, the following conditions are equivalent:
(1) $\operatorname{Sym}(A)$ is modular for each $A \in V$;
(2) for every $n$-ary term $p$ and each $k \in\{1, \ldots, n\}$ there exist an $m$-ary term $q$, $(2+2 k)$-ary terms $w_{j},(2 n-2 k)$-ary terms $g_{j}$ and $2 k$-ary terms $t_{j}(j=1, \ldots, m)$ such that $p(\mathbf{x})=q\left(z_{1}, \ldots, z_{m}\right)$, where for each $j$ either

$$
\begin{aligned}
z_{j}^{j} & =w_{j}\left(p(\mathbf{x}), p(\mathbf{y}), x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right) \\
& =g_{j}\left(x_{k+1}, \ldots, x_{n}, y_{k+1}, \ldots, y_{n}\right) \text { or } \\
z_{j} & =t_{j}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right) .
\end{aligned}
$$

Proof. (1) $\Rightarrow$ (2): Let $p$ be an $n$-ary term over $V, k \in\{1, \ldots, n\}$, and let $A=F_{v}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ be a free algebra of $V$. Denote $x=p(\mathbf{x}), y=p(\mathbf{y})$ and put

$$
\begin{gathered}
Q=\bigvee\left\{S\left(x_{i}, y_{i}\right) ; i=1, \ldots, k\right\}, \quad T=\bigvee\left\{S\left(x_{i}, y_{i}\right) ; i=k+1, \ldots, n\right\}, \\
R=S(x, y) \vee Q .
\end{gathered}
$$

Then $\langle x, y\rangle \in T \vee Q$ and $\langle x, y\rangle \in R$, thus $\langle x, y\rangle \in R \wedge(T \vee Q)$. Since $Q \subseteq R$, the modularity of $\operatorname{Sym}(A)$ implies $\langle x, y\rangle \in(R \wedge T) \vee Q$. By Lemma 1 , there exist an $m$-ary term $q$ and elements $z_{j}, u_{j} \in A$ such that $x=q\left(z_{1}, \ldots, z_{m}\right), y=q\left(u_{1}, \ldots, u_{m}\right)$, where for each $j \in\{1, \ldots, m\}$ either

$$
\left\langle z_{j}, u_{j}\right\rangle \in R \wedge T \text { or }\left\langle z_{j}, u_{j}\right\rangle \in Q .
$$

By an argument similar to that of the proof of Theorem 1, we obtain (2).
(2) $\Rightarrow$ (1): Let $A \in V$ and $R, Q, T \in \operatorname{Sym}(A)$. Let

$$
\langle a, b\rangle \in R \wedge(T \vee(R \wedge Q))
$$

Then $\langle a, b\rangle \in R$ and, by Lemma 1 , there exist an $n$-ary term $p$ and elements $a_{i}, b_{i}$ of $A(i=1, \ldots, n)$ such that $a=p\left(a_{1}, \ldots, a_{n}\right), b=p\left(b_{1}, \ldots, b_{n}\right)$, where $\left\langle a_{i}, b_{i}\right\rangle \in R \wedge Q$ for $i \leqslant k$ and $\left\langle a_{i}, b_{i}\right\rangle \in T$ for $i>k$ for some $k \in\{1, \ldots, n\}$. By (2), we have

$$
a=q\left(z_{1}, \ldots, z_{m}\right) \text { and } b=q\left(u_{1}, \ldots, u_{m}\right)
$$

where either

$$
\begin{aligned}
z_{j}= & w_{j}\left(a, b, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}\right)=g_{j}\left(a_{k+1}, \ldots, a_{n}, b_{k+1}, \ldots, b_{n}\right), \\
u_{j}= & w_{j}\left(b, a, b_{1}, \ldots, b_{k}, a_{1}, \ldots, a_{k}\right)=g_{j}\left(b_{k+1}, \ldots, b_{n}, a_{k+1}, \ldots, a_{n}\right) \\
& \quad \text { i.e. }\left\langle z_{j}, u_{j}\right\rangle \in(R \vee(R \wedge Q)) \wedge T=R \wedge T, \text { or } \\
z_{j}= & t_{j}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}\right), u_{j}=t_{j}\left(b_{1}, \ldots, b_{k}, a_{1}, \ldots, a_{k}\right) \\
& \text { i.e. }\left\langle z_{j}, u_{j}\right\rangle \in R \wedge Q .
\end{aligned}
$$

By Lemma $1,\langle a, b\rangle \in(R \wedge T) \vee(R \wedge Q)$.
Example 2. The variety $\mathscr{A}$ of all abelian groups has modular $\operatorname{Sym}(A)$ for each $A \in \mathscr{A}$.

Evidently, every $n$-ary term $p\left(x_{1}, \ldots, x_{n}\right)$ of $A$ is of the form $x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$, where $\alpha_{1}, \ldots, \alpha_{n}$ are integers. Put $m=2, q(z, v)=v \circ z$,

$$
\begin{aligned}
w_{1}\left(a, b, x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right) & =a \circ x_{1}^{-\alpha_{1}} \ldots x_{k}^{-\alpha_{k}} \\
g_{1}\left(x_{k+1}, \ldots, x_{m}, y_{k+1}, \ldots, y_{n}\right) & =x_{k+1}^{\alpha_{k+1}} \ldots x_{n}^{\alpha_{n}} \\
t_{2}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right) & =x_{1}^{\alpha_{1}} \ldots x_{k}^{\alpha_{k}}
\end{aligned}
$$

Then

$$
\begin{aligned}
z_{1} & =w_{1}\left(p(\mathbf{x}), p(\mathbf{y}), x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right)=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \circ x_{1}^{-\alpha_{1}} \ldots x_{k}^{-\alpha_{k}} \\
& =x_{k+1}^{\alpha_{k+1}} \ldots x_{n}^{\alpha_{n}}=g_{1}\left(x_{k+1}, \ldots, x_{n}, y_{k+1}, \ldots, y_{n}\right) \\
z_{2} & =t_{2}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right)=x_{1}^{\alpha_{1}} \ldots x_{k}^{\alpha_{k}}
\end{aligned}
$$

and

$$
q\left(z_{1}, z_{2}\right)=z_{2} \circ z_{1}=x_{1}^{\alpha_{1}} \ldots x_{k}^{\alpha_{k}} \circ x_{k+1}^{\alpha_{k+1}} \ldots x_{n}^{\alpha_{n}}=p(\mathbf{x})
$$

proving (2) of Theorem 2.
Similarly as in Example 2, we can show that $\operatorname{Sym}(B)$ is modular for every Boolean algebra $B$. In this case $p(\mathbf{x})$ is expressed in the form of the canonical disjunction and the proof is rather tedious.

Now we turn to reflexive relations. For an algebra $A$, denote by $\operatorname{Ref}(A)$ the lattice of all reflexive compatible relations on $A$; denote by $\vee$ or $\wedge$ the operation join or meet in $\operatorname{Ref}(A)$, respectively. Evidently, $\wedge$ coincides with set intersection and the identity relation $\omega$ is the least and $A^{2}$ is the greatest element of $\operatorname{Ref}(A)$. Denote by $R(a, b)$ the least relation of $\operatorname{Ref}(A)$ containing the given pair $\langle a, b\rangle$ of elements $a, b \in A$. The following elementary assertion has been proved in [1] (Theorems 4 and 6):

Lemma 2. Let $A$ be an algebra, let $a, b, c, d, x, y, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ be elements of $A$ and $R_{j} \in \operatorname{Ref}(A)$ for $j \in J$.

Then (a) $\langle c, d\rangle \in R(a, b)$ iff there exists an $(n+1)$-ary term $t$ and elements $e_{1}, \ldots, e_{n} \in A$ such that $c=t\left(a, e_{1}, \ldots, e_{n}\right), d=t\left(b, e_{1}, \ldots, e_{n}\right)$;
(b) $\langle x, y\rangle \in \bigvee\left\{R_{j}, j \in J\right\}$ iff there exist an m-ary term $p$ and elements $x_{k}, y_{k} \in A$ $(k=1, \ldots, m)$ such that $\left\langle x_{k}, y_{k}\right\rangle \in R_{j_{k}}$ for some $j_{k} \in J$ and $x=q\left(x_{1}, \ldots, x_{m}\right)$, $y=q\left(y_{1}, \ldots, y_{m}\right)$;
(c) $\langle x, y\rangle \in \bigvee\left\{R\left(a_{i}, b_{i}\right) ; i=1, \ldots, n\right\}$ iff there exist an $(n+m)$-ary term $q$ and elements $e_{1}, \ldots, e_{m} \in A$ such that

$$
x=q\left(a_{1}, \ldots, a_{n}, e_{1}, \ldots, e_{m}\right), \quad y=q\left(b_{1}, \ldots, b_{n}, e_{1}, \ldots, e_{m}\right)
$$

Theorem 3. For a variety $V$ the following conditions are equivalent:
(1) $\operatorname{Ref}(A)$ is distributive for each $A \in V$;
(2) For every $n$-ary term $p$ there exist an $m$-ary term $q$ and $(2 n+1)$-ary terms $r_{j}$, $s_{j}(j=1, \ldots, m)$ such that

$$
\begin{aligned}
& p(\mathbf{x})=q\left(r_{1}(p(\mathbf{x}), \mathbf{x}, \mathbf{y}), \ldots, r_{m}(p(\mathbf{x}), \mathbf{x}, \mathbf{y})\right) \\
& p(\mathbf{y})=q\left(r_{1}(p(\mathbf{y}), \mathbf{x}, \mathbf{y}), \ldots, r_{m}(p(\mathbf{y}), \mathbf{x}, \mathbf{y})\right)
\end{aligned}
$$

and for each $j \in\{1, \ldots, m\}$ there exists $i \in\{1, \ldots, n\}$ with

$$
r_{j}(p(\mathbf{x}), \mathbf{x}, \mathbf{y})=s_{j}\left(x_{i}, \mathbf{x}, \mathbf{y}\right) \quad \text { and } \quad r_{j}(p(\mathbf{y}), \mathbf{x}, \mathbf{y})=s_{j}\left(y_{i}, \mathbf{x}, \mathbf{y}\right)
$$

The proof is word for word analogous to that of Theorem 1 only Lemma 2 is applied instead of Lemma 1.

Example 3. Every variety of unary algebras has distributive $\operatorname{Ref}(A)$ for each $A \in V$.

Without loss of generality, $p(\mathbf{x})=p_{0}\left(x_{1}\right)$ for some unary term $p_{0}$ and $s_{1}(\mathbf{x})=$ $p_{0}(x)$.

Remark. If a variety $V$ is congruence-permutable, then $\operatorname{Con} A=\operatorname{Ref}(A)$ for each $A \in V$, see [9] (Con $A$ denotes the congruence lattice of $A$ ). Therefore, $\operatorname{Ref}(A)$ is distributive e.g. for every Boolean algebra $A$. However, we can give also the explicit boolean terms satisfying (2) of Theorem 3:

Let $p$ be an $n$-ary boolean term. We can put $m=n, q=p$ and for every $j=1$, $\ldots, n, s_{j}(z, \mathbf{x}, \mathbf{y})=[(x \vee y) \wedge z] \vee(x \wedge y)$ and $r_{j}(z, \mathbf{x}, \mathbf{y})=\left\{\left[(x \vee y) \wedge x_{j}\right] \vee(y \wedge z) \vee[x \wedge\right.$ $(x \oplus y \oplus z)]\} \wedge\left\{\left[(x \vee y) \wedge y_{j}\right] \vee[(y \vee z) \wedge(x \vee(x \oplus y \oplus z))]\right\}$, where $a \oplus b=\left(a \wedge b^{\prime}\right) \vee\left(a^{\prime} \wedge b\right)$ and $x=p(\mathbf{x}), y=p(\mathbf{y})$. It is an easy exercise to verify (2) of Theorem 3.

However, we are able to give a more general example:
Example 4. For every distributive lattice $L, \operatorname{Ref}(L)$ is distributive.
Denote by $D$ the variety of all distributive lattices. Since every $n$-ary term $p$ over $D$ arises by a finite number of lattice operations $\vee$ and $\wedge$, we can prove the existence of $q, r_{i}, s_{i}$ satisfying (2) of Theorem 3 by induction over the rank of the term $p$. Hence, it suffices to show it for two cases, namely $p\left(x_{1}, x_{2}\right)=x_{1} \vee x_{2}$ and $p\left(x_{1}, x_{2}\right)=x_{1} \wedge x_{2}$.
(a) Let $p\left(x_{1}, x_{2}\right)=x_{1} \vee x_{2}$. Put $n=2, q=p, s_{i}(z, \mathbf{x}, \mathbf{y})=[(x \vee y) \wedge z] \vee(x \wedge y)$, $r_{i}(z, \mathbf{x}, \mathbf{y})=\left\{x \wedge z \wedge\left[\left((x \vee y) \wedge x_{i}\right) \vee(x \wedge y)\right]\right\} \vee\left\{y \wedge z \wedge\left[\left((x \vee y) \wedge y_{i}\right) \vee(x \wedge y)\right]\right\}$, where $x=p\left(x_{1}, x_{2}\right), y=p\left(y_{1}, y_{2}\right)$. Hence $x_{i} \leqslant x, y_{i} \leqslant y$, thus also $\left(x \wedge x_{i}\right) \vee(x \wedge y)=$ $\left((x \vee y) \wedge x_{i}\right) \vee(x \wedge y)$, i.e. $r_{i}(x, \mathbf{x}, \mathbf{y})=s_{i}\left(x_{i}, \mathbf{x}, \mathbf{y}\right)$, analogously $r_{i}(y, \mathbf{x}, \mathbf{y})=s_{i}\left(y_{i}, \mathbf{x}, \mathbf{y}\right)$. It is easy to show that

$$
\begin{aligned}
x_{1} \vee x_{2} & =s_{1}\left(x_{1}, \mathbf{x}, \mathbf{y}\right) \vee s_{2}\left(x_{2}, \mathbf{x}, \mathbf{y}\right) \\
y_{t} \vee y_{2} & =s_{1}\left(y_{1}, \mathbf{x}, \mathbf{y}\right) \vee s_{2}\left(y_{2}, \mathbf{x}, \mathbf{y}\right)
\end{aligned}
$$

thus (2) of Theorem 3 is satisfied.
(b) If $p\left(x_{1}, x_{2}\right)=x_{1} \wedge x_{2}$, then we can choose $r_{i}$ dually to the case (a); $s_{i}$ is clearly self-dual. Moreover, $x=x_{1} \wedge x_{2}, y=y_{1} \wedge y_{2}$ gives $x \leqslant x_{i}, y \leqslant y_{i}$, thus (2) of Theorem 3 can be shown dually to (a). By induction over the rank of the term $p$, it can be generalized for any term $p$ over $D$.

Corollary. Let $V$ be a non-trivial variety of lattices. The following conditions are equivalent:
(1) $\operatorname{Ref}(L)$ is distributive for each $L \in V$;
(2) $V$ is a variety of all distributive lattices.

Proof. (2) $\Rightarrow$ (1) By Example 4. Conversely, let $V$ be a nontrivial lattice variety which is not a variety of distributive lattices. Then $V$ contains at least one of the lattices $N_{5}$ or $M_{3}$, i.e. $V$ contains at least one of the lattices $L_{1}, L_{2}$ in Fig. 1:


Fig. 1

Denote by $B$ the subset $\{0, a, b, c, x\}$ and put

$$
R_{1}=\{1, x, a\}^{2} \cup B^{2}, R_{2}=\{1, x, b\}^{2} \cup B^{2}, R_{3}=\{1, x, c\}^{2} \cup B^{2}
$$

It is an easy exercise to show that for $L_{1},\left\{R_{1} \wedge R_{2} \wedge R_{3}, R_{1}, R_{2}, R_{3}, R_{1} \vee R_{2} \vee R_{3}\right\}$ forms a sublattice of $\operatorname{Ref}\left(L_{1}\right)$ isomorphic to $M_{3}$. In the case of $L_{2}, R_{3} \subseteq R_{2}$ and $\left\{R_{3} \wedge R_{1}, R_{1}, R_{2}, R_{3}, R_{1} \vee R_{2}\right\}$ forms a sublattice of $\operatorname{Ref}\left(L_{2}\right)$ isomorphic to $N_{5}$. Hence neither $\operatorname{Ref}\left(L_{1}\right)$ nor $\operatorname{Ref}\left(L_{2}\right)$ are distributive.

We can proceed to characterize the varieties with modular lattices of reflexive relations.

Applying Lemma 2 instead of Lemma 1, we can also prove similarly as in the case of Theorem 2 :

Theorem 4. For a variety $V$, the following conditions are equivalent:
(1) $\operatorname{Ref}(A)$ is modular for each $A \in V$;
(2) For every $n$-ary term $p$ and each $k \in\{1, \ldots, n\}$ there exist an m-ary term $q$, $(2 n+1+k)$-ary terms $w_{j},(2 n+k)$-ary $t_{j}$ and $(3 n-k)$-ary $g_{j}(j=1, \ldots, m)$ such that $p(\mathbf{x})=q\left(u_{1}, \ldots, u_{m}\right), p(\mathbf{y})=q\left(v_{1}, \ldots, v_{m}\right)$ where for each $j$ either

$$
\begin{aligned}
u_{j} & =w_{j}\left(p(\mathbf{x}), x_{1}, \ldots, x_{k}, \mathbf{x}, \mathbf{y}\right)=g_{j}\left(x_{k+1}, \ldots, x_{n}, \mathbf{x}, \mathbf{y}\right) \\
& v_{j}
\end{aligned}=w_{j}\left(p(\mathbf{y}), y_{1}, \ldots, y_{k}, \mathbf{x}, \mathbf{y}\right)=g_{j}\left(y_{k+1}, \ldots, y_{n}, \mathbf{x}, \mathbf{y}\right), ~\left(v_{j}=t_{j}\left(y_{1}, \ldots, y_{k}, \mathbf{x}, \mathbf{y}\right) . ~ \$\right.
$$

It can be shown that every variety of groups (or quasigroups) has modular $\operatorname{Ref}(A)$ for each $A \in V$. However, this is an easy corollary of [5] since groups are congruencepermutable, thus $\operatorname{Ref}(A)=\operatorname{Con} A$, see [9].

## References

[1] Chajda I.: Lattices of compatible relations, Arch. Math. (Brno) 13 (1977), 89-96.
[2] Chajda I.: Distributivity and modularity of lattices of tolerance relations, Algebra Univ. 12 (1981), 247-255.
[3] Chajda I.: Sublagebra modular and subalgebra distributive varieties, Periodica Mathem. Hungar (1991), to appear.
[4] Chajda I.: Varieties having distributive lattices of quasiorders, Czech. Math. J., to appear.
[5] Day A.: A characterization of modularity for congruence lattices of algebras, Canad. Math. Bull. 12 (1969), 167-173.
[6] Jónsson B.: Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110-121.
[7] Pixley A. F.: Distributivity and permutability of congruences in equational class of algebras, Proc. Amer. Math. Soc. 14 (1963), 105-109.
[8] Vojvodić G., Šešelja B.: On the lattice of weak congruence relations, Alg. Univ. 25 (1988), 121-130.
[9] Werner $H$.: A Mal'cev condition on admissible relations, Alg. Univ. 3 (1973), 263.
Author's address: Dept. of Algebra and Geometry, Faculty of Science, Palacký University Olomouc, tř. Svobody 26, 77146 Olomouc, Czechoslovakia.

