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VARIETIES WITH MODULAR AND DISTRIBUTIVE LATTICES 

OF SYMMETRIC OR REFLEXIVE RELATIONS 

IVAN CHAJDA, Olomouc 

(Received April 26, 1991) 

A binary relation R on an algebra (A, F) is called compatible if R satisfies the 
Substitution Property with respect to F, i.e. if for each n-ary / £ F, (a,-, 6,) £ R for 
i = 1, . . . , n imply (f(a\,..., an), / (&i, . . . , 6n)) G R. It was shown in [1] that for any 
subcollection C of the properties: reflexivity, symmetry, transitivity, the set of all 
compatible relations on (A, F) satisfying C forms an algebraic lattice (with respect 
to set inclusion). The modularity or distributivity of such lattices were characterized 
by some authors, especially for varieties of algebras. For congruences (i.e. reflexive, 
symmetric and transitive compatible relations), it was done by A. Day [5] and B. 

Jonsson [6], For tolerances (i.e. reflexive and symmetric compatible relations), it 
was solved in [2], For quasiorders (i.e. reflexive and transitive compatible relations), 
the distributivity was characterized in [4]. For weak congruences (symmetric and 
transitive compatible relations), the answer has been given recently by G. Vojvodic 
and B. Seselja in [8]. For general compatible relations, the solution is contained 
in [3], 

The aim of this paper is to characterize varieties whose members have distributive 
or modular lattices of symmetric or reflexive compatible relations. 

N o t a t i o n . An algebra and its support will be denoted by the same letter. Let 
A be an algebra. Denote by Sym(.rl) the lattice of all symmetric compatible relations 
on A. Clearly, the empty relation is the least and A2 is the greatest element of 
Sym(v4). The operation A (meet) in Sym(^4) coincides with set intersection. Denote 
by V the join in Sym(.A). For a, b E A denote by 5(a, 6) the least element of SyrmM) 
containing the pair (a, b). If £i, . . . , xn are elements of Ay denote by x the sequence 
X\y . . . , Xn. 

Lemma 1. Let a, 6, c, d, x, y, a,, 6, (i = 1 , . . . , n) be elements of an algebra A 

and let Sj G Sym(,4) for jeJ. Then 
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(a) (c, d) E S(a, 6) if and only ifc = t(a, b), d = t(b, a) for some binary term t(x, y) 
over A; 

(b) (x, y) E V{5 ; ; j E J} if and only if there exist an m-ary term p and elements 
xk, yk of A (k = 1, . . . . m) such that (xk>yk) € Sjfc for some jk 6 «/ and z = 

p ( * i , . . . , x m ) , y = p (y i , . . . , y m ) ; 

(c) (x, y) E V{^(a* A ) ; -' = 1) •• •, n } ir* a-10' 0 i^y -^ there exists a 2n-ary term q 
with x = g ( a i , . . . , a n , 6 i , . . . , 6 n ) , y = 9(61,. . . , 6 n , a i , . . . , an) . 

The proof is elementary, for details see e.g. [1]. 

Theorem 1. For a variety V, the following conditions are equivalent: 

(1) SyrruM) is distributive for each A E V; 

(2) For every n-ary term p there exist an m-ary term q and binary terms r ; , Sj 

(j = 1, . . . , m) such that p(x) = ?(ri(p(x),p(y)) , . . . , rm(p(x),p(y))), and for each 

i G { l , . . . , m } there exists i E { 1 , . . . ,n} with r ;(p(x),p(y)) = Sj(xiiyi). 

P r o o f . (1) => (2): Let pbe an n-ary term and let A = Fv(x\,... , x n , y i , . . . ,yn) 
be a free algebra of V with 2n free generators xi, . . . , xn, y\, ..., yn- Denote x = p(x), 
y = p(y). By Lemma 1 we have 

(x, y) E S(x, y) A \J{S(zi, yt); i = 1 , . . . , n}. 

Distributivity of Sym(A) implies 

(^,y>^ V { 5 ( x ' 2 / ) A 5 , ( x * ' ' ^ ) ; i = 1 ' - - ' n ^ 

thus, by Lemma 1, there exist an m-ary term q and elements UJ,VJ £ A (j = I,... ,m) 

such that x = <j(i-i, • • • >um), y = 9 (^1 , . . . , vm), where for each i E { 1 , . . . , m } , 

(UJ,VJ) e S(x,y) AS(xi,yi) for some i e { l , •••>'*}. 

By Lemma 1, there exist binary terms rj, Sj with 

Uj = rj(x,y) = Sj(xi,yi), Vj = r ;(y,x) = Sj(yi,xi), 

whence (2) is evident. 

(2) => (1): Let A E V and R,S,Q E Sym(yl). Suppose (a, 6) € I?A(SVQ). By 
Lemma 1, there exist an n-ary term p and elements a\, ..., am ^1, ..., 6n of A such 
that 

a = p ( a i , . . . , a n ) , 6 = p(6i , . . . ,6n) 
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and (a, b) G R, thus S(a, b) C R} and either (aiy &,) 6 5 or (a,, 6f) G Q for i = 1 , . . . , n. 

By (2), there exist terms q,Sj,rj such that 

a = g(ri(a, 6 ) , . . . , rm(a, &)), 6 = q(ri(b, a ) , . . . , rm(b, a)) 

and, for each j , 

rj(a,b) = Sj(aiybi) and ^-(6, a) = *j(6,-,a.-) 

for some i G { l , . . . , n } . Hence, if (ai,6,) G 5, then (r;(a,6),rj(6,a)) G R A S, 
and (rj(a,6),rj(6,a)) E RAQ provided (a,,6t) G Q. By Lemma 1, we conclude 
{a,b)e(RAS)V(RAQ). D 

E x a m p l e 1. Every unary variety V has distributive Sym(A) for each A G V. 

Evidently, every n-ary term in a unary variety V is properly unary. Without 
loss of generality, suppose p(x\,... ,xn) = po(x\). We can put m = 1, q(x) = x, 
ri(x, j/) = x, «i(x,y) = po(x). Then (2) of Theorem 1 is satisfied: 

P(x) = Po(xi) = g(ri(p(x),p(y))) and ri(p(x),p(y)) = p(x) = p0(xi) = *i(«i ,yi) . 

Now, we turn to the modularity of Sym(.A). 

Theorem 2. For a variety V, the following conditions are equivalent: 
(1) Sym(>l) is modular for each A G V; 

(2) for every n-ary term p and each k G { 1 , . . . , n} there exist an m-ary term q, 
(2 + 2fc)-ary terms Wj, (2n — 2fc)-ary terms gj and 2k-ary terms tj (j = 1, . . . , m) 
such that p(x) = q(z\,..., zm), where for each j either 

ZJ = ^(p(x),p(y),xi, . . . ,xjb,j/ i , . . . ,yib) 

= # (** + l»---i*n,y*+l, -^J/n) or 
2i = ^(« i , - - - i** ,y i , - . - ,y*) -

P r o o f . (1) => (2): Let p be an n-ary term over V, k G { l , . . . , n } , and let 
A = Ft,(xi,..., xn , t / i , . . . , yn) be a free algebra of V. Denote x = p(x), y = p(y) 
and put 

Q = \J{S(xi,yi);i=l,. . . , * } , T = V { % , w ) ; i = i + l , . . . , n } , 
/? = S(x,y)VQ. 
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Then (x,y) G T V Q and (x, y) G R, thus (x, y ) G i ? A ( T V Q). Since Q C / J , the 
modularity of Sym (A) implies (x,y) G ( iJAT)VQ. By Lemma 1, there exist an 
m-ary term q and elements Zj, uj G -4 such that x = g(z i , . . . , zm), y = g(ti i , . . . , tim), 
where for each j € { 1 , . . . , m} either 

(z^UjjeRAT or (zjlUj)eQ. 

By an argument similar to that of the proof of Theorem 1, we obtain (2). 
(2) => (1): Let A G V and RyQ,T G Sym(A). Let 

(a,6)GflA(TV(«AQ)). 

Then (a, b) £ R and, by Lemma 1, there exist an n-ary term p and elements a,, 6, of 
A (i = 1, ..., n) such that a = p(ai,. . . , a n ) , 6 = p(6i,.. . ,6n) , where (a,-,6,) G RhQ 

for i ^ k and (a,, 6,) G T for i > fc for some Jb G { 1 , . . . , n}. By (2), we have 

a = q(z\,...izm) and 6 = g(ui, . . . , t im) , 

where either 

Zj = i0j(a,6,ai , . . . ,a | . ,6i , . . . ,6j .) = <7;(a*+i,... ,an , 6jk.fi, • . ,6n) , 

Uj = Wj(6,a,6i , . . . ,6*,ai, . . . ,aj.) = 9 J ( 6 J . + I , . . . , 6n, a^+i,.. . ,a n ) , 

i.e. (ZJ , u;) G (R V (I? A Q)) A T = /? A T, or 

*i = ^( a i , - , a ib ,6i , . . . ,6 i fc) , t i j = t j (6i , . . . ,6j . ,a i , . . . ,a*) , 

i.e. (*,-,«,) G RAQ. 

By Lemma 1, (a,6) G (RAT)V(RAQ). D 

E x a m p 1 e 2. The variety .c/ of all abelian groups has modular Sym(;4) for each 
Ae*/. 

Evidently, every n-ary term p(xi , . . . ,x n ) of A is of the form x"1 .. .x"n , where 
Qfi, . . . , an are integers. Put m = 2, q(zy v) = t/o2, 

u;i(a, 6, x i , . . . , xfc, y i , . . . , yjt) = a o x^a i . . . x p f c , 

5fl(^fc + l , . , ^ m , y i b + l, . ,yn) = Xk+V ' - ' C ' 

M*i»••••**,yi , . •• ,y*) = *?' •••***• 

Then 

z\ = wl(p(x)1p(y),xlj...,xkyyly...1yk) = x?1 .. .x%» oxf"1 . . .x~afc 

= x£*+1 ...xJJ" = 0 i (x* + 1 , . . . , x n , y*+ i , . . . , y n ) , 

^ = M * I , •- . ,** ,?!, ••-,?*) = * r •••*?*» 
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and 
q(z\,z2) = z2ozx = x°l .. .xa

k
k o x"**1 .. .x** = p(x), 

proving (2) of Theorem 2. 
Similarly as in Example 2, we can show that Sym(i?) is modular for every Boolean 

algebra B. In this case p(x) is expressed in the form of the canonical disjunction and 
the proof is rather tedious. 

Now we turn to reflexive relations. For an algebra A, denote by Kef (A) the lattice 

of all reflexive compatible relations on A; denote by V or A the operation join or meet 

in Ref(A), respectively. Evidently, A coincides with set intersection and the identity 

relation u; is the least and A2 is the greatest element of Ref(A). Denote by R(a, 6) 

the least relation of Ref (.A) containing the given pair (a, 6) of elements a, 6 £ A. The 

following elementary assertion has been proved in [1] (Theorems 4 and 6): 

Lemma 2. Let A be an algebra, let a, 6, c, d} x} y} a\} . . . , an, 6i, . . . , 6n be 

elements of A and Rj £ Ref(A) for j £ J. 

Then (a) (c,d) £ R(a,b) iff there exists an (n + l)-ary term t and elements 

e\, ..., en E A such that c = t(a,e\,... ,e n ) , d = t(b,e\,... , e n ) ; 

(b) (x, y) £ \J{Rj,j € J} iff there exist an m-ary term p and elements £*, t/jb £ A 

(k = 1, . . . , m) such that (xk,yk) € Rjk for some jk £ J and x = q(x\,... ,xm)} 

y = q(y\>-,ym); 
(c) (x, y) £ \/{R(ai,bi); i = 1 , . . . , n} iff there exist an (n -f m)-ary term q and 

elements e\} . . . , em £ A such that 

x = q(a\,.. .,an,e\,. . . , e m ) , y = q(b\,..., 6 n , e i , . . . , em) . 

T h e o r e m 3. For a variety V the following conditions are equivalent: 

(1) Ref(j4) is distributive for each A £ V; 

(2) For every n-ary term p there exist an m-ary term q and (2n -f l)-ary terms rj} 

Sj (j = 1, . . . , m) such that 

p(x) = q(r\(p(x), x, y),..., rm(p(x), x, y)), 

P(y) = q(r\(p(y), x, y ) , . . . , rm(p(y), x, y)) 

and for each j £ { 1 , . . . , m} there exists i £ { 1 , . . . , n} with 

rj(p(x),x,y) = Sj(xi,x,y) and rj(p(y),x,y) = Sj(yi,x,y). 

The proof is word for word analogous to that of Theorem 1 only Lemma 2 is 
applied instead of Lemma 1. 
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E x a m p l e 3 . Every variety of unary algebras has distributive Ref(^4) for each 
AeV. 

Without loss of generality, p(x) = po(xi) for some unary term po and s\(x) = 

Po(x). 

R e m a r k . If a variety V is congruence-permutable, then Con^l = Ref(A) for 
each AeV, see [9] (Con A denotes the congruence lattice of A). Therefore, Ref(A) 

is distributive e.g. for every Boolean algebra A. However, we can give also the explicit 
boolean terms satisfying (2) of Theorem 3: 

Let p be an n-ary boolean term. We can put m = n, q = p and for every j = 1, 

..., n, Sj(z,x,y) = [(xVy)Az]V(xAy) and r ; (z ,x ,y ) = {[(xVy) Ax ;] V(yAz) V[xA 

(x0y0z)]}A{[(xVy)Ay;]V[(yVz)A(xV(xey©z))]}, where a 0 6 = (aA6')V(a'A6) 

and x = p(x), y = p(y) . It is an easy exercise to verify (2) of Theorem 3. 

However, we are able to give a more general example: 

E x a m p l e 4. For every distributive lattice L, Ref(L) is distributive. 

Denote by D the variety of all distributive lattices. Since every n-ary term p 

over D arises by a finite number of lattice operations V and A, we can prove the 

existence of q, rf, sf satisfying (2) of Theorem 3 by induction over the rank of the 

term p . Hence, it suffices to show it for two cases, namely p(xi ,x2) = xi V x2 and 

p(xi ,x 2) = xi Ax 2 . 

(a) Let p(xi ,x 2) = x2 Vx 2 . Put n = 2, q = p, s f(z ,x,y) = [(x V y) A z] V (x Ay), 

rf (z, x, y) = {x A z A [((x V y) A xf) V (x A y)]} V {y A z A [((x V y) A yf) V (x A y)]}, 

where x = p(xi ,x 2 ) , y = p(yi,y2). Hence xf ^ x,y, ^ y, thus also (x Axf) V(xAy) = 

((xVy)Ax.)V(xAy), i.e. r f (x ,x ,y) = s f(x f ,x ,y) , analogously r f(y,x,y) = s f(y f ,x ,y) . 

It is easy to show that 

xi Vx2 = 5 i (x i ,x ,y) Vs 2 (x 2 ,x ,y) , 

yr V y2 = «i(yi, x, y) V s2(y2, x, y), 

thus (2) of Theorem 3 is satisfied. 

(b) If p(xi, x2) = xi Ax2, then we can choose rf dually to the case (a); s, is clearly 
self-dual. Moreover, x = Xi A x2, y = yi A y2 gives x ^ xf, y ^ yf, thus (2) of 
Theorem 3 can be shown dually to (a). By induction over the rank of the term p, it 
can be generalized for any term p over D. 

Corollary. Let V be a non-trivial variety of lattices. The following conditions 

are equivalent: 
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(1) Ref(L) is distributive for each L € V; 
(2) V is a variety of all distributive lattices. 

P r o o f . (2) => (1) By Example 4. Conversely, let V be a nontrivial lattice 
variety which is not a variety of distributive lattices. Then V contains at least one 
of the lattices N5 or M3, i.e. V contains at least one of the lattices L\, L2 in Fig. 1: 

Li= / | . \ L2 = 

Fig. 1 

Denote by B the subset {0,a,6, c, x} and put 

/e! = { l , x , a } 2 U 5 2 , # 2 = { l ,x ,6} 2 U-9 2 , # 3 = { l , s , c } 2 U £ 2 . 

It is an easy exercise to show that for L\, {R\ A R2 A R3, R\, R2, #3, R\ V R2 V R3} 
forms a sublattice of Ref(Li) isomorphic to M3. In the case of L2, R3 Q R2 and 
{R3AR\> R\, #2, #3, R\ V R2} forms a sublattice of Ref(L2) isomorphic to N5. Hence 
neither Ref(Fi) nor Ref(Z/2) are distributive. • 

We can proceed to characterize the varieties with modular lattices of reflexive 
relations. 

Applying Lemma 2 instead of Lemma 1, we can also prove similarly as in the case 
of Theorem 2: 

Theorem 4. For a variety V, the following conditions are equivalent: 
(1) Ref(.A) is modular for each A E V; 
(2) For every n-ary term p and each k £ {1 , . . . , n) there exist an m-ary term q, 

(2n -f 1 + fc)-ary terms Wj, (In + k)-ary tj and (in — k)-ary gj (j = 1, . . . , m) such 
that p(x) = q(u\,..., um), p(y) = q(v\,..., vm) where for each j either 

UJ = wj(p(x),xu...,xk,x)y) = # ( * * + i , . . . , * n , x , y ) , 

Vj = Wj(p(y), yu ..., yk} x, y) = gj(yk+u..., yn, x, y) 

°.r tij- = tj(xu...,xk,x,y), vj = ^(j/i,. . . ,j/ib,x,y). 

629 



It can be shown tha t every variety of groups (or quasigroups) has modular Ref(>l) 

for each A €V. However, this is an easy corollary of [5] since groups are congruence-

permutable, thus Ref(A) = Con.4, see [9], 
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